
Maria-Florina Balcan
02/21/2018

Support Vector Machines (SVMs).

Kernelizing SVMs 



Margin Important Theme in ML

• If large margin, # mistakes Peceptron makes is small
(independent on the dim of the ambient space)!

• If large margin 𝛾 and if alg. produces a large margin 
classifier, then amount of data needed depends only on 
R/𝛾 [Bartlett & Shawe-Taylor ’99].
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• Ideas: Directly search for a large margin classifier!!!

Support Vector Machines (SVMs). 

• Large margin can help prevent overfitting.



Geometric Margin

Definition: The margin of example 𝑥 w.r.t. a linear sep. 𝑤 is the 
distance from 𝑥 to the plane 𝑤 ⋅ 𝑥 = 0.

𝑥1
w

Margin of example 𝑥1

𝑥2

Margin of example 𝑥2

If 𝑤 = 1,  margin of x
w.r.t. w is |𝑥 ⋅ 𝑤|.

WLOG  homogeneous linear separators [w0 = 0].
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Definition: The margin 𝛾 of a set of examples 𝑆 is the maximum
𝛾𝑤 over all linear separators 𝑤.

Geometric Margin

Definition: The margin 𝛾𝑤 of a set of examples 𝑆 wrt a linear 
separator 𝑤 is the smallest margin over points 𝑥 ∈ 𝑆.

Definition: The margin of example 𝑥 w.r.t. a linear sep. 𝑤 is the 
distance from 𝑥 to the plane 𝑤 ⋅ 𝑥 = 0.



Input: 𝛾, S={(x1, 𝑦1), …,(xm, 𝑦m)};

Output: w, a separator of margin 𝛾 over S

Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

Find: some w where:

• w
2
= 1

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 𝛾

First, assume we know a lower bound on the margin 𝛾
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The case where the data is truly linearly separable by margin 𝛾



Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

Output: maximum margin separator over S

Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

Find: some w and maximum 𝛾 where:

• w
2
= 1

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 𝛾

E.g., search for the best possible 𝛾
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Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

Maximize 𝛾 under the constraint:

• w
2
= 1

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 𝛾
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Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

Maximize 𝛾 under the constraint:

• w
2
= 1

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 𝛾

This is a 
constrained 
optimization
problem.

objective 
function

constraints

• Famous example of constrained optimization: linear programming, 
where objective fn is linear, constraints are linear (in)equalities



This constraint is non-linear.

Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs
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Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

Maximize 𝛾 under the constraint:

• w
2
= 1

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 𝛾

In fact, it’s even non-convex

𝑤1

𝑤2

𝑤1 + 𝑤2

2



Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

Maximize 𝛾 under the constraint:

• w
2
= 1

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 𝛾

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

Minimize 𝑤′
2

under the constraint:

• For all i, 𝑦𝑖𝑤′ ⋅ 𝑥𝑖 ≥ 1

𝑤’ = 𝑤/𝛾, then max 𝛾 is equiv. to  minimizing ||𝑤’||2 (since ||𝑤’||2 = 1/𝛾2). 

So, dividing both sides by 𝛾 and writing in terms of w’ we get:
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Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

argminw 𝑤
2

s.t.:

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 1

This is a 
constrained 
optimization
problem.

• The objective is convex (quadratic)

• All constraints are linear

• Can solve efficiently (in poly time) using standard quadratic 
programing (QP) software



Support Vector Machines (SVMs)

Question: what if data isn’t perfectly linearly separable?

𝑤
2
+ 𝐶(# misclassifications) 

Issue 1: now have two objectives 

• maximize margin

• minimize # of misclassifications.

Ans 1: Let’s optimize their sum: minimize

where 𝐶 is some tradeoff constant. 

Issue 2: This is computationally very hard (NP-hard).

[even if didn’t care about margin and minimized # mistakes]
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Support Vector Machines (SVMs)
Question: what if data isn’t perfectly linearly separable?

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

argminw,𝜉1,…,𝜉𝑚 𝑤
2
+ 𝐶σ𝑖 𝜉𝑖 s.t.:

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 1 − 𝜉𝑖

Find

𝜉𝑖 ≥ 0

𝜉𝑖 are “slack variables”

Replace “# mistakes” with upper bound called “hinge loss”
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Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

Minimize 𝑤′
2

under the constraint:

• For all i, 𝑦𝑖𝑤′ ⋅ 𝑥𝑖 ≥ 1
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Support Vector Machines (SVMs)

Question: what if data isn’t perfectly linearly separable?

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

argminw,𝜉1,…,𝜉𝑚 𝑤
2
+ 𝐶σ𝑖 𝜉𝑖 s.t.:

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 1 − 𝜉𝑖

Find

𝜉𝑖 ≥ 0

𝜉𝑖 are “slack variables”

Replace “# mistakes” with upper bound called “hinge loss”

𝑙 𝑤, 𝑥, 𝑦 = max(0,1 − 𝑦 𝑤 ⋅ 𝑥)
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C controls the relative weighting between the 

twin goals of making the 𝑤
2

small (margin is 
large) and ensuring that most examples have 
functional margin ≥ 1.



Support Vector Machines (SVMs)

Question: what if data isn’t perfectly linearly separable?

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

argminw,𝜉1,…,𝜉𝑚 𝑤
2
+ 𝐶σ𝑖 𝜉𝑖 s.t.:

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 1 − 𝜉𝑖

Find

𝜉𝑖 ≥ 0

Replace “# mistakes” with upper bound called “hinge loss”

𝑙 𝑤, 𝑥, 𝑦 = max(0,1 − 𝑦 𝑤 ⋅ 𝑥)
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Total amount have to move the points to get them 
on the correct side of the lines 𝑤 ⋅ 𝑥 = +1/−1, 
where the distance between the lines 𝑤 ⋅ 𝑥 = 0 and 
𝑤 ⋅ 𝑥 = 1 counts as “1 unit”. 



Support Vector Machines (SVMs)

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

argminw,𝜉1,…,𝜉𝑚 𝑤
2
+ 𝐶σ𝑖 𝜉𝑖 s.t.:

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 1 − 𝜉𝑖

Which is equivalent to:

Find

𝜉𝑖 ≥ 0

Primal 
form

Input: S={(x1, y1), …,(xm, ym)};

argminα
1

2
σiσj yiyj αiαjxi ⋅ xj − σiαi s.t.:

• For all i, 

Find

0 ≤ αi ≤ Ci

Lagrangian
Dual

෍

i

yiαi = 0

Can  be kernelized!!!



SVMs (Lagrangian Dual)

• Final classifier is: w = σiαiyixi

• The points xi for which αi ≠ 0
are called the “support vectors”

Input: S={(x1, y1), …,(xm, ym)};

argminα
1

2
σiσj yiyj αiαjxi ⋅ xj − σiαi s.t.:

• For all i, 

Find

0 ≤ αi ≤ Ci
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• The importance of margins in machine learning.

• The SVM algorithm. Primal and Dual Form.

What you should know

• Kernelizing SVM.


