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Convolutional neural networks

* A specialized kind of neural network for processing data that has a known grid-like
topology.

* E.g., time-series data, which can be thought of as a 1-D grid taking samples at regular time
intervals, and image data, which can be thought of as a 2-D grid of pixels

* The name “convolutional neural network” indicates that the network employs a

mathematical operation called convolution . Convolution is a specialized kind of
linear operation.

e Convolutional networks are neural networks that use convolution in place of general
matrix multiplication in at least one of their layers.



Convolutional neural networks

e Strong empirical application performance

e Convolutional networks: neural networks that use convolution in
place of general matrix multiplication in at least one of their layers

h=oc(W'x +b)
for a specific kind of weight matrix W



Convolution



Convolution: discrete version

* Given array u; and wg, their convolution is a function s;
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* Written as

s=w=*=w) or s;=ux*xw),;

* When u; or w; is not defined, assumed to be 0



Convolution, Motivation

e Suppose we track the location of a spaceship with a laser sensor. The laser sensor
provides a single output u(t), the position of the spaceship at second t.

e Suppose sensor is noisy. To obtain a less noisy estimate of the spaceship’s position,
we average several measurements. More recent measurements are more relevant,
so we use a weighted average that gives more weight to recent measurements.

* Use a weighting function w(a), where a is the age of a measurement. If we apply such
a weighted average operation at every moment, we obtain a new function s
providing a smoothed estimate of the position of the spaceship:
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Illustration 1

w=[z,y, x]

xb+yc+zd u=I[a, b,c,d,e,f]
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Illustration 1

xc+yd+ze
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Illustration 1

xd+ye+zf
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lllustration 1: boundary case
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Illustration 1 as matrix multiplication
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Illustration 2: two dimensional case
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Illustration 2: two dimensional case
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Advantage: sparse interaction

Fully connected layer, m X n edges
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Figure from Deep Learning, by Goodfellow, Bengio, and Courville



Advantage: sparse interaction

Convolutional layer, < m X k edges

@ O 0 @moutputnodes

Store fewer parameters: t

* reduces memory requirements

* improves statistical efficiency.
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Figure from Deep Learning, by Goodfellow, Bengio, and Courville



Advantage: sparse interaction

Multiple convolutional layers: larger receptive field

* Receptive field of units in deeper layers larger
than receptive field of units in shallow layers.

* Even though direct connections are sparse,

units in the deeper layers are indirectly

connected most of the input image. o o o hs
* At the first layer capture more local features, :

but as we go deeper in the network we

capture more global features. o o o
Ts5

Figure from Deep Learning, by Goodfellow, Bengio, and Courville




Advantage: parameter sharing
The same kernel are used repeatedly.
E.g., the black edge is the same weight
in the kernel.
Reduce the storage requirements of the
model.
@ Figure from Deep Learning,
by Goodfellow, Bengio,

and Courville
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Advantage: equivariant representations

e Equivariant: transforming the input = transforming the output

* Example: input is an image, transformation is shifting
e Convolution(shift(input)) = shift(Convolution(input))

e Useful when care only about the existence of a pattern, rather than
the location



Pooling



Terminology

Figure from Deep Learning,
by Goodfellow, Bengio,
and Courville

Complex layer terminology

Next layer

Simple layer terminology

Next layer

Convolutional Layer

Pooling stage

A

Pooling layer

Detector stage:
Nonlinearity

e.g., rectified linear
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Detector layer: Nonlinearity
e.g., rectified linear

Convolution stage:

Affine transform

A

A

Convolution layer:

Affine transform

Input to layer

?

Input to layers




Pooling

 Summarizing the input (i.e., output the max of the input)

POOLING STAGE

DETECTOR STAGE

A pooling function replaces the output of the net at a certain location with a summary statistic of the
nearby outputs. . For example, the max pooling takes maximum output within a rectangular neighborhood.

Figure from Deep Learning, by Goodfellow, Bengio, and Courville



Advantage

Induce invariance

Figure from Deep Learning,
by Goodfellow, Bengio,
and Courville

POOLING STAGE

DETECTOR STAGE



Variants of pooling

* Max pooling y = max{xy, x5, ..., Xy }
* Average pooling y = mean{xq, x5, ..., Xy }

e Others like max-out



Motivation from neuroscience

* David Hubel and Torsten Wiesel studied early visual system in human
brain (V1 or primary visual cortex), and won Nobel prize for this

* V1 properties
e 2D spatial arrangement
* Simple cells: inspire convolution layers
* Complex cells: inspire pooling layers



Variants of convolution and pooling



Variants of convolutional layers

* Multiple dimensional convolution

* Input and kernel can be 3D
e E.g., images have (width, height, RBG channels)

* Multiple kernels lead to multiple feature maps (also called channels)



Variants of convolutional layers

* Padding: valid
xd+ye+zf
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Variants of convolutional layers

* Padding: same
xe+yf
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Variants of convolutional layers
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Strided
convolution
@ Q IS

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

e Stride




Variants of pooling

e Stride and padding
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Figure from Deep Learning, by Goodfellow, Bengio, and Courville



Case study: LeNet-5



LeNet-5

* Proposed in “Gradient-based learning applied fo document

recognition”, by Yann LeCun, Leon Bottou, Yoshua Bengio and Patrick Haffner,
in Proceedings of the IEEE, 1998



LeNet-5

* Proposed in “Gradient-based learning applied fo document

recogn/z‘/on ” by Yann LeCun, Leon Bottou, Yoshua Bengio and Patrick Haffner,
in Proceedings of the IEEE, 1998

« Apply convolution on 2D images (MNIST) and use backpropagation



LeNet-5

* Proposed in “Gradient-based learning applied fo document

recognition”, by Yann LeCun, Leon Bottou, Yoshua Bengio and Patrick Haffner,
in Proceedings of the IEEE, 1998

« Apply convolution on 2D images (MNIST) and use backpropagation

 Structure: 2 convolutional layers (with pooling) + 3 fully connected layers
 Input size: 32x32x1
« Convolution kernel size: 5x5
* Pooling: 2x2



LeNet-5

C3: f. maps 16@10x10

INPUT C1: feature maps S4: f. maps 15@5:5
32x32 6@26x28 S2: f. maps C5: layer DUTF"I..IT
6@14x14 120 Ty e

‘ FuII manechnn Gaussnan connections
Convolutions Subsampling Convolutions Subsampllng Full cnnnectmn

Figure from Gradient-based learning applied fo document recognition,
by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner



C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5
6@28x28 S2: f. maps C5: |
L ayer
6@14x14 I 120 Ty e DUTP”T
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‘ FuII manechnn Gaussnan connections
Convolutions Subsampling Convolutions Subsampllng Full cnnnectmn

Figure from Gradient-based learning applied fo document recognition,
by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner



LeNet-5

Filter: 5x5, stride: 1x1,

tfilters: 6
1 that C3: f. maps 16@10x10
!agi:l%g Ezﬂizlge i S2: f. maps S 16@5!(‘?5 layer
6@14x14 120 Ty e DUTPUT
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‘ FuII cnnrlechnn GEUSSIEFI connections
Convolutions Subsampling Convolutions Subsampllng Full -::nnnectmn

Figure from Gradient-based learning applied fo document recognition,
by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner



LeNet-5

Pooling: 2x2, stride: 2

C3: f. maps16@10x10
S4: f. maps 16@5x5

C5h: |ﬂ‘,‘EI‘ . OUTPUT
120 I;fi layer 10 U

— |
Full cnnrlectinn ‘ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

C1: feature maps

INPUT
39%32 6@28x28

Figure from Gradient-based learning applied fo document recognition,
by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner



LeNet—S Filter: 5x5 , stride: 1x1,
#filters: 16

C3: f. maps 16@10x10
C1: feature maps A -

INPUT
39%32 6@28x28

. f. maps 16@5:5

C5: layer
120 FE layer DUTF"UT
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‘ FuII cnnrlechnn GEUSSIEFI connections
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S2: f. maps
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Figure from Gradient-based learning applied fo document recognition,
by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner



LeNet-5

Pooling: 2x2, stride: 2

C3: f. maps 16@10x10

INPUT gg@ ;gitzlge maps S4: f. maps 16@5x5
32x32 S2: f. maps C5: layer
6@14x14 120 Ty e DUTPUT

‘ FuII cnnrlechnn GEUSSIEFI connections
Convolutions Subsampling Convolutions Subsampllng Full -::nnnectmn

Figure from Gradient-based learning applied fo document recognition,
by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner



LeNet-

Weight matrix: 400x120

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5:1

INPUT
6@28x28 S2: f. maps C5\ layer

FE layer DUTF" uTt

32x32
6@14x14 120

SONN

‘ FuII cnnrlechnn GEUSSIEFI connections
Convolutions Subsampling Convolutions Subsampllng Full -::nnnectmn

Figure from Gradient-based learning applied fo document recognition,
by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner



Weight matrix: 84x10

LeNet-5

C3: f. maps 16@10x10

C1: feature maps S4: f. maps 16@5:5

INPUT
39%32 6@28x28

S2: f. maps C5: layer Iayer UTF'I.JT

6@14x14 r 120

‘ FuII cnnrlnectmn Gausslan connections
Convolutions Subsampling Convolutions Subsampllng Full c.:nnnectmn

Figure from Gradient-based learning applied fo document recognition,
by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner



