Today:
• Logistic regression
• Generative/Discriminative classifiers

Readings: (see class website)

Required:
• Mitchell: “Naïve Bayes and Logistic Regression”

Optional
• Ng & Jordan
Announcements

• HW3 due Wednesday Feb 4
• HW4 will be handed out next Monday Feb 9

• new reading available:
 – Estimating Probabilities: MLE and MAP (Mitchell)
 – see Lecture tab of class website

• required reading for today:
 – Naïve Bayes and Logistic Regression (Mitchell)
Gaussian Naïve Bayes – Big Picture

Example: \(Y = \text{PlayBasketball} \) (boolean), \(X_1 = \text{Height} \), \(X_2 = \text{MLgrade} \)

\[
Y^{new} \leftarrow \arg \max_{y \in \{0,1\}} P(Y = y) \prod_i P(X_i^{new} | Y = y) \quad \text{assume } P(Y=1) = 0.5
\]
Logistic Regression

Idea:

• Naïve Bayes allows computing $P(Y|X)$ by learning $P(Y)$ and $P(X|Y)$

• Why not learn $P(Y|X)$ directly?
Consider learning $f: X \rightarrow Y$, where
- X is a vector of real-valued features, $< X_1 \ldots X_n >$
- Y is boolean
- assume all X_i are conditionally independent given Y
- model $P(X_i | Y = y_k)$ as Gaussian $N(\mu_{ik}, \sigma_i)$
- model $P(Y)$ as Bernoulli (π)

What does that imply about the form of $P(Y|X)$?

$$P(Y = 1|X = < X_1, \ldots X_n >) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$
Derive form for $P(Y|X)$ for Gaussian $P(X_i|Y=y_k)$ assuming $\sigma_{ik} = \sigma_i$

$$P(Y = 1|X) = \frac{P(Y = 1)P(X|Y = 1)}{P(Y = 1)P(X|Y = 1) + P(Y = 0)P(X|Y = 0)}$$

$$= \frac{1}{1 + \frac{P(Y=0)P(X|Y=0)}{P(Y=1)P(X|Y=1)}}$$

$$= \frac{1}{1 + \exp(ln\frac{P(Y=0)P(X|Y=0)}{P(Y=1)P(X|Y=1)})}$$

$$= \frac{1}{1 + \exp((ln\frac{1}{\pi}) + \sum_i \ln\frac{P(X_i|Y=0)}{P(X_i|Y=1)})}$$

$$P(x \mid y_k) = \frac{1}{\sigma_{ik}\sqrt{2\pi}} e^{-\frac{(x-\mu_{ik})^2}{2\sigma_{ik}^2}}$$

$$\sum_i \left(\frac{\mu_{i0} - \mu_{i1} X_i + \mu_{i1}^2 - \mu_{i0}^2}{\sigma_i^2} \right)$$

$$P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^n w_i X_i)}$$
Very convenient!

\[P(Y = 1|X = \langle X_1, \ldots X_n \rangle) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)} \]

implies

\[P(Y = 0|X = \langle X_1, \ldots X_n \rangle) = \]

implies

\[\frac{P(Y = 0|X)}{P(Y = 1|X)} = \]

implies

\[\ln \frac{P(Y = 0|X)}{P(Y = 1|X)} = \]
Very convenient!

\[P(Y = 1 | X =< X_1, ... X_n >) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)} \]

implies

\[P(Y = 0 | X =< X_1, ... X_n >) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)} \]

implies

\[\frac{P(Y = 0 | X)}{P(Y = 1 | X)} = \exp(w_0 + \sum_i w_i X_i) \]

implies

\[\ln \frac{P(Y = 0 | X)}{P(Y = 1 | X)} = w_0 + \sum_i w_i X_i \]
Logistic function

\[P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)} \]
Logistic regression more generally

- Logistic regression when Y not boolean (but still discrete-valued).
- Now $y \in \{y_1 \ldots y_R\}$: learn $R-1$ sets of weights

For $k < R$

$$P(Y = y_k | X) = \frac{\exp(w_{k0} + \sum_{i=1}^{n} w_{ki}X_i)}{1 + \sum_{j=1}^{R-1} \exp(w_{j0} + \sum_{i=1}^{n} w_{ji}X_i)}$$

For $k = R$

$$P(Y = y_R | X) = \frac{1}{1 + \sum_{j=1}^{R-1} \exp(w_{j0} + \sum_{i=1}^{n} w_{ji}X_i)}$$
Training Logistic Regression: MCLE

• we have L training examples: $\{\langle X^1, Y^1 \rangle, \ldots, \langle X^L, Y^L \rangle \}$

• maximum likelihood estimate for parameters W

\[W_{MLE} = \arg \max_W \prod \left(P(\langle X^1, Y^1 \rangle, \ldots, \langle X^L, Y^L \rangle | W) \right) \]

• maximum conditional likelihood estimate
Training Logistic Regression: MCLE

• Choose parameters $W=<w_0, \ldots, w_n>$ to maximize conditional likelihood of training data

 where

 $$P(Y = 0|X, W) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

 $$P(Y = 1|X, W) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

• Training data $D = \{\langle X^1, Y^1 \rangle, \ldots, \langle X^L, Y^L \rangle \}$

• Data likelihood $= \prod_l P(X^l, Y^l|W)$

• Data conditional likelihood $= \prod_l P(Y^l|X^l, W)$

 $$W_{MCLE} = \arg \max_W \prod_l P(Y^l|W, X^l)$$
Expressing Conditional Log Likelihood

\[l(W) \equiv \ln \prod_l P(Y^l|X^l, W) = \sum_l \ln P(Y^l|X^l, W) \]

\[P(Y = 0|X, W) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)} \]

\[P(Y = 1|X, W) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)} \]

\[l(W) = \sum_l Y^l \ln P(Y^l = 1|X^l, W) + (1 - Y^l) \ln P(Y^l = 0|X^l, W) \]

\[= \sum_l Y^l \ln \frac{P(Y^l = 1|X^l, W)}{P(Y^l = 0|X^l, W)} + \ln P(Y^l = 0|X^l, W) \]

\[= \sum_l Y^l (w_0 + \sum_i^n w_i X_i^l) - \ln(1 + \exp(w_0 + \sum_i^n w_i X_i^l)) \]
Maximizing Conditional Log Likelihood

\[P(Y = 0 | X, W) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)} \]

\[P(Y = 1 | X, W) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)} \]

\[l(W) \equiv \ln \prod_l P(Y^l | X^l, W) \]

\[= \sum_l Y^l (w_0 + \sum_i w_i X_i^l) - \ln (1 + \exp(w_0 + \sum_i w_i X_i^l)) \]

Good news: \(l(W) \) is concave function of \(W \)
Bad news: no closed-form solution to maximize \(l(W) \)
Gradient Descent

\[\nabla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \ldots, \frac{\partial E}{\partial w_n} \right] \]

Training rule:

\[\Delta \vec{w} = -\eta \nabla E[\vec{w}] \]

i.e.,

\[\Delta w_i = -\eta \frac{\partial E}{\partial w_i} \]
Gradient Descent:

Batch gradient: use error $E_D(w)$ over entire training set D
Do until satisfied:
1. Compute the gradient $\nabla E_D(w) = \left[\frac{\partial E_D(w)}{\partial w_0} \ldots \frac{\partial E_D(w)}{\partial w_n} \right]$
2. Update the vector of parameters: $w \leftarrow w - \eta \nabla E_D(w)$

Stochastic gradient: use error $E_d(w)$ over single examples $d \in D$
Do until satisfied:
1. Choose (with replacement) a random training example $d \in D$
2. Compute the gradient just for d: $\nabla E_d(w) = \left[\frac{\partial E_d(w)}{\partial w_0} \ldots \frac{\partial E_d(w)}{\partial w_n} \right]$
3. Update the vector of parameters: $w \leftarrow w - \eta \nabla E_d(w)$

Stochastic approximates Batch arbitrarily closely as $\eta \to 0$
Stochastic can be much faster when D is very large
Intermediate approach: use error over subsets of D
Maximize Conditional Log Likelihood: Gradient Ascent

\[l(W) \equiv \ln \prod_l P(Y^l|X^l, W) \]
\[= \sum_l Y^l (w_0 + \sum_i^n w_i X_i^l) - \ln(1 + \exp(w_0 + \sum_i^n w_i X_i^l)) \]

\[\frac{\partial l(W)}{\partial w_i} = \sum_l X_i^l (Y^l - \hat{P}(Y^l = 1|X^l, W)) \]
Maximize Conditional Log Likelihood: Gradient Ascent

\[l(W) \equiv \ln \prod_l P(Y^l | X^l, W) \]
\[= \sum_l Y^l(w_0 + \sum_i^n w_iX_i^l) - \ln(1 + \exp(w_0 + \sum_i^n w_iX_i^l)) \]

\[\frac{\partial l(W)}{\partial w_i} = \sum_l X_i^l(Y^l - \hat{P}(Y^l = 1 | X^l, W)) \]

Gradient ascent algorithm: iterate until change < \(\varepsilon \)

For all \(i \), repeat

\[w_i \leftarrow w_i + \eta \sum_l X_i^l(Y^l - \hat{P}(Y^l = 1 | X^l, W)) \]
That’s all for M(C)LE. How about MAP?

- One common approach is to define priors on W
 - Normal distribution, zero mean, identity covariance
- Helps avoid very large weights and overfitting
- MAP estimate

$$W \leftarrow \arg \max_W \ln P(W) \prod_l P(Y^l | X^l, W)$$

- let’s assume Gaussian prior: $W \sim N(0, \sigma)$
MLE vs MAP

- Maximum conditional likelihood estimate

 \[W \leftarrow \arg \max_W \ln \prod_l P(Y^l|X^l, W) \]

 \[w_i \leftarrow w_i + \eta \sum_l X_i^l (Y^l - \hat{P}(Y^l = 1|X^l, W)) \]

- Maximum a posteriori estimate with prior \(W \sim N(0, \sigma I) \)

 \[W \leftarrow \arg \max_W \ln [P(W) \prod_l P(Y^l|X^l, W)] \]

 \[w_i \leftarrow w_i - \eta \lambda w_i + \eta \sum_l X_i^l (Y^l - \hat{P}(Y^l = 1|X^l, W)) \]
MAP estimates and Regularization

- Maximum a posteriori estimate with prior $W \sim N(0, \sigma I)$

\[
W \leftarrow \arg \max_W \ln[P(W) \prod_l P(Y^l|X^l, W)]
\]

\[
w_i \leftarrow w_i - \eta \lambda w_i + \eta \sum_l X_i^l (Y^l - \hat{P}(Y^l = 1|X^l, W))
\]

called a “regularization” term
- helps reduce overfitting
- keep weights nearer to zero (if $P(W)$ is zero mean Gaussian prior), or whatever the prior suggests
- used very frequently in Logistic Regression
The Bottom Line

• Consider learning f: $X \rightarrow Y$, where
 • X is a vector of real-valued features, $< X_1 \ldots X_n >$
 • Y is boolean
 • assume all X_i are conditionally independent given Y
 • model $P(X_i \mid Y = y_k)$ as Gaussian $N(\mu_{ik}, \sigma_i)$
 • model $P(Y)$ as Bernoulli (π)

• Then $P(Y \mid X)$ is of this form, and we can directly estimate W

\[
P(Y = 1 \mid X = < X_1, \ldots X_n >) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}
\]

• Furthermore, same holds if the X_i are boolean
 • trying proving that to yourself
Generative vs. Discriminative Classifiers

Training classifiers involves estimating $f: X \rightarrow Y$, or $P(Y|X)$

Generative classifiers (e.g., Naïve Bayes)
• Assume some functional form for $P(X|Y)$, $P(X)$
• Estimate parameters of $P(X|Y)$, $P(X)$ directly from training data
• Use Bayes rule to calculate $P(Y|X=x_i)$

Discriminative classifiers (e.g., Logistic regression)

• Assume some functional form for $P(Y|X)$
• Estimate parameters of $P(Y|X)$ directly from training data
Use Naïve Bayes or Logistic Regression?

Consider

- Restrictiveness of modeling assumptions

- Rate of convergence (in amount of training data) toward asymptotic hypothesis
Naïve Bayes vs Logistic Regression

Consider Y boolean, X_i continuous, $X=<X_1 \ldots X_n>$

Number of parameters to estimate:

• **NB:**

$$P(Y = 0|X, W) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

• **LR:**

$$P(Y = 1|X, W) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$
Naïve Bayes vs Logistic Regression

Consider Y boolean, X_i continuous, $X=<X_1 ... X_n>$

Number of parameters:
• NB: $4n +1$
• LR: $n+1$

Estimation method:
• NB parameter estimates are uncoupled
• LR parameter estimates are coupled
Recall two assumptions deriving form of LR from GNBayes:
1. X_i conditionally independent of X_k given Y
2. $P(X_i \mid Y = y_k) = N(\mu_{ik}, \sigma_{i})$, \leftrightarrow not $N(\mu_{ik}, \sigma_{ik})$

Consider three learning methods:
• GNB (assumption 1 only)
• GNB2 (assumption 1 and 2)
• LR

Which method works better if we have infinite training data, and…
• Both (1) and (2) are satisfied
• Neither (1) nor (2) is satisfied
• (1) is satisfied, but not (2)
G.Naïve Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

Recall two assumptions deriving form of LR from GNBayes:
1. X_i conditionally independent of X_k given Y
2. $P(X_i \mid Y = y_k) = N(\mu_{ik}, \sigma_i), \leftrightarrow \text{not } N(\mu_{ik}, \sigma_{ik})$

Consider three learning methods:
• GNB (assumption 1 only)
• GNB2 (assumption 1 and 2)
• LR

Which method works better if we have *infinite* training data, and...

• Both (1) and (2) are satisfied
• Neither (1) nor (2) is satisfied
• (1) is satisfied, but not (2)
G. Naïve Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

Recall two assumptions deriving form of LR from GNBayes:
1. X_i conditionally independent of X_k given Y
2. $P(X_i | Y = y_k) = N(\mu_{ik}, \sigma_i)$, $\not= N(\mu_{ik}, \sigma_{ik})$

Consider three learning methods:
• GNB (assumption 1 only) -- decision surface can be non-linear
• GNB2 (assumption 1 and 2) – decision surface linear
• LR -- decision surface linear, trained without assumption 1.

Which method works better if we have *infinite* training data, and...

• Both (1) and (2) are satisfied: LR = GNB2 = GNB

• (1) is satisfied, but not (2) : GNB > GNB2, GNB > LR, LR > GNB2

• Neither (1) nor (2) is satisfied: GNB>GNB2, LR > GNB2, LR><GNB
G. Naïve Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

What if we have only finite training data?

They converge at different rates to their asymptotic (∞ data) error

Let $\epsilon_{A,n}$ refer to expected error of learning algorithm A after n training examples

Let d be the number of features: $<X_1 \ldots X_d>$

\[
\epsilon_{LR,n} \leq \epsilon_{LR,\infty} + O\left(\sqrt{\frac{d}{n}}\right)
\]

\[
\epsilon_{GNB,n} \leq \epsilon_{GNB,\infty} + O\left(\sqrt{\frac{\log d}{n}}\right)
\]

So, GNB requires $n = O(\log d)$ to converge, but LR requires $n = O(d)$
Some experiments from UCI data sets

[Ng & Jordan, 2002]

Figure 1: Results of 15 experiments on datasets from the UCI Machine Learning repository. Plots are of generalization error vs. m (averaged over 1000 random train/test splits). Dashed line is logistic regression; solid line is naive Bayes.
Naïve Bayes vs. Logistic Regression

The bottom line:

GNB2 and LR both use linear decision surfaces, GNB need not

Given infinite data, LR is better or equal to GNB2 because *training procedure* does not make assumptions 1 or 2 (though our derivation of the form of \(P(Y|X)\) did).

But GNB2 converges more quickly to its perhaps-less-accurate asymptotic error

And GNB is both more biased (assumption 1) and less (no assumption 2) than LR, so either might outperform the other
What you should know:

- Logistic regression
 - Functional form follows from Naïve Bayes assumptions
 - For Gaussian Naïve Bayes assuming variance $\sigma_{i,k} = \sigma_i$
 - For discrete-valued Naïve Bayes too
 - But training procedure picks parameters without making conditional independence assumption
 - MLE training: pick W to maximize $P(Y \mid X, W)$
 - MAP training: pick W to maximize $P(W \mid X,Y)$
 - ‘regularization’
 - helps reduce overfitting

- Gradient ascent/descent
 - General approach when closed-form solutions unavailable

- Generative vs. Discriminative classifiers
 - Bias vs. variance tradeoff
extra slides
What is the minimum possible error?

Best case:
• conditional independence assumption is satisfied
• we know $P(Y)$, $P(X|Y)$ perfectly (e.g., infinite training data)
Questions to think about:

• Can you use Naïve Bayes for a combination of discrete and real-valued X_i?

• How can we easily model the assumption that just 2 of the n attributes as dependent?

• What does the decision surface of a Naïve Bayes classifier look like?

• How would you select a subset of X_i’s?