

Generalization and Overfitting

Sample Complexity Results for Supervised Classification

Maria-Florina (Nina) Balcan

February 28th, 2018

Two Core Aspects of Machine Learning

Algorithm Design. How to optimize?

Computation

Automatically generate rules that do well on observed data.

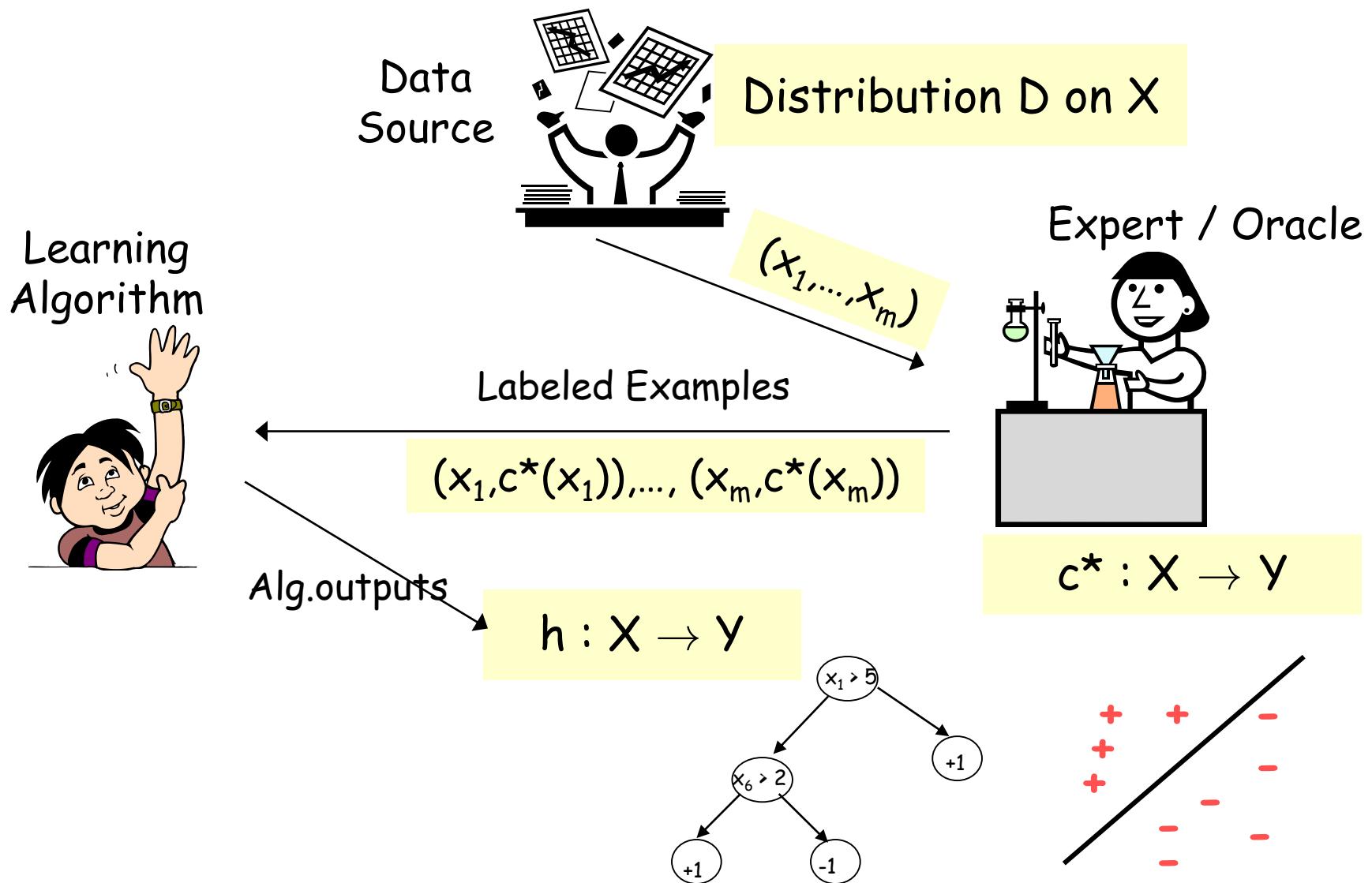
- E.g.: logistic regression, SVM, Adaboost, etc.

Confidence Bounds, Generalization

(Labeled) Data

Confidence for rule effectiveness on future data.

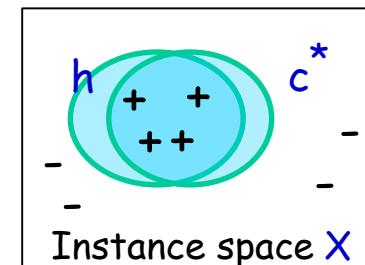
PAC/SLT models for Supervised Learning



PAC/SLT models for Supervised Learning

- X - feature/instance space; distribution D over X
e.g., $X = \mathbb{R}^d$ or $X = \{0,1\}^d$
- Algo sees training sample $S: (x_1, c^*(x_1)), \dots, (x_m, c^*(x_m))$, x_i i.i.d. from D
 - labeled examples - drawn i.i.d. from D and labeled by target c^*
 - labels $\in \{-1,1\}$ - binary classification
- Algo does optimization over S , find hypothesis h .
- Goal: h has small error over D .

$$err_D(h) = \Pr_{x \sim D} (h(x) \neq c^*(x))$$



Bias: fix hypothesis space H [whose complexity is not too large]

- **Realizable:** $c^* \in H$.
- **Agnostic:** c^* "close to" H .

PAC/SLT models for Supervised Learning

- Algo sees training sample $S: (x_1, c^*(x_1)), \dots, (x_m, c^*(x_m))$, x_i i.i.d. from D
- Does optimization over S , find hypothesis $h \in H$.
- Goal: h has small error over D .

True error: $\text{err}_D(h) = \Pr_{x \sim D} (h(x) \neq c^*(x))$

How often $h(x) \neq c^*(x)$ over future instances drawn at random from D

- But, can only measure:

Training error: $\text{err}_S(h) = \frac{1}{m} \sum_i I(h(x_i) \neq c^*(x_i))$

How often $h(x) \neq c^*(x)$ over training instances

Sample complexity: bound $\text{err}_D(h)$ in terms of $\text{err}_S(h)$

Sample Complexity for Supervised Learning

Consistent Learner

- Input: $S: (x_1, c^*(x_1)), \dots, (x_m, c^*(x_m))$
- Output: Find h in H consistent with the sample (if one exists).

Theorem

Bound only logarithmic in $|H|$, linear in $1/\epsilon$

$$m \geq \frac{1}{\epsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $err_D(h) \geq \epsilon$ have $err_S(h) > 0$.

Probability over different samples of m training examples

So, if $c^* \in H$ and can find consistent fns, then only need this many examples to get generalization error $\leq \epsilon$ with prob. $\geq 1 - \delta$

What if $c^* \notin H$?

Sample Complexity: Uniform Convergence Agnostic Case

Empirical Risk Minimization (ERM)

- Input: $S: (x_1, c^*(x_1)), \dots, (x_m, c^*(x_m))$
- Output: Find h in H with smallest $\text{err}_S(h)$

Theorem

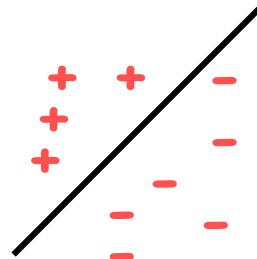
$$m \geq \frac{1}{2\epsilon^2} \left[\ln(|H|) + \ln\left(\frac{2}{\delta}\right) \right]$$

labeled examples are sufficient s.t. with probab. $\geq 1 - \delta$, all $h \in H$ have $|\text{err}_D(h) - \text{err}_S(h)| < \epsilon$.

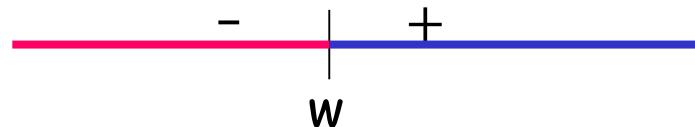
1/ ϵ^2 dependence [as opposed to 1/ ϵ for realizable]

What if H is infinite?

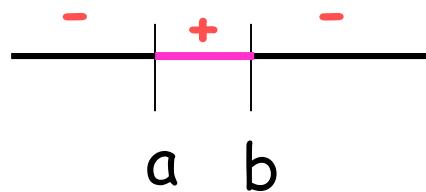
E.g., linear separators in \mathbb{R}^d



E.g., thresholds on the real line



E.g., intervals on the real line



Effective number of hypotheses

- $H[S]$ - the set of splittings of dataset S using concepts from H .
- $H[m]$ - max number of ways to split m points using concepts in H

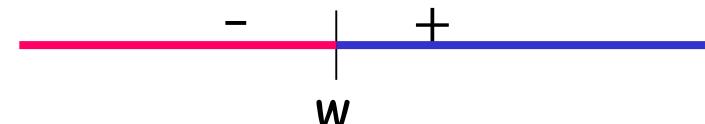
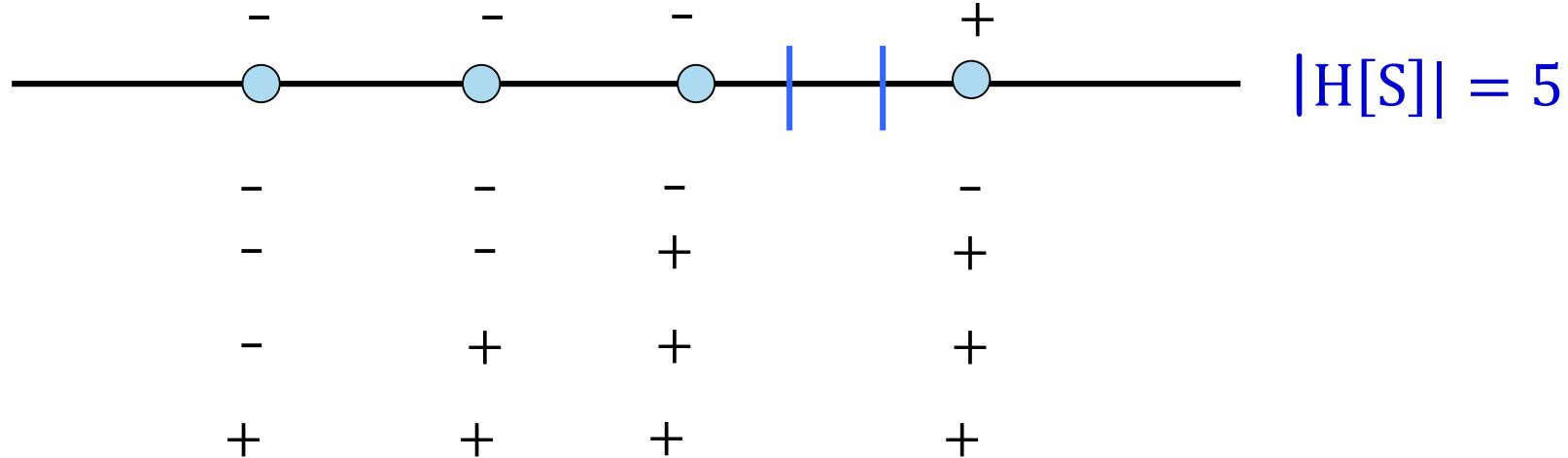
$$H[m] = \max_{|S|=m} |H[S]|$$

Effective number of hypotheses

- $H[S]$ - the set of splittings of dataset S using concepts from H .
- $H[m]$ - max number of ways to split m points using concepts in H

$$H[m] = \max_{|S|=m} |H[S]| \quad H[m] \leq 2^m$$

E.g., H = Thresholds on the real line



In general, if $|S|=m$ (all distinct), $|H[S]| = m + 1 \ll 2^m$

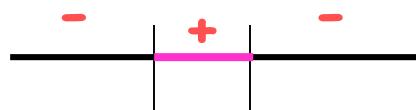
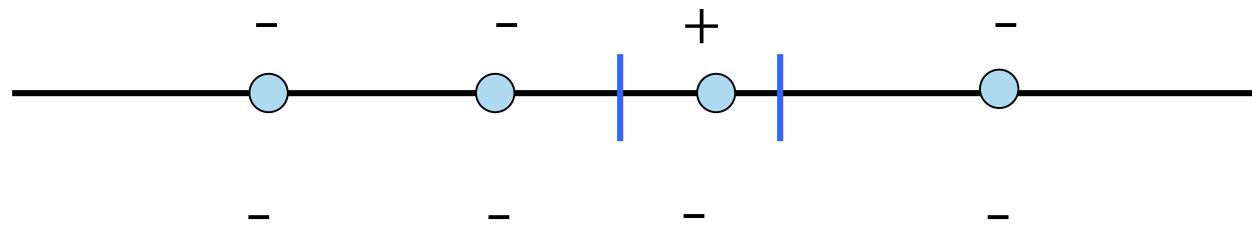
Effective number of hypotheses

- $H[S]$ - the set of splittings of dataset S using concepts from H .
- $H[m]$ - max number of ways to split m points using concepts in H

$$H[m] = \max_{|S|=m} |H[S]|$$

$$H[m] \leq 2^m$$

E.g., H = Intervals on the real line



In general, $|S|=m$ (all distinct), $H[m] = \frac{m(m+1)}{2} + 1 = O(m^2) \ll 2^m$

There are $m+1$ possible options for the first part, m left for the second part, the order does not matter, so $(m \text{ choose } 2) + 1$ (for empty interval).

Effective number of hypotheses

- $H[S]$ - the set of splittings of dataset S using concepts from H .
- $H[m]$ - max number of ways to split m points using concepts in H

$$H[m] = \max_{|S|=m} |H[S]| \quad H[m] \leq 2^m$$

Definition: H shatters S if $|H[S]| = 2^{|S|}$.

Sample Complexity: Infinite Hypothesis Spaces Realizable Case

$H[m]$ - max number of ways to split m points using concepts in H

Theorem For any class H , distrib. D , if the number of labeled examples seen m satisfies

$$m \geq \frac{2}{\varepsilon} \left[\log_2(2H[2m]) + \log_2 \left(\frac{1}{\delta} \right) \right]$$

then with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \geq \varepsilon$ have $err_S(h) > 0$.

- Not too easy to interpret sometimes hard to calculate exactly, but can get a good bound using "VC-dimension

If $H[m] = 2^m$, then $m \geq \frac{m}{\varepsilon}(\dots) \ominus$

- VC-dimension is roughly the point at which H stops looking like it contains all functions, so hope for solving for m .

Sample Complexity: Infinite Hypothesis Spaces

$H[m]$ - max number of ways to split m points using concepts in H

Theorem For any class H , distrib. D , if the number of labeled examples seen m satisfies

$$m \geq \frac{2}{\varepsilon} \left[\log_2(2H[2m]) + \log_2 \left(\frac{1}{\delta} \right) \right]$$

then with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \geq \varepsilon$ have $err_S(h) > 0$.

Sauer's Lemma: $H[m] = O(m^{VCdim(H)})$

Theorem

$$m = O \left(\frac{1}{\varepsilon} \left[VCdim(H) \log \left(\frac{1}{\varepsilon} \right) + \log \left(\frac{1}{\delta} \right) \right] \right)$$

labeled examples are sufficient so that with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \geq \varepsilon$ have $err_S(h) > 0$.

Shattering, VC-dimension

Definition: H shatters S if $|H[S]| = 2^{|S|}$.

A set of points S is shattered by H if there are hypotheses in H that split S in all of the $2^{|S|}$ possible ways, all possible ways of classifying points in S are achievable using concepts in H .

Definition: VC-dimension (Vapnik-Chervonenkis dimension)

The **VC-dimension** of a hypothesis space H is the cardinality of the largest set S that can be shattered by H .

If arbitrarily large finite sets can be shattered by H , then $\text{VCdim}(H) = \infty$

Shattering, VC-dimension

Definition: VC-dimension (Vapnik-Chervonenkis dimension)

The **VC-dimension** of a hypothesis space H is the cardinality of the largest set S that can be shattered by H .

If arbitrarily large finite sets can be shattered by H , then $\text{VCdim}(H) = \infty$

To show that VC-dimension is d :

- **there exists** a set of d **points** that can be shattered
- **there is no set of $d+1$ points** that can be shattered.

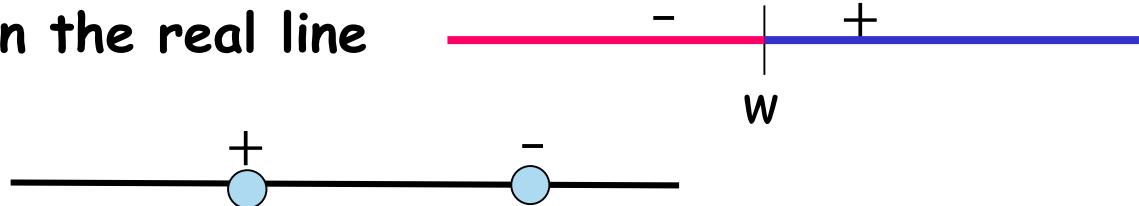
Fact: If H is finite, then $\text{VCdim}(H) \leq \log(|H|)$.

Shattering, VC-dimension

If the VC-dimension is d , that means **there exists** a set of d points that can be shattered, but there is **no** set of $d+1$ points that can be shattered.

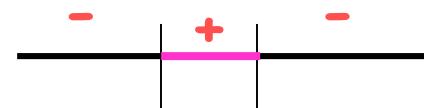
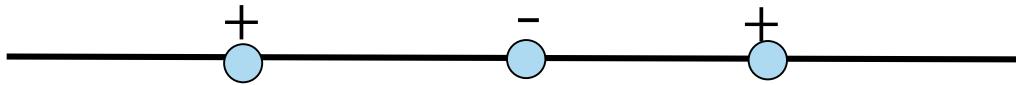
E.g., H = Thresholds on the real line

$$\text{VCdim}(H) = 1$$



E.g., H = Intervals on the real line

$$\text{VCdim}(H) = 2$$



Shattering, VC-dimension

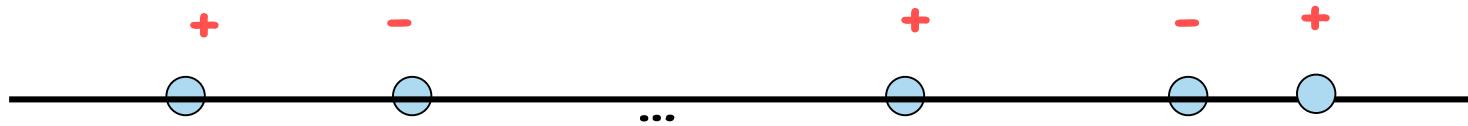
If the VC-dimension is d , that means **there exists** a set of d points that can be shattered, but there is **no** set of $d+1$ points that can be shattered.

E.g., $H = \text{Union of } k \text{ intervals on the real line}$ $\text{VCdim}(H) = 2k$

$$\text{VCdim}(H) \geq 2k$$

A sample of size $2k$ shatters
(treat each pair of points as a separate
case of intervals)

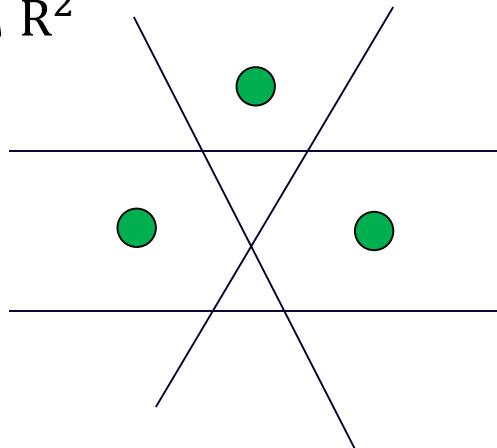
$$\text{VCdim}(H) < 2k + 1$$



Shattering, VC-dimension

E.g., $H = \text{linear separators in } \mathbb{R}^2$

$$\text{VCdim}(H) \geq 3$$



Shattering, VC-dimension

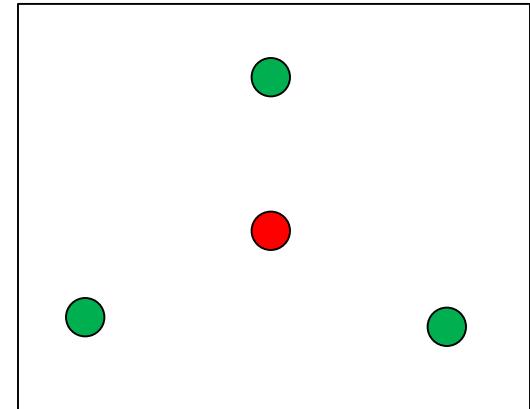
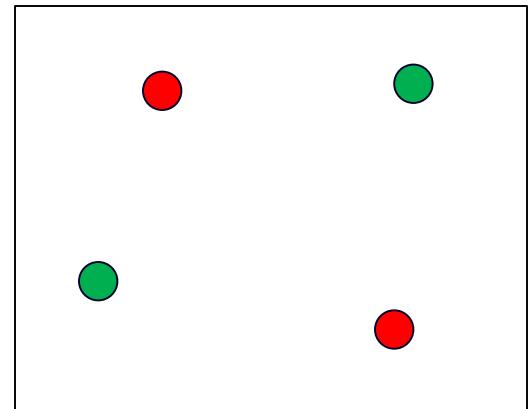
E.g., $H = \text{linear separators in } \mathbb{R}^2$

$\text{VCdim}(H) < 4$

Case 1: one point inside the triangle formed by the others. Cannot label inside point as positive and outside points as negative.

Case 2: all points on the boundary (convex hull). Cannot label two diagonally as positive and other two as negative.

Fact: VCdim of linear separators in \mathbb{R}^d is $d+1$



Sauer's Lemma

Sauer's Lemma:

Let $d = \text{VCdim}(H)$

- $m \leq d$, then $H[m] = 2^m$
- $m > d$, then $H[m] = O(m^d)$

Sample Complexity: Infinite Hypothesis Spaces

Realizable Case

Theorem For any class H , distrib. D , if the number of labeled examples seen m satisfies

$$m \geq \frac{2}{\varepsilon} \left[\log_2(2H[2m]) + \log_2\left(\frac{1}{\delta}\right) \right]$$

then with probab. $1 - \delta$, all $h \in H$ with $\text{err}_D(h) \geq \varepsilon$ have $\text{err}_S(h) > 0$.

Sauer's Lemma: $H[m] = O(m^{\text{VCdim}(H)})$

Theorem

$$m = O\left(\frac{1}{\varepsilon} \left[\text{VCdim}(H) \log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right) \right]\right)$$

labeled examples are sufficient so that with probab. $1 - \delta$, all $h \in H$ with $\text{err}_D(h) \geq \varepsilon$ have $\text{err}_S(h) > 0$.

Sample Complexity: Infinite Hypothesis Spaces

Realizable Case

Theorem

$$m = O\left(\frac{1}{\varepsilon} \left[VCdim(H) \log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right) \right]\right)$$

labeled examples are sufficient so that with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \geq \varepsilon$ have $err_S(h) > 0$.

E.g., H = linear separators in \mathbb{R}^d

$$m = O\left(\frac{1}{\varepsilon} \left[d \log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right) \right]\right)$$

Sample complexity linear in d

So, if double the number of features, then I only need roughly twice the number of samples to do well.

Sample Complexity: Infinite Hypothesis Spaces

Realizable Case

Theorem

$$m = O\left(\frac{1}{\varepsilon} \left[VCdim(H) \log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right) \right]\right)$$

labeled examples are sufficient so that with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \geq \varepsilon$ have $err_S(h) > 0$.

Statistical Learning Theory Style

$$err_D(h) \leq err_S(h) + \sqrt{\frac{1}{2m} \left(VCdim(H) + \ln\left(\frac{1}{\delta}\right) \right)}.$$

What you should know

- Notion of sample complexity.
- Shattering, VC dimension as measure of complexity, Sauer's lemma, form of the VC bounds.