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Sample Complexity Results for 
Supervised Classification

Generalization and Overfitting



Two Core Aspects of Machine Learning

Algorithm Design. How to optimize?

Automatically generate rules that do well on observed data.

Confidence Bounds, Generalization

Confidence for rule effectiveness on future data.

Computation

(Labeled) Data

• E.g.: logistic regression, SVM, Adaboost, etc.



Labeled Examples  

PAC/SLT models for Supervised Learning

Learning 
Algorithm

Expert / Oracle

Data 
Source

Alg.outputs

Distribution D on X

c* : X ! Y

(x1,c*(x1)),…, (xm,c*(xm))

h : X ! Y
x1 > 5

x6 > 2
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• Algo does optimization over S, find hypothesis ℎ.

• Goal:  h has small error over D.

• Algo sees training sample S: (x1,c*(x1)),…, (xm,c*(xm)), xi i.i.d. from D

– labeled examples - drawn i.i.d. from D and labeled by target c*

– labels 2 {-1,1} - binary classification

h c*

Instance space X
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• Realizable: 𝑐∗ ∈ 𝐻. 

𝑒𝑟𝑟𝐷 ℎ = Pr
𝑥~ 𝐷

(ℎ 𝑥 ≠ 𝑐∗(𝑥))

PAC/SLT models for Supervised Learning

• X – feature/instance space; distribution D over X

e.g., X = Rd or X = {0,1}d

Bias: fix hypothesis space H [whose complexity is not too large]

• Agnostic: 𝑐∗ “close to” H. 



• Goal:  h has small error over D.

• Algo sees training sample S: (x1,c*(x1)),…, (xm,c*(xm)), xi i.i.d. from D

Training error: errS h =
1

m
σi I h xi ≠ c∗ xi

True error: errD h = Pr
x~ D

(h x ≠ c∗(x))

• Does optimization over S, find hypothesis ℎ ∈ 𝐻.

PAC/SLT models for Supervised Learning

How often ℎ 𝑥 ≠ 𝑐∗(𝑥) over future 
instances drawn at random from D 

• But, can only measure:

How often ℎ 𝑥 ≠ 𝑐∗(𝑥) over training 
instances

Sample complexity: bound 𝑒𝑟𝑟𝐷 ℎ in terms of 𝑒𝑟𝑟𝑆 ℎ



Sample Complexity for Supervised Learning

Consistent Learner

• Output: Find h in H consistent with the sample (if one exits). 

• Input: S: (x1,c*(x1)),…, (xm,c*(xm))

So, if c∗ ∈ H and can find consistent fns, then only need this many 
examples to get generalization error ≤ 𝜖 with prob. ≥ 1 − 𝛿

Probability over different samples of m 
training examples

Bound only logarithmic in |H|, linear in 1/𝜖



What if c∗ ∉ H?



Sample Complexity: Uniform Convergence

Agnostic Case

Empirical Risk Minimization (ERM)

• Output: Find h in H with smallest errS(h)

• Input: S: (x1,c*(x1)),…, (xm,c*(xm))

1/𝜖2 dependence [as opposed 
to1/𝜖 for realizable]



What if H is infinite?

E.g., linear separators in Rd
+

-

+
+
+

-
-

-

-

-

E.g., intervals on the real line

a b

+- -

E.g., thresholds on the real line
w

+-



Effective number of hypotheses

• H[S] – the set of splittings of dataset S using concepts from H.

• H[m] - max number of ways to split m points using concepts in H

H m = max
S =m

|H[S]|



Effective number of hypotheses

• H[S] – the set of splittings of dataset S using concepts from H.

• H[m] - max number of ways to split m points using concepts in H

H m = max
S =m

|H[S]|

E.g., H= Thresholds on the real line

- - - +

In general, if |S|=m (all distinct), |H S | = m + 1 ≪ 2m

|H S | = 5
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H[m] ≤ 2m



Effective number of hypotheses

• H[S] – the set of splittings of dataset S using concepts from H.

• H[m] - max number of ways to split m points using concepts in H

E.g., H= Intervals on the real line

- - + -

In general, |S|=m (all distinct), H m =
m m+1

2
+ 1 = O(m2) ≪ 2m

- - - -

+- -

There are m+1 possible options for the first part, m left for the second 
part, the order does not matter, so (m choose 2) + 1 (for empty interval).

• H[m] - max number of ways to split m points using concepts in H

H m = max
S =m

|H[S]| H[m] ≤ 2m



Effective number of hypotheses

• H[S] – the set of splittings of dataset S using concepts from H.

• H[m] - max number of ways to split m points using concepts in H

Definition: H shatters S if |H S | = 2|𝑆|.

H m = max
S =m

|H[S]| H[m] ≤ 2m



Sample Complexity: Infinite Hypothesis Spaces
Realizable Case

• Not too easy to interpret sometimes hard to calculate 
exactly, but can get a good bound using “VC-dimension

• VC-dimension is roughly the point at which H stops looking 
like it contains all functions, so hope for solving for m.

If H m = 2m, then m ≥
m

ϵ
(… . ) 

H[m] - max number of ways to split m points using concepts in H



Sample Complexity: Infinite Hypothesis Spaces

Sauer’s Lemma: H m = O mVCdim H

H[m] - max number of ways to split m points using concepts in H



Shattering, VC-dimension

A set of points S is shattered by H is there are hypotheses in H
that split S in all of the 2|𝑆| possible ways, all possible ways of 
classifying points in S are achievable using concepts in H.

Definition:

The VC-dimension of a hypothesis space H is the cardinality of 
the largest set S that can be shattered by H.

Definition:

If arbitrarily large finite sets can be shattered by H, then 
VCdim(H) = ∞

VC-dimension (Vapnik-Chervonenkis dimension)

H shatters S if |H S | = 2|𝑆|.



Shattering, VC-dimension

The VC-dimension of a hypothesis space H is the cardinality of 
the largest set S that can be shattered by H.

Definition:

If arbitrarily large finite sets can be shattered by H, then 
VCdim(H) = ∞

VC-dimension (Vapnik-Chervonenkis dimension)

To show that VC-dimension is d:

– there is no set of d+1 points that can be shattered.

– there exists a set of d points that can be shattered

Fact: If H is finite, then VCdim(H) ≤ log(|H|).



Shattering, VC-dimension

E.g., H= Thresholds on the real line

VCdim H = 1
w

+-

If the VC-dimension is d, that means there exists a set of 
d points that can be shattered, but there is no set of d+1 
points that can be shattered.

E.g., H= Intervals on the real line +- -

+ -

VCdim H = 2

+ - +



Shattering, VC-dimension
If the VC-dimension is d, that means there exists a set of 
d points that can be shattered, but there is no set of d+1 
points that can be shattered.

E.g., H= Union of k intervals on the real line

+- -

VCdim H = 2k

+ - +

+ - + -
…

VCdim H < 2k + 1

VCdim H ≥ 2k A sample of size 2k shatters
(treat each pair of points as a separate
case of intervals)

+



E.g., H= linear separators in R2

Shattering, VC-dimension

VCdim H ≥ 3



Shattering, VC-dimension

VCdim H < 4

Case 1: one point inside the triangle formed by 
the others. Cannot label inside point as positive 
and outside points as negative.

Case 2: all points on the boundary (convex hull).  
Cannot label two diagonally as positive and other 
two as negative.

Fact: VCdim of linear separators in Rd is d+1

E.g., H= linear separators in R2



Sauer’s Lemma 
Sauer’s Lemma:

• m ≤ d, then H m = 2m

• m>d, then H m = O m𝑑

Let d = VCdim(H)



Sample Complexity: Infinite Hypothesis Spaces

Realizable Case

Sauer’s Lemma: H m = O mVCdim H



Sample Complexity: Infinite Hypothesis Spaces

Realizable Case

E.g., H= linear separators in Rd

Sample complexity linear in d

So, if double the number of features, then I only need 
roughly twice the number of samples to do well.



Sample Complexity: Infinite Hypothesis Spaces

Realizable Case

errD h ≤ errS h +
1

2m
𝑉𝐶𝑑𝑖𝑚 𝐻 + ln

1

𝛿
.

Statistical Learning Theory Style



What you should know

• Shattering, VC dimension as measure of complexity, 
Sauer’s lemma, form of the VC bounds.

• Notion of sample complexity.


