Clustering.
Unsupervised Learning

Maria-Florina Balcan
04/09/2018
Clustered, Informal Goals

Goal: Automatically partition unlabeled data into groups of similar datapoints.

Question: When and why would we want to do this?

Useful for:
- Automatically organizing data.
- Understanding hidden structure in data.
- Preprocessing for further analysis.
 - Representing high-dimensional data in a low-dimensional space (e.g., for visualization purposes).
Clustering

- Last time: Partitional objective based clustering
- Focused on k-means and k-means ++
 - Lloyd’s method
 - Initialization techniques (random, furthest traversal, k-means++)

- Today: hierarchical Clustering.
 - Single linkage, Complete linkage
What value of k???

- Heuristic: Find large gap between $k-1$-means cost and k-means cost.

- Hold-out validation/cross-validation on auxiliary task (e.g., supervised learning task).

- Try hierarchical clustering.
Hierarchical Clustering

- A hierarchy might be more natural.
- Different users might care about different levels of granularity or even prunings.
Hierarchical Clustering

Top-down (divisive)

• Partition data into 2-groups (e.g., 2-means)
• Recursively cluster each group.

Bottom-Up (agglomerative)

• Start with every point in its own cluster.
• Repeatedly merge the “closest” two clusters.
• Different defs of “closest” give different algorithms.
Bottom-Up (agglomerative)

Have a **distance** measure on pairs of objects.

\[d(x,y) \] - distance between \(x \) and \(y \)

E.g., \# keywords in common, edit distance, etc

- **Single linkage:** \(\text{dist}(C, C') = \min_{x \in C, x' \in C'} \text{dist}(x, x') \)

- **Complete linkage:** \(\text{dist}(C, C') = \max_{x \in C, x' \in C'} \text{dist}(x, x') \)

- **Average linkage:** \(\text{dist}(C, C') = \frac{\text{avg}_{x \in C, x' \in C'} \text{dist}(x, x')}{\text{num}_{C, \text{num}_C'}} \)
Single Linkage

Bottom-up (agglomerative)

- Start with every point in its own cluster.
- Repeatedly merge the “closest” two clusters.

Single linkage: $\text{dist}(C, C') = \min_{x \in C, x' \in C'} \text{dist}(x, x')$

Dendogram
Complete Linkage

Bottom-up (agglomerative)
- Start with every point in its own cluster.
- Repeatedly merge the “closest” two clusters.

Complete linkage: \(\text{dist}(S, T) = \max_{x \in S, x' \in T} \text{dist}(x, x') \)

One way to think of it: keep max diameter as small as possible at any level.
Running time for Single and Complete Linkage

• Each algorithm starts with N clusters, and performs N-1 merges.
• For each algorithm, computing \(\text{dist}(C, C') \) can be done in time \(O(|C| \cdot |C'|) \). (e.g., examining \(\text{dist}(x, x') \) for all \(x \in C, x' \in C' \))
• Time to compute all pairwise distances and take smallest is \(O(N^2) \).
• Overall time is \(O(N^3) \).

In fact, can run all these algorithms in time \(O(N^2 \log N) \).

What You Should Know

- Partitional Clustering. k-means and k-means ++
 - Lloyd’s method
 - Initialization techniques (random, furthest traversal, k-means++)

- Hierarchical Clustering.
 - Single linkage, Complete linkage