Today:

- Graphical models
- Bayes Nets:
 - Inference
 - Learning
 - EM

Readings:

- Bishop chapter 8
- Mitchell chapter 6
Midterm

• In class on Monday, March 2
• Closed book
• You may bring a 8.5x11 “cheat sheet” of notes
• Covers all material through today

• Be sure to come on time. We’ll start precisely at 12 noon
Bayesian Networks Definition

A Bayes network represents the joint probability distribution over a collection of random variables.

A Bayes network is a directed acyclic graph and a set of conditional probability distributions (CPD’s).

- Each node denotes a random variable.
- Edges denote dependencies.
- For each node X_i, its CPD defines $P(X_i \mid Pa(X_i))$.
- The joint distribution over all variables is defined to be

$$P(X_1 \ldots X_n) = \prod_{i} P(X_i \mid Pa(X_i))$$

$Pa(X) =$ immediate parents of X in the graph
What You Should Know

• Bayes nets are convenient representation for encoding dependencies / conditional independence

• BN = Graph plus parameters of CPD’s
 – Defines joint distribution over variables
 – Can calculate everything else from that
 – Though inference may be intractable

• Reading conditional independence relations from the graph
 – Each node is cond indep of non-descendents, given only its parents
 – X and Y are conditionally independent given Z if Z D-separates every path connecting X to Y
 – Marginal independence : special case where Z={}
Inference in Bayes Nets

- In general, intractable (NP-complete)
- For certain cases, tractable
 - Assigning probability to fully observed set of variables
 - Or if just one variable unobserved
 - Or for singly connected graphs (i.e., no undirected loops)
 - Belief propagation
- Sometimes use Monte Carlo methods
 - Generate many samples according to the Bayes Net distribution, then count up the results
- Variational methods for tractable approximate solutions
Example

- Bird flu and Allegies both cause Sinus problems
- Sinus problems cause Headaches and runny Nose
Prob. of joint assignment: easy

• Suppose we are interested in joint assignment \(<F=f, A=a, S=s, H=h, N=n>\)

What is \(P(f, a, s, h, n)\)?

let's use \(p(a, b)\) as shorthand for \(p(A=a, B=b)\)
Prob. of marginals: not so easy

- How do we calculate $P(N=n)$?

let's use $p(a,b)$ as shorthand for $p(A=a, B=b)$
Generating a sample from joint distribution: easy

How can we generate random samples drawn according to $P(F,A,S,H,N)$?

Hint: random sample of F according to $P(F=1) = \theta_{F=1}$:
- draw a value of r uniformly from $[0,1]$
- if $r<\theta$ then output $F=1$, else $F=0$

let's use $p(a,b)$ as shorthand for $p(A=a, B=b)$
Generating a sample from joint distribution: easy

How can we generate random samples drawn according to $P(F,A,S,H,N)$?

Hint: random sample of F according to $P(F=1) = \theta_{F=1}$:

• draw a value of r uniformly from $[0,1]$
• if $r<\theta$ then output $F=1$, else $F=0$

Solution:

• draw a random value f for F, using its CPD
• then draw values for A, for $S|A,F$, for $H|S$, for $N|S$
Generating a sample from joint distribution: easy

Note we can estimate marginals like $P(N=n)$ by generating many samples from joint distribution, then count the fraction of samples for which $N=n$

Similarly, for anything else we care about $P(F=1|H=1, N=0)$

→ weak but general method for estimating any probability term…
Inference in Bayes Nets

- In general, intractable (NP-complete)
- For certain cases, tractable
 - Assigning probability to fully observed set of variables
 - Or if just one variable unobserved
 - Or for singly connected graphs (i.e., no undirected loops)
 - Variable elimination
 - Belief propagation
- Often use Monte Carlo methods
 - e.g., Generate many samples according to the Bayes Net distribution, then count up the results
 - Gibbs sampling
- Variational methods for tractable approximate solutions

see Graphical Models course 10-708
Learning of Bayes Nets

• Four categories of learning problems
 – Graph structure may be known/unknown
 – Variable values may be fully observed / partly unobserved

• Easy case: learn parameters for graph structure is known, and data is fully observed

• Interesting case: graph known, data partly known

• Gruesome case: graph structure unknown, data partly unobserved
Learning CPTs from Fully Observed Data

• Example: Consider learning the parameter

\[\theta_{sij} \equiv P(S = 1|F = i, A = j) \]

• Max Likelihood Estimate is

\[\theta_{sij} = \frac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j, s_k = 1)}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)} \]

\[\delta(x) = 1 \text{ if } x=\text{true}, \]
\[= 0 \text{ if } x=\text{false} \]

• Remember why?

let's use \(p(a,b) \) as shorthand for \(p(A=a, B=b) \)
MLE estimate of $\theta_{s|ij}$ from fully observed data

- Maximum likelihood estimate
 $$\theta \leftarrow \arg \max_{\theta} \log P(\text{data}|\theta)$$

- Our case:
 $$P(\text{data}|\theta) = \prod_{k=1}^{K} P(f_k, a_k, s_k, h_k, n_k)$$
 $$P(\text{data}|\theta) = \prod_{k=1}^{K} P(f_k)P(a_k)P(s_k|f_k a_k)P(h_k|s_k)P(n_k|s_k)$$
 $$\log P(\text{data}|\theta) = \sum_{k=1}^{K} \log P(f_k) + \log P(a_k) + \log P(s_k|f_k a_k) + \log P(h_k|s_k) + \log P(n_k|s_k)$$
 $$\frac{\partial \log P(\text{data}|\theta)}{\partial \theta_{s|ij}} = \sum_{k=1}^{K} \frac{\partial \log P(s_k|f_k a_k)}{\partial \theta_{s|ij}}$$
 $$\theta_{s|ij} = \frac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j, s_k = 1)}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)}$$
Estimate θ from partly observed data

- What if FAHN observed, but not S?
- Can’t calculate MLE

$$\theta \leftarrow \arg \max_{\theta} \log \prod_{k} P(f_k, a_k, s_k, h_k, n_k | \theta)$$

- Let X be all observed variable values (over all examples)
- Let Z be all unobserved variable values
- Can’t calculate MLE:

$$\theta \leftarrow \arg \max_{\theta} \log P(X, Z|\theta)$$

- WHAT TO DO?
Estimate θ from partly observed data

- What if FAHN observed, but not S?
- Can’t calculate MLE

$$\theta \leftarrow \arg \max_\theta \log \prod_k P(f_k, a_k, s_k, h_k, n_k|\theta)$$

- Let X be all observed variable values (over all examples)
- Let Z be all unobserved variable values
- Can’t calculate MLE:

$$\theta \leftarrow \arg \max_\theta \log P(X, Z|\theta)$$

- EM seeks* to estimate:

$$\theta \leftarrow \arg \max_\theta E_{Z|X,\theta} [\log P(X, Z|\theta)]$$

* EM guaranteed to find local maximum
• EM seeks estimate:

\[\theta \leftarrow \arg \max_{\theta} \mathbb{E}_{Z|X,\theta}[\log P(X, Z|\theta)] \]

• here, observed \(X=\{F,A,H,N\} \), unobserved \(Z=\{S\} \)

\[
\log P(X, Z|\theta) = \sum_{k=1}^{K} \log P(f_k) + \log P(a_k) + \log P(s_k|f_ka_k) + \log P(h_k|s_k) + \log P(n_k|s_k)
\]

\[
E_{P(Z|X,\theta)} \log P(X, Z|\theta) = \sum_{k=1}^{K} \sum_{i=0}^{1} P(s_k = i|f_k, a_k, h_k, n_k) [\log P(f_k) + \log P(a_k) + \log P(s_k|f_ka_k) + \log P(h_k|s_k) + \log P(n_k|s_k)]
\]
EM Algorithm - Informally

EM is a general procedure for learning from partly observed data.

Given observed variables X, unobserved Z (X=\{F,A,H,N\}, Z=\{S\})

Begin with arbitrary choice for parameters \(\theta \)

Iterate until convergence:

• E Step: estimate the values of unobserved Z, using \(\theta \)
• M Step: use observed values plus E-step estimates to derive a better \(\theta \)

Guaranteed to find local maximum.
Each iteration increases

\[
E_{P(Z|X,\theta)}[\log P(X, Z|\theta')]
\]
EM Algorithm - Precisely

EM is a general procedure for learning from partly observed data.

Given observed variables X, unobserved Z ($X=\{F,A,H,N\}$, $Z=\{S\}$),

Define $Q(\theta'|\theta) = \mathbb{E}_{P(Z|X,\theta)}[\log P(X, Z|\theta')]$

Iterate until convergence:

- **E Step**: Use X and current θ to calculate $P(Z|X,\theta)$
- **M Step**: Replace current θ by
 $$\theta \leftarrow \arg \max_{\theta'} Q(\theta'|\theta)$$

Guaranteed to find local maximum.

Each iteration increases $E_{P(Z|X,\theta)}[\log P(X, Z|\theta')]$
E Step: Use X, θ, to Calculate $P(Z|X,\theta)$

observed $X=\{F,A,H,N\}$, unobserved $Z=\{S\}$

$$P(S_k = 1|f_k,a_k,h_k,n_k, \theta) =$$

let’s use $p(a,b)$ as shorthand for $p(A=a, B=b)$
E Step: Use X, θ, to Calculate $P(Z|X, \theta)$

observed $X=\{F,A,H,N\}$,
unobserved $Z=\{S\}$

$$P(S_k = 1|f_ka_kh_kn_k, \theta) =$$

$$P(S_k = 1|f_ka_kh_kn_k, \theta) = \frac{P(S_k = 1, f_ka_kh_kn_k|\theta)}{P(S_k = 1, f_ka_kh_kn_k|\theta) + P(S_k = 0, f_ka_kh_kn_k|\theta)}$$

let's use $p(a,b)$ as shorthand for $p(A=a, B=b)$
EM and estimating $\theta_s|ij$

observed $X = \{F,A,H,N\}$, unobserved $Z=\{S\}$

E step: Calculate $P(Z_k|X_k; \theta)$ for each training example, k

$$P(S_k = 1|f_k a_k h_k n_k, \theta) = E[s_k] = \frac{P(S_k = 1, f_k a_k h_k n_k|\theta)}{P(S_k = 1, f_k a_k h_k n_k|\theta) + P(S_k = 0, f_k a_k h_k n_k|\theta)}$$

M step: update all relevant parameters. For example:

$$\theta_s|ij \leftarrow \frac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j) E[s_k]}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)}$$

Recall MLE was:

$$\theta_s|ij = \frac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j, s_k = 1)}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)}$$
EM and estimating θ

More generally,
Given observed set X, unobserved set Z of boolean values

<table>
<thead>
<tr>
<th>E step: Calculate for each training example, k</th>
</tr>
</thead>
<tbody>
<tr>
<td>the expected value of each unobserved variable</td>
</tr>
</tbody>
</table>

| M step: |
| Calculate estimates similar to MLE, but |
| replacing each count by its expected count |

$\delta(Y = 1) \rightarrow E_{Z|X,\theta}[Y]$ \hspace{1cm} $\delta(Y = 0) \rightarrow (1 - E_{Z|X,\theta}[Y])$
Using Unlabeled Data to Help Train Naïve Bayes Classifier

Learn $P(Y|X)$

```
<table>
<thead>
<tr>
<th>Y</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>?</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>?</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
```
E step: Calculate for each training example, k
the expected value of each unobserved variable
EM and estimating θ

Given observed set X, unobserved set Y of boolean values

E step: Calculate for each training example, k
the expected value of each unobserved variable Y

$$E_{P(Y|X_1...X_N)}[y(k)] = P(y(k) = 1|x_1(k), \ldots x_N(k); \theta) = \frac{P(y(k) = 1) \prod_i P(x_i(k)|y(k) = 1)}{\sum_{j=0}^1 P(y(k) = j) \prod_i P(x_i(k)|y(k) = j)}$$

M step: Calculate estimates similar to MLE, but replacing each count by its expected count

let’s use $y(k)$ to indicate value of Y on kth example
EM and estimating θ

Given observed set X, unobserved set Y of boolean values

E step: Calculate for each training example, k

the expected value of each unobserved variable Y

$$E_{P(Y|X_1...X_N)}[y(k)] = P(y(k) = 1|x_1(k),...x_N(k); \theta) = \frac{P(y(k) = 1) \prod_i P(x_i(k)|y(k) = 1)}{\sum_{j=0}^1 P(y(k) = j) \prod_i P(x_i(k)|y(k) = j)}$$

M step: Calculate estimates similar to MLE, but replacing each count by its expected count

$$\theta_{ij|m} = \hat{P}(X_i = j|Y = m) = \frac{\sum_k P(y(k) = m|x_1(k)\ldots x_N(k)) \delta(x_i(k) = j)}{\sum_k P(y(k) = m|x_1(k)\ldots x_N(k))}$$

MLE would be: $$\hat{P}(X_i = j|Y = m) = \frac{\sum_k \delta((y(k) = m) \land (x_i(k) = j))}{\sum_k \delta(y(k) = m)}$$
- **Inputs:** Collections \mathcal{D}^l of labeled documents and \mathcal{D}^u of unlabeled documents.
- Build an initial naive Bayes classifier, $\hat{\theta}$, from the labeled documents, \mathcal{D}^l, only. Use maximum a posteriori parameter estimation to find $\hat{\theta} = \arg \max_{\theta} P(\mathcal{D}|\theta)P(\theta)$ (see Equations 5 and 6).
- Loop while classifier parameters improve, as measured by the change in $l_c(\theta|\mathcal{D};z)$ (the complete log probability of the labeled and unlabeled data).
 - **(E-step)** Use the current classifier, $\hat{\theta}$, to estimate component membership of each unlabeled document, i.e., the probability that each mixture component (and class) generated each document, $P(c_j|d_i;\hat{\theta})$ (see Equation 7).
 - **(M-step)** Re-estimate the classifier, $\hat{\theta}$, given the estimated component membership of each document. Use maximum a posteriori parameter estimation to find $\hat{\theta} = \arg \max_{\theta} P(\mathcal{D}|\theta)P(\theta)$ (see Equations 5 and 6).
- **Output:** A classifier, $\hat{\theta}$, that takes an unlabeled document and predicts a class label.

From [Nigam et al., 2000]
Experimental Evaluation

• Newsgroup postings
 – 20 newsgroups, 1000/group

• Web page classification
 – student, faculty, course, project
 – 4199 web pages

• Reuters newswire articles
 – 12,902 articles
 – 90 topics categories
20 Newsgroups

![Graph showing accuracy vs. number of labeled documents. The graph compares the accuracy with 10,000 unlabeled documents and without any unlabeled documents. The accuracy increases as the number of labeled documents increases.]
Table 3. Lists of the words most predictive of the course class in the WebKB data set, as they change over iterations of EM for a specific trial. By the second iteration of EM, many common course-related words appear. The symbol D indicates an arbitrary digit.

<table>
<thead>
<tr>
<th>Iteration 0</th>
<th>Iteration 1</th>
<th>Iteration 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>intelligence</td>
<td>DD</td>
<td>D</td>
</tr>
<tr>
<td>artificial</td>
<td>D</td>
<td>DD</td>
</tr>
<tr>
<td>understanding</td>
<td>lecture</td>
<td>cc</td>
</tr>
<tr>
<td>DDw</td>
<td>D</td>
<td>$DD:w$</td>
</tr>
<tr>
<td>dist</td>
<td>D^*</td>
<td>$DD:DD$</td>
</tr>
<tr>
<td>identical</td>
<td>handout</td>
<td>homework</td>
</tr>
<tr>
<td>rus</td>
<td>due</td>
<td>assignment</td>
</tr>
<tr>
<td>arrange</td>
<td>problem</td>
<td>handout</td>
</tr>
<tr>
<td>games</td>
<td>set</td>
<td>set</td>
</tr>
<tr>
<td>dartmouth</td>
<td>tay</td>
<td>hw</td>
</tr>
<tr>
<td>natural</td>
<td>$DDam$</td>
<td>exam</td>
</tr>
<tr>
<td>cognitive</td>
<td>yurttas</td>
<td>problem</td>
</tr>
<tr>
<td>logic</td>
<td>homework</td>
<td>$DDam$</td>
</tr>
<tr>
<td>proving</td>
<td>kfoury</td>
<td>postscript</td>
</tr>
<tr>
<td>prolog</td>
<td>sec</td>
<td>solution</td>
</tr>
<tr>
<td>knowledge</td>
<td>postscript</td>
<td>quiz</td>
</tr>
<tr>
<td>human</td>
<td>exam</td>
<td>chapter</td>
</tr>
<tr>
<td>representation</td>
<td>solution</td>
<td>ascii</td>
</tr>
<tr>
<td>field</td>
<td>assaf</td>
<td></td>
</tr>
</tbody>
</table>
20 Newsgroups
Bayes Nets – What You Should Know

• Representation
 – Bayes nets represent joint distribution as a DAG + Conditional Distributions
 – D-separation lets us decode conditional independence assumptions

• Inference
 – NP-hard in general
 – For some graphs, some queries, exact inference is tractable
 – Approximate methods too, e.g., Monte Carlo methods, …

• Learning
 – Easy for known graph, fully observed data (MLE’s, MAP est.)
 – EM for partly observed data, known graph