

Support Vector Machines (SVMs).

Kernelizing SVMs

Maria-Florina Balcan

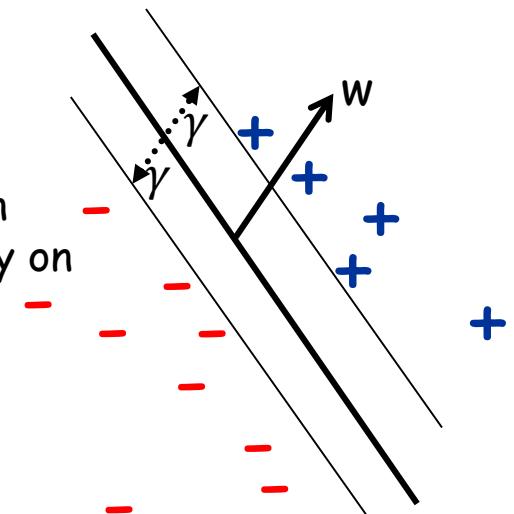
02/21/2018

Margin Important Theme in ML

- If **large** margin, # mistakes Perceptron makes is small (**independent** on the dim of the ambient space)!

- Large margin can help prevent **overfitting**.

- If **large** margin γ and if alg. produces a large margin classifier, then amount of data needed depends only on R/γ [Bartlett & Shawe-Taylor '99].



- Ideas: Directly search for a large margin classifier!!!

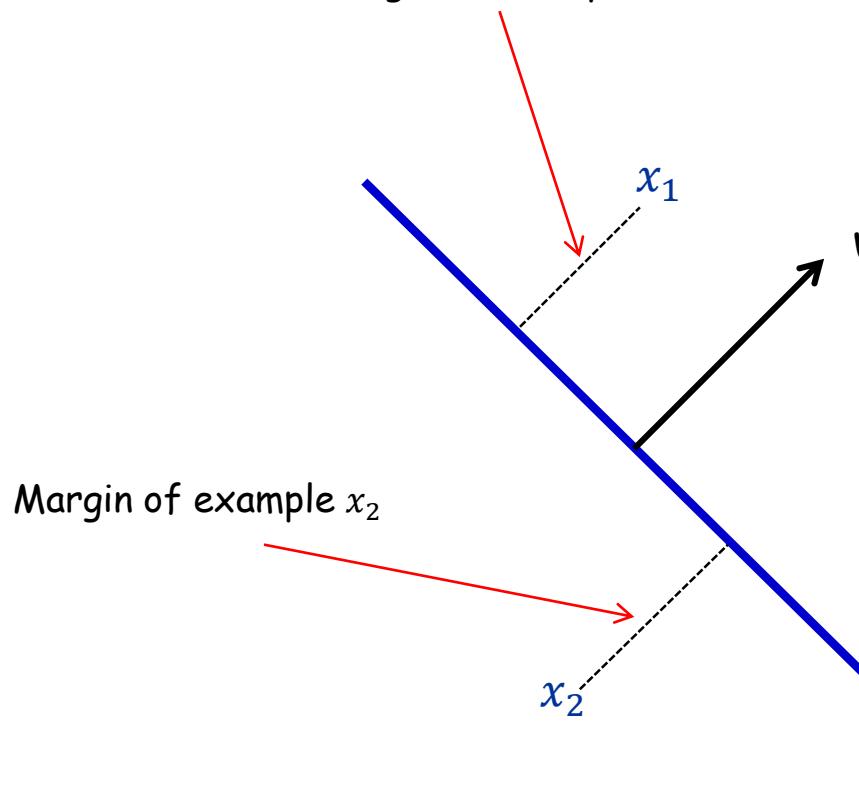
Support Vector Machines (SVMs).

Geometric Margin

WLOG homogeneous linear separators [$w_0 = 0$].

Definition: The **margin** of example x w.r.t. a linear sep. w is the distance from x to the plane $w \cdot x = 0$.

Margin of example x_1



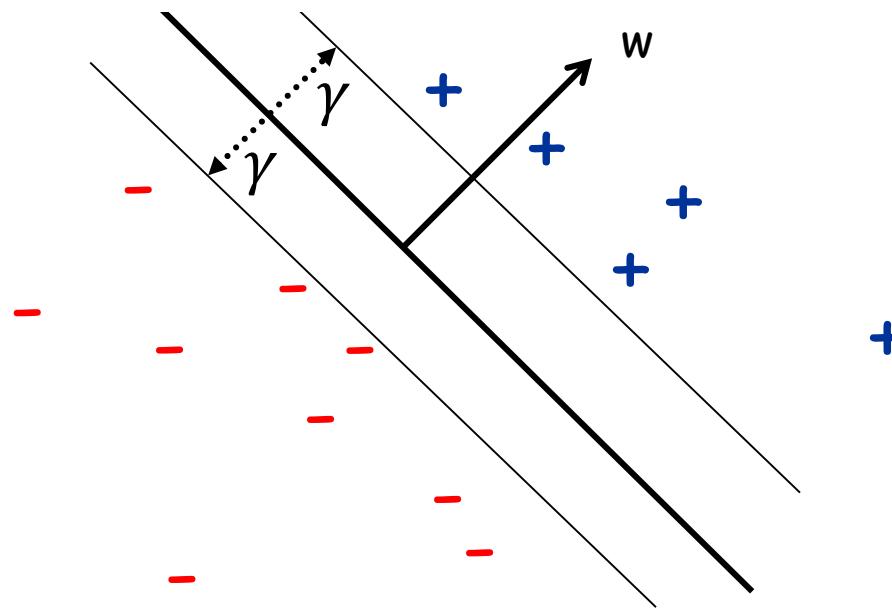
If $\|w\| = 1$, margin of x w.r.t. w is $|x \cdot w|$.

Geometric Margin

Definition: The **margin** of example x w.r.t. a linear sep. w is the distance from x to the plane $w \cdot x = 0$.

Definition: The **margin** γ_w of a set of examples S wrt a linear separator w is the smallest margin over points $x \in S$.

Definition: The margin γ of a set of examples S is the **maximum** γ_w over all linear separators w .



Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

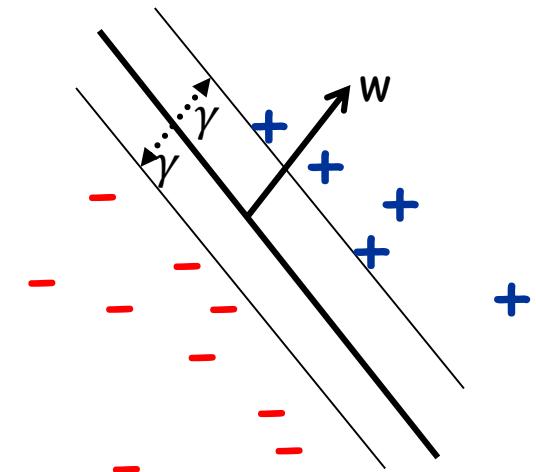
First, assume we know a lower bound on the margin γ

Input: $\gamma, S=\{(x_1, y_1), \dots, (x_m, y_m)\}$:

Find: some w where:

- $\|w\|^2 = 1$
- For all $i, y_i w \cdot x_i \geq \gamma$

Output: w , a separator of margin γ over S



The case where the data is truly linearly separable by margin γ

Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

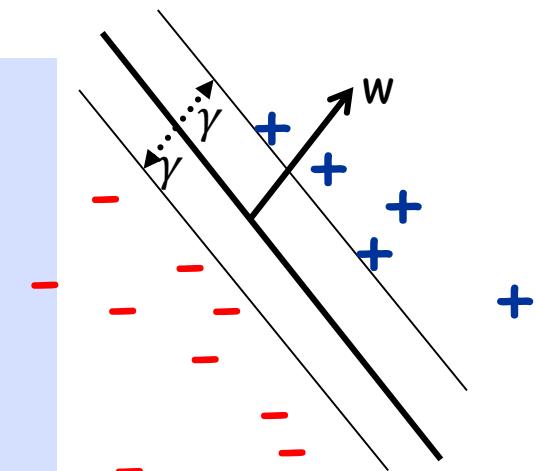
E.g., search for the best possible γ

Input: $S=\{(x_1, y_1), \dots, (x_m, y_m)\}$;

Find: some w and maximum γ where:

- $\|w\|^2 = 1$
- For all i , $y_i w \cdot x_i \geq \gamma$

Output: maximum margin separator over S



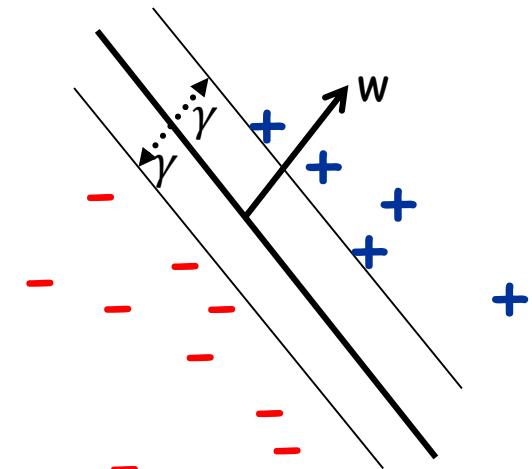
Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

Input: $S=\{(x_1, y_1), \dots, (x_m, y_m)\}$;

Maximize γ under the constraint:

- $\|w\|^2 = 1$
- For all i , $y_i w \cdot x_i \geq \gamma$



Support Vector Machines (SVMs)

Directly optimize for the **maximum margin separator**: SVMs

Input: $S=\{(x_1, y_1), \dots, (x_m, y_m)\}$;

Maximize γ under the constraint:

$$\bullet \quad \|\mathbf{w}\|^2 = 1$$

$$\bullet \quad \text{For all } i, y_i \mathbf{w} \cdot \mathbf{x}_i \geq \gamma$$

objective
function

constraints

This is a
constrained
optimization
problem.

- Famous example of constrained optimization: **linear programming**, where objective fn is linear, constraints are linear (in)equalities

Support Vector Machines (SVMs)

Directly optimize for the **maximum margin separator**: SVMs

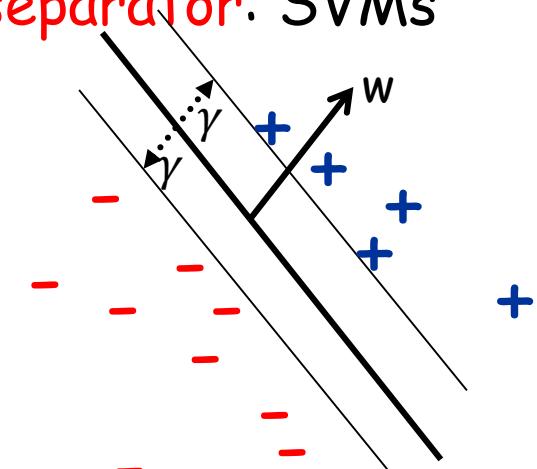
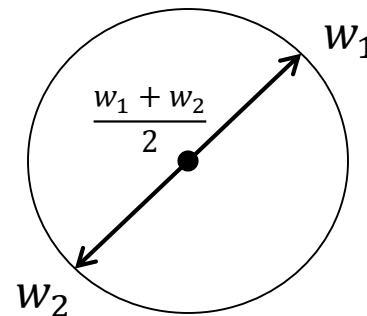
Input: $S=\{(x_1, y_1), \dots, (x_m, y_m)\}$;

Maximize γ under the constraint:

- $\|w\|^2 = 1$
- For all i , $y_i w \cdot x_i \geq \gamma$

This constraint is non-linear.

In fact, it's even non-convex



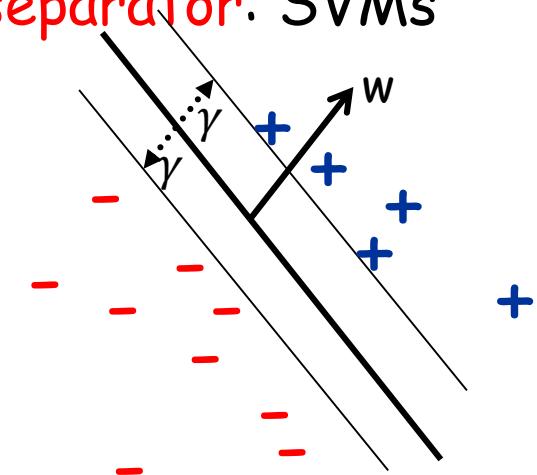
Support Vector Machines (SVMs)

Directly optimize for the **maximum margin separator**: SVMs

Input: $S=\{(x_1, y_1), \dots, (x_m, y_m)\}$;

Maximize γ under the constraint:

- $\|w\|^2 = 1$
- For all i , $y_i w \cdot x_i \geq \gamma$

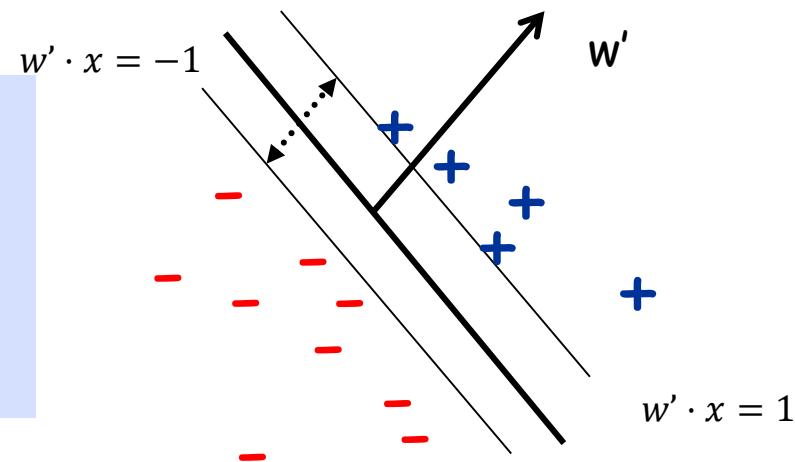


$w' = w/\gamma$, then $\max \gamma$ is equiv. to minimizing $\|w'\|^2$ (since $\|w'\|^2 = 1/\gamma^2$). So, dividing both sides by γ and writing in terms of w' we get:

Input: $S=\{(x_1, y_1), \dots, (x_m, y_m)\}$;

Minimize $\|w'\|^2$ under the constraint:

- For all i , $y_i w' \cdot x_i \geq 1$



Support Vector Machines (SVMs)

Directly optimize for the **maximum margin separator**: SVMs

Input: $S = \{(x_1, y_1), \dots, (x_m, y_m)\}$;

$$\operatorname{argmin}_w \left\| w \right\|^2 \text{ s.t. :}$$

- For all i , $y_i w \cdot x_i \geq 1$

This is a
**constrained
optimization
problem.**

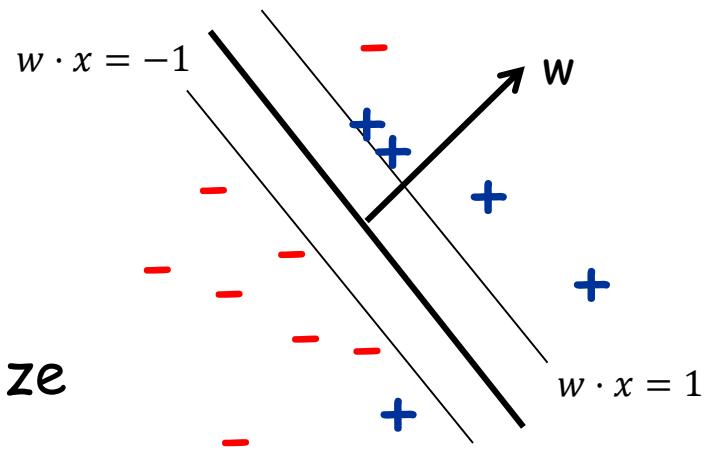
- The objective is convex (quadratic)
- All constraints are linear
- Can solve efficiently (in poly time) using standard **quadratic
programming** (QP) software

Support Vector Machines (SVMs)

Question: what if data **isn't** perfectly linearly separable?

Issue 1: now have two objectives

- maximize margin
- minimize # of misclassifications.



Ans 1: Let's optimize their sum: minimize

$$\|w\|^2 + C(\# \text{ misclassifications})$$

where C is some tradeoff constant.

Issue 2: This is computationally very hard (NP-hard).

[even if didn't care about margin and minimized # mistakes]

Support Vector Machines (SVMs)

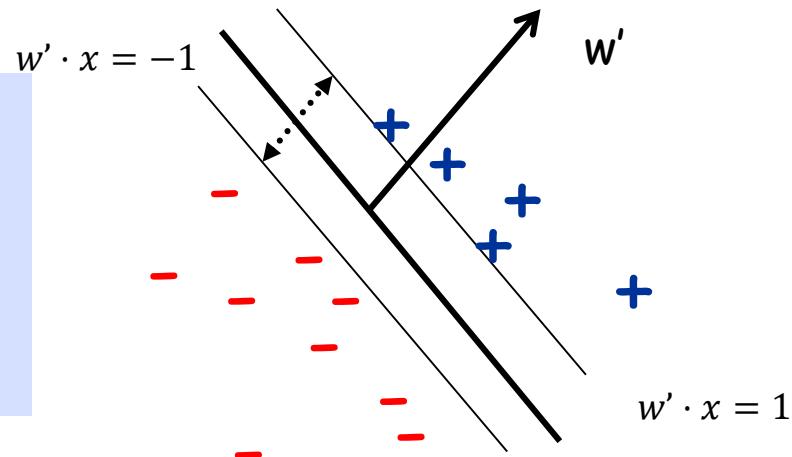
Question: what if data **isn't** perfectly linearly separable?

Replace "# mistakes" with upper bound called "hinge loss"

Input: $S=\{(x_1, y_1), \dots, (x_m, y_m)\}$;

Minimize $\|w'\|^2$ under the constraint:

- For all i , $y_i w' \cdot x_i \geq 1$

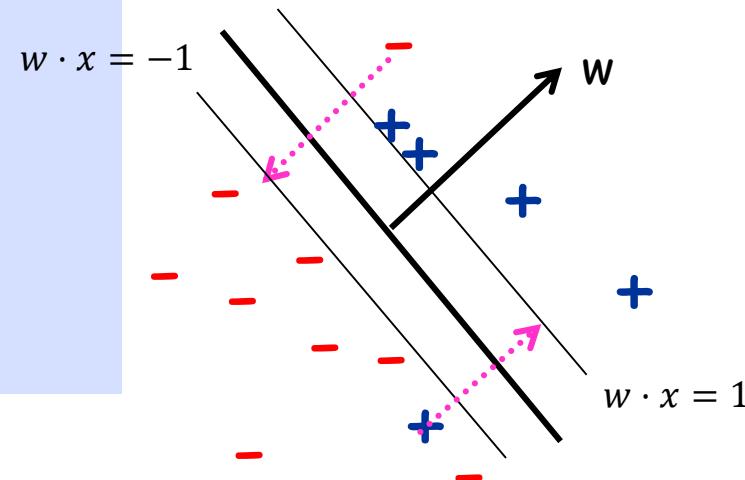


Input: $S=\{(x_1, y_1), \dots, (x_m, y_m)\}$;

Find $\operatorname{argmin}_{w, \xi_1, \dots, \xi_m} \|w\|^2 + C \sum_i \xi_i$ s.t.:

- For all i , $y_i w \cdot x_i \geq 1 - \xi_i$
 $\xi_i \geq 0$

ξ_i are "slack variables"



Support Vector Machines (SVMs)

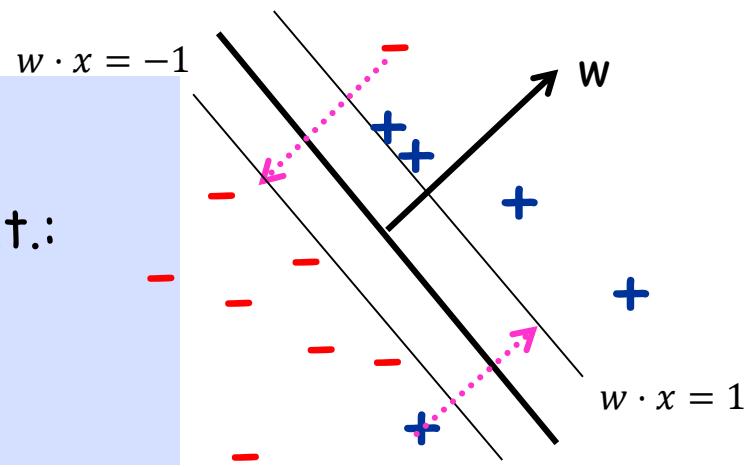
Question: what if data **isn't** perfectly linearly separable?

Replace "# mistakes" with upper bound called "hinge loss"

Input: $S=\{(x_1, y_1), \dots, (x_m, y_m)\}$;

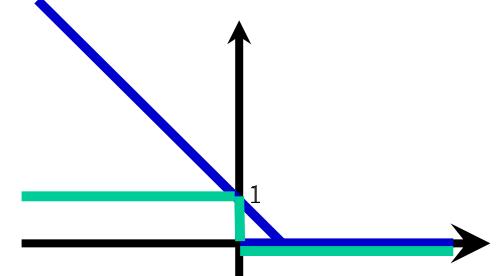
Find $\underset{w, \xi_1, \dots, \xi_m}{\operatorname{argmin}} \|w\|^2 + C \sum_i \xi_i$ s.t.:

- For all i , $y_i w \cdot x_i \geq 1 - \xi_i$
 $\xi_i \geq 0$



ξ_i are "slack variables"

C controls the relative weighting between the twin goals of making the $\|w\|^2$ small (margin is large) and ensuring that most examples have functional margin ≥ 1 .



$$l(w, x, y) = \max(0, 1 - y w \cdot x)$$

Support Vector Machines (SVMs)

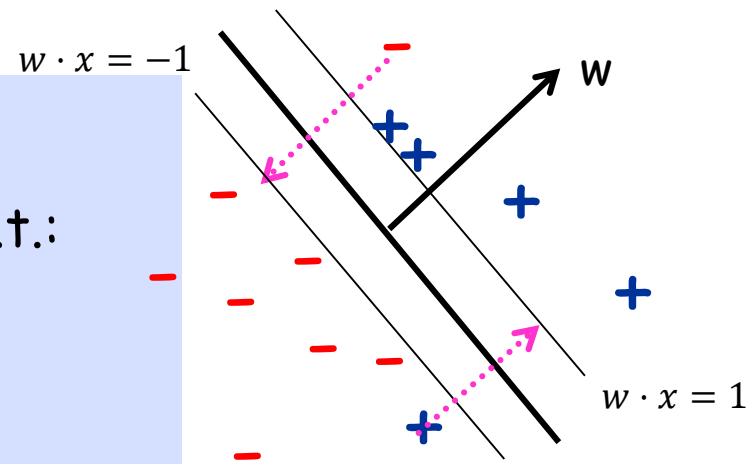
Question: what if data **isn't** perfectly linearly separable?

Replace "# mistakes" with upper bound called "hinge loss"

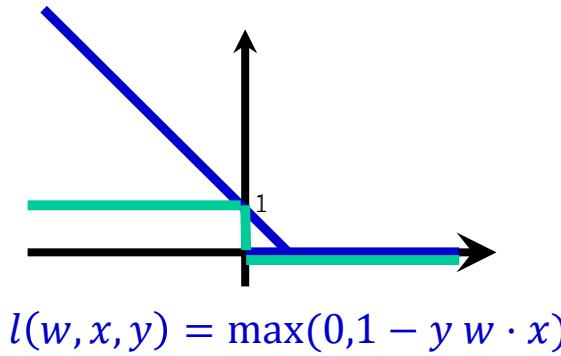
Input: $S=\{(x_1, y_1), \dots, (x_m, y_m)\}$;

Find $\underset{w, \xi_1, \dots, \xi_m}{\operatorname{argmin}} \|w\|^2 + C \sum_i \xi_i$ s.t.:

- For all i , $y_i w \cdot x_i \geq 1 - \xi_i$
 $\xi_i \geq 0$



Total amount have to move the points to get them on the correct side of the lines $w \cdot x = +1/-1$, where the distance between the lines $w \cdot x = 0$ and $w \cdot x = 1$ counts as "1 unit".



Support Vector Machines (SVMs)

Input: $S=\{(x_1, y_1), \dots, (x_m, y_m)\}$;

Find $\operatorname{argmin}_{w, \xi_1, \dots, \xi_m} \|w\|^2 + C \sum_i \xi_i$ s.t.:

- For all i , $y_i w \cdot x_i \geq 1 - \xi_i$

$$\xi_i \geq 0$$

Primal
form

Which is equivalent to:

Can be kernelized!!!

Input: $S=\{(x_1, y_1), \dots, (x_m, y_m)\}$;

Find $\operatorname{argmin}_{\alpha} \frac{1}{2} \sum_i \sum_j y_i y_j \alpha_i \alpha_j \mathbf{x}_i \cdot \mathbf{x}_j - \sum_i \alpha_i$ s.t.:

- For all i , $0 \leq \alpha_i \leq C_i$

$$\sum_i y_i \alpha_i = 0$$

Lagrangian
Dual

SVMs (Lagrangian Dual)

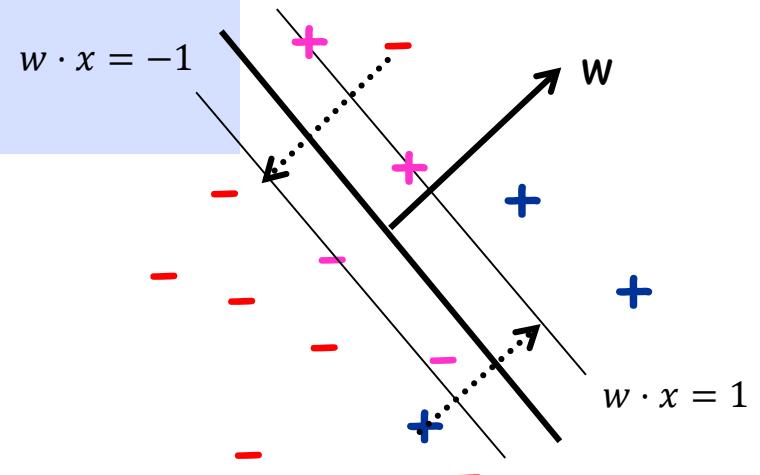
Input: $S=\{(x_1, y_1), \dots, (x_m, y_m)\}$;

Find $\operatorname{argmin}_{\alpha} \frac{1}{2} \sum_i \sum_j y_i y_j \alpha_i \alpha_j x_i \cdot x_j - \sum_i \alpha_i$ s.t.:

- For all i , $0 \leq \alpha_i \leq C_i$

$$\sum_i y_i \alpha_i = 0$$

- Final classifier is: $w = \sum_i \alpha_i y_i x_i$
- The points x_i for which $\alpha_i \neq 0$ are called the "support vectors"



What you should know

- The importance of margins in machine learning.
- The SVM algorithm. Primal and Dual Form.
- Kernelizing SVM.