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Margin Important Theme in ML

* If large margin, # mistakes Peceptron makes is small
(independent on the dim of the ambient space)!

Large margin can help prevent overfitting.

If large margin y and if alg. produces a large margin
classifier, then amount of data needed depends only on
R/y [Bartlett & Shawe-Taylor '99]. -

+ TIdeas: Directly search for a large margin classifierlll

Support Vector Machines (SVMs).



Geometric Margin

WLOG homogeneous linear separators [w, = 0].

Definition: The margin of example x w.r.t. a linear sep. w is the
distance from x to the plane w - x = 0.

Margin of example x;
If |lw|| =1, margin of x
w.r.t. wis |x - w|.

Margin of example x;



Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the
distance from x to the plane w - x = 0.

Definition: The margin y,, of a set of examples S wrt a linear
separator w is the smallest margin over points x € S.

Definition: The margin y of a set of examples S is the maximum
7w over all linear separators w.




Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

First, assume we know a lower bound on the margin y

I_nM: V., S:{(Xll yl)l ---:(er ym)}'

Find: some w where:

° ||W||2=1

Foralli,yw-x; >y

Output: w, a separator of margin y over S

The case where the data is truly linearly separable by margin y



Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

E.g., search for the best possible y

I_nM: S:{(Xll yl)l ---:(Xm: ym)}'

Find: some w and maximum y where:

° ||W||2=1

Foralli,yw-x; >y

Qutput: maximum margin separator over S



Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

I_HM: S:{(Xlr Y1)z ---:(Xm' yrn)};
Maximize y under the constraint:
2

« Foradlli,yyw-x; >y




Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

Tnput: S={(xs, 1), -(Xem Y} Thisis a
constrained

nder' the constraint: optimization

2
W|| =1 pr'oblem.
/' Foralli,yw-x; >y
|\ _J
biective M
bJ constraints

function

Famous example of constrained optimization: linear programming,
where objective fn is linear, constraints are linear (in)equalities



Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

I_nw: S:{(Xll yl)l ---:(Xm: :Vrn)}f

Maximize“ I ie constraint:

Forall i, yw-x; >y

This constraint is non-linear.

In fact, it's even non-convex



Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

I_HM: S:{(Xlr yl)z ---:(XmJ yrn)};
Maximize y under the constraint:
2

Forall i, yw-x; >y

w' = w/y, then max y is equiv. to minimizing |[w’||? (since ||W’||* = 1/y?).
So, dividing both sides by y and writing in ferms of w' we get:

I_HM: S:{(Xlr yl): "‘I(Xm’ ym)}'
Minimize ||w'||* under the constraint:

Forall i, yw' - x; > 1




Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

Input: S={(x1, y3lr~(Xm, Ym)}: This is a
argmin 5.1.: constrained
optimization

roblem.
Foralli,yw-x; >1 P

The objective is convex (quadratic)
All constraints are linear

Can solve efficiently (in poly time) using standard quadratic
programing (QP) software



Support Vector Machines (SVMs)

Question: what if data isn't perfectly linearly separable?

Issue 1: now have two objectives wox=-1
* maximize margin
* minimize # of misclassifications.

Ans 1. Let's optimize their sum: minimize

||w||2 + C(# misclassifications)

where C is some tradeoff constant.

Issue 2: This is computationally very hard (NP-hard).
[even if didn't care about margin and minimized # mistakes]




Support Vector Machines (SVMs)

Question: what if data isn't perfectly linearly separable?
Replace "# mistakes” with upper bound called “hinge loss"

I_HM: S:{(Xlr Y1), ---:(Xm: :Vm)};
Minimize ||w'||* under the constraint:

Forall i, yw' -x; > 1

I_HM: S:{(Xlr yl): --w(Xm» Ym)}; w-x=-1
Find argminy gz ||W||2 + C);¢& s.t.:
Foralli,yw-x; >1—¢, -
§i=0

¢; are "slack variables”




Support Vector Machines (SVMs)

Question: what if data isn't perfectly linearly separable?
Replace "# mistakes” with upper bound called “hinge loss"

I_nw: S:{(Xl' yl)l ---:(Xm» }’m)}:
Find argminy ¢, ¢ ||W||2 +CY;¢ s.t.

Forall i, yyw-x; >1—¢;
$i=0

¢; are “slack variables”

C controls the relative weighting between the

twin goals of making the ||w||” small (margin is
large) and ensuring that most examples have
functional margin > 1.

[(w,x,y) = max(0,1 —yw - x)



Support Vector Machines (SVMs)

Question: what if data isn't perfectly linearly separable?
Replace "# mistakes” with upper bound called “hinge loss"

I_nw: S:{(Xl' yl)l ---:(Xm» ym)}:
Find argminy ¢, ¢ ||W||2 +CY;¢ s.t.

Forall i, yyw-x; >1—¢;
& =0

Total amount have to move the points to get them

on the correct side of the linesw - x = +1/-1,

where the distance between the lines w - x = 0 and

w-x =1 counts as "1 unit”. \
‘. >

[(w,x,y) = max(0,1 —yw - x)




Support Vector Machines (SVMs)

I_nw: S:{(Xl' yl)l ---:(Xm» ym)}'

: . 2 . Primal
Find argminyg  z llwl|” + CY; & s.t.: form
Forall i, yw-x; >1—¢;
& =0
Which is equivalent to: Can be kernelized!!
I_HM: S:{(Xlr Y1)r "‘I(Xm’ Ym)}' Lagr'angian
Find argmina%ZiZj Vi¥j 4ioyX; - X — % @ S.t Dual
Foralli, 0<a; <C;

ZYiai =0
i



SVMs (Lagrangian Dual)

I_nM: S:{(Xll Y1)I ---:(Xm: Ym)};
Find argmina%Zizj ViVj 005X - Xj — X 0 8.t

Foralli, 0< o <C;

ZYiai=0 wex = -1
i

Final classifier is: w = Y a;yiX; -

The points x; for which a; # 0
are called the "support vectors”




What you should know

* The importance of margins in machine learning.

* The SVM dlgorithm. Primal and Dual Form.

« Kernelizing SVM.



