Boosting, HW Help

Colin White, Kenny Marino, Nupur Chatterji
Plan for Today

- Review Boosting, Adaboost
- HW4 questions

Slides by Rob Schapire, Nina Balcan, Colin White
Boosting Idea

• devise computer program for deriving rough rules of thumb
• apply procedure to subset of examples
• obtain rule of thumb
• apply to 2nd subset of examples
• obtain 2nd rule of thumb
• repeat T times
Boosting Idea

- how to choose examples on each round?
 - concentrate on “hardest” examples
 (those most often misclassified by previous rules of thumb)
- how to combine rules of thumb into single prediction rule?
 - take (weighted) majority vote of rules of thumb
Boosting Idea

- **boosting** = general method of converting rough rules of thumb into highly accurate prediction rule
- technically:
 - assume given “weak” learning algorithm that can consistently find classifiers (“rules of thumb”) at least slightly better than random, say, accuracy $\geq 55\%$ (in two-class setting)
 - given sufficient data, a **boosting algorithm** can provably construct single classifier with very high accuracy, say, 99\%
Strong and Weak Learnability

- **Strong PAC learning algorithm:**
 - Learns classifier with error 1%, with high probability, for any distribution

- **Weak PAC learning algorithm:**
 - Learns classifier with error 49%, with high probability, for any distribution

Boosting: weak learning implies strong learning
Adaboost

Input: \(S = \{(x_1, y_1), \ldots, (x_m, y_m)\}; \quad x_i \in X, y_i \in Y = \{-1,1\} \)

weak learning algo \(A \) (e.g., Naïve Bayes, decision stumps)

- For \(t = 1, 2, \ldots, T \)
 - Construct \(D_t \) on \(\{x_1, \ldots, x_m\} \)
 - Run \(A \) on \(D_t \) producing \(h_t: X \rightarrow \{-1,1\} \) (weak classifier)

\[
\epsilon_t = P_{x_i \sim D_t}(h_t(x_i) \neq y_i) \quad \text{error of } h_t \text{ over } D_t
\]

- Output \(H_{\text{final}}(x) = \text{sign}(\sum_{t=1}^{T} \alpha_t h_t(x)) \)
Adaboost

- Weak learning algorithm A.
- For $t=1,2,\ldots,T$
 - Construct D_t on $\{x_1, \ldots, x_m\}$
 - Run A on D_t producing h_t

Constructing D_t

- D_1 uniform on $\{x_1, \ldots, x_m\}$ [i.e., $D_1(i) = \frac{1}{m}$]
- Given D_t and h_t set

 $$D_{t+1}(i) = \frac{D_t(i)}{Z_t} e^{-\alpha_t} \text{ if } y_i = h_t(x_i)$$
 $$D_{t+1}(i) = \frac{D_t(i)}{Z_t} e^{\alpha_t} \text{ if } y_i \neq h_t(x_i)$$

 $$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) > 0$$

 D_{t+1} puts half of weight on examples x_i where h_t is incorrect & half on examples where h_t is correct

Final hyp:

$$H_{\text{final}}(x) = \text{sign}(\sum_t \alpha_t h_t(x))$$
Example

\[D_1 \]

\[D_2 \]

\[D_3 \]

\[h_1 \]

\[h_2 \]

\[h_3 \]

\(\varepsilon_1 = 0.30 \)
\(\alpha_1 = 0.42 \)

\(\varepsilon_2 = 0.21 \)
\(\alpha_2 = 0.65 \)

\(\varepsilon_3 = 0.14 \)
\(\alpha_3 = 0.92 \)
Example

\[H_{\text{final}} = \text{sign}(0.42 + 0.65 + 0.92) \]

\[
\begin{array}{ccc}
+ & + & - \\
+ & - & - \\
+ & - & - \\
- & - & - \\
\end{array}
\]
Adaboost

- **Very general**: a meta-procedure, it can use any weak learning algorithm!! (e.g., Naïve Bayes, decision stumps)

- **Very fast** (single pass through data each round) & simple to code, no parameters to tune.

- Shift in mindset: goal is now just to find classifiers a bit better than random guessing.

- Grounded in rich theory.

- Relevant for big data age: quickly focuses on “core difficulties”, well-suited to distributed settings, where data must be communicated efficiently [Balcan-Blum-Fine-Mansour COLT'12].
Theoretical Guarantees

Theorem
\[\text{err}_s(H_{\text{final}}) \leq \exp \left[-2 \sum_t \gamma_t^2 \right] \]
where \(\epsilon_t = 1/2 - \gamma_t \)

How about generalization guarantees?

Original analysis [Freund&Schapire'97]

- Let \(H \) be the set of rules that the weak learner can use
- Let \(G \) be the set of weighted majority rules over \(T \) elements of \(H \) (i.e., the things that AdaBoost might output)

Theorem [Freund&Schapire'97]

\[\forall g \in G, \text{err}(g) \leq \text{err}_s(g) + \tilde{\Omega} \left(\frac{\sqrt{r d}}{m} \right) \]
T= \# of rounds
d= VC dimension of \(H \)
Questions?

- Questions on Adaboost and boosting?
- Questions on HW4?