
Maria-Florina Balcan
02/21/2018

Support Vector Machines (SVMs).

Kernelizing SVMs

Margin Important Theme in ML

• If large margin, # mistakes Peceptron makes is small
(independent on the dim of the ambient space)!

• If large margin 𝛾 and if alg. produces a large margin
classifier, then amount of data needed depends only on
R/𝛾 [Bartlett & Shawe-Taylor ’99].

+ +
+
+-

-
-

-
-

𝛾
𝛾

+

--

-
-

w

• Ideas: Directly search for a large margin classifier!!!

Support Vector Machines (SVMs).

• Large margin can help prevent overfitting.

Geometric Margin

Definition: The margin of example 𝑥 w.r.t. a linear sep. 𝑤 is the
distance from 𝑥 to the plane 𝑤 ⋅ 𝑥 = 0.

𝑥1
w

Margin of example 𝑥1

𝑥2

Margin of example 𝑥2

If 𝑤 = 1, margin of x
w.r.t. w is |𝑥 ⋅ 𝑤|.

WLOG homogeneous linear separators [w0 = 0].

+
+

+
+-

-
-

-

-

𝛾
𝛾

+

--

-
-

w

Definition: The margin 𝛾 of a set of examples 𝑆 is the maximum
𝛾𝑤 over all linear separators 𝑤.

Geometric Margin

Definition: The margin 𝛾𝑤 of a set of examples 𝑆 wrt a linear
separator 𝑤 is the smallest margin over points 𝑥 ∈ 𝑆.

Definition: The margin of example 𝑥 w.r.t. a linear sep. 𝑤 is the
distance from 𝑥 to the plane 𝑤 ⋅ 𝑥 = 0.

Input: 𝛾, S={(x1, 𝑦1), …,(xm, 𝑦m)};

Output: w, a separator of margin 𝛾 over S

Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

Find: some w where:

• w
2
= 1

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 𝛾

First, assume we know a lower bound on the margin 𝛾

+ +
+
+-

- -

-
-

𝛾
𝛾

+

--
-

-

w

The case where the data is truly linearly separable by margin 𝛾

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

Output: maximum margin separator over S

Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

Find: some w and maximum 𝛾 where:

• w
2
= 1

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 𝛾

E.g., search for the best possible 𝛾

+ +
+
+-

- -

-
-

𝛾
𝛾

+

--
-

-

w

Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

Maximize 𝛾 under the constraint:

• w
2
= 1

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 𝛾
+ +

+
+-

- -

-
-

𝛾
𝛾

+

--
-

-

w

Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

Maximize 𝛾 under the constraint:

• w
2
= 1

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 𝛾

This is a
constrained
optimization
problem.

objective
function

constraints

• Famous example of constrained optimization: linear programming,
where objective fn is linear, constraints are linear (in)equalities

This constraint is non-linear.

Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

+ +
+
+-

- -

-
-

𝛾
𝛾

+

--
-

-

w
Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

Maximize 𝛾 under the constraint:

• w
2
= 1

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 𝛾

In fact, it’s even non-convex

𝑤1

𝑤2

𝑤1 + 𝑤2

2

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

Maximize 𝛾 under the constraint:

• w
2
= 1

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 𝛾

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

Minimize 𝑤′
2

under the constraint:

• For all i, 𝑦𝑖𝑤′ ⋅ 𝑥𝑖 ≥ 1

𝑤’ = 𝑤/𝛾, then max 𝛾 is equiv. to minimizing ||𝑤’||2 (since ||𝑤’||2 = 1/𝛾2).

So, dividing both sides by 𝛾 and writing in terms of w’ we get:

+ +
+
+-

- -

-
-

𝛾
𝛾

+

--
-

-

w

+ +
++

-
- -

-
- +

--
-

-

w’𝑤’ ⋅ 𝑥 = −1

𝑤’ ⋅ 𝑥 = 1

Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

argminw 𝑤
2

s.t.:

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 1

This is a
constrained
optimization
problem.

• The objective is convex (quadratic)

• All constraints are linear

• Can solve efficiently (in poly time) using standard quadratic
programing (QP) software

Support Vector Machines (SVMs)

Question: what if data isn’t perfectly linearly separable?

𝑤
2
+ 𝐶(# misclassifications)

Issue 1: now have two objectives

• maximize margin

• minimize # of misclassifications.

Ans 1: Let’s optimize their sum: minimize

where 𝐶 is some tradeoff constant.

Issue 2: This is computationally very hard (NP-hard).

[even if didn’t care about margin and minimized # mistakes]

++

+

+-
- -

-

-

+

--
-

-

w𝑤 ⋅ 𝑥 = −1

𝑤 ⋅ 𝑥 = 1

Support Vector Machines (SVMs)
Question: what if data isn’t perfectly linearly separable?

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

argminw,𝜉1,…,𝜉𝑚 𝑤
2
+ 𝐶σ𝑖 𝜉𝑖 s.t.:

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 1 − 𝜉𝑖

Find

𝜉𝑖 ≥ 0

𝜉𝑖 are “slack variables”

Replace “# mistakes” with upper bound called “hinge loss”

++

+

+-
- -

-

-

+

--
-

-

w𝑤 ⋅ 𝑥 = −1

𝑤 ⋅ 𝑥 = 1

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

Minimize 𝑤′
2

under the constraint:

• For all i, 𝑦𝑖𝑤′ ⋅ 𝑥𝑖 ≥ 1

+ +
++

-
- -

-
- +

--
-

-

w’𝑤’ ⋅ 𝑥 = −1

𝑤’ ⋅ 𝑥 = 1

Support Vector Machines (SVMs)

Question: what if data isn’t perfectly linearly separable?

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

argminw,𝜉1,…,𝜉𝑚 𝑤
2
+ 𝐶σ𝑖 𝜉𝑖 s.t.:

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 1 − 𝜉𝑖

Find

𝜉𝑖 ≥ 0

𝜉𝑖 are “slack variables”

Replace “# mistakes” with upper bound called “hinge loss”

𝑙 𝑤, 𝑥, 𝑦 = max(0,1 − 𝑦 𝑤 ⋅ 𝑥)

++

+

+-
- -

-

-

+

--
-

-

w𝑤 ⋅ 𝑥 = −1

𝑤 ⋅ 𝑥 = 1

C controls the relative weighting between the

twin goals of making the 𝑤
2

small (margin is
large) and ensuring that most examples have
functional margin ≥ 1.

Support Vector Machines (SVMs)

Question: what if data isn’t perfectly linearly separable?

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

argminw,𝜉1,…,𝜉𝑚 𝑤
2
+ 𝐶σ𝑖 𝜉𝑖 s.t.:

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 1 − 𝜉𝑖

Find

𝜉𝑖 ≥ 0

Replace “# mistakes” with upper bound called “hinge loss”

𝑙 𝑤, 𝑥, 𝑦 = max(0,1 − 𝑦 𝑤 ⋅ 𝑥)

++

+

+-
- -

-

-

+

--
-

-

w𝑤 ⋅ 𝑥 = −1

𝑤 ⋅ 𝑥 = 1

Total amount have to move the points to get them
on the correct side of the lines 𝑤 ⋅ 𝑥 = +1/−1,
where the distance between the lines 𝑤 ⋅ 𝑥 = 0 and
𝑤 ⋅ 𝑥 = 1 counts as “1 unit”.

Support Vector Machines (SVMs)

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

argminw,𝜉1,…,𝜉𝑚 𝑤
2
+ 𝐶σ𝑖 𝜉𝑖 s.t.:

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 1 − 𝜉𝑖

Which is equivalent to:

Find

𝜉𝑖 ≥ 0

Primal
form

Input: S={(x1, y1), …,(xm, ym)};

argminα
1

2
σiσj yiyj αiαjxi ⋅ xj − σiαi s.t.:

• For all i,

Find

0 ≤ αi ≤ Ci

Lagrangian
Dual

෍

i

yiαi = 0

Can be kernelized!!!

SVMs (Lagrangian Dual)

• Final classifier is: w = σiαiyixi

• The points xi for which αi ≠ 0
are called the “support vectors”

Input: S={(x1, y1), …,(xm, ym)};

argminα
1

2
σiσj yiyj αiαjxi ⋅ xj − σiαi s.t.:

• For all i,

Find

0 ≤ αi ≤ Ci

෍

i

yiαi = 0 +

+

+

+-
- -

-

-

+

--
-

-

w𝑤 ⋅ 𝑥 = −1

𝑤 ⋅ 𝑥 = 1

• The importance of margins in machine learning.

• The SVM algorithm. Primal and Dual Form.

What you should know

• Kernelizing SVM.

