
Convolutional Neural Networks
Maria Florina Balcan

March 28th 2018

Convolutional neural networks

• A specialized kind of neural network for processing data that has a known grid-like
topology.

• E.g., time-series data, which can be thought of as a 1-D grid taking samples at regular time
intervals, and image data, which can be thought of as a 2-D grid of pixels

• The name “convolutional neural network” indicates that the network employs a
mathematical operation called convolution . Convolution is a specialized kind of
linear operation.

• Convolutional networks are neural networks that use convolution in place of general
matrix multiplication in at least one of their layers.

Convolutional neural networks

• Strong empirical application performance

• Convolutional networks: neural networks that use convolution in
place of general matrix multiplication in at least one of their layers

for a specific kind of weight matrix 𝑊

ℎ = 𝜎(𝑊𝑇𝑥 + 𝑏)

Convolution

Convolution: discrete version

• Given array 𝑢𝑡 and 𝑤𝑡, their convolution is a function 𝑠𝑡

• Written as

• When 𝑢𝑡 or 𝑤𝑡 is not defined, assumed to be 0

𝑠𝑡 = ෍

𝑎=−∞

+∞

𝑢𝑎𝑤𝑡−𝑎

𝑠 = 𝑢 ∗ 𝑤 or 𝑠𝑡 = 𝑢 ∗ 𝑤 𝑡

Convolution, Motivation

• Suppose we track the location of a spaceship with a laser sensor. The laser sensor
provides a single output u(t), the position of the spaceship at second t.

• Suppose sensor is noisy. To obtain a less noisy estimate of the spaceship’s position,
we average several measurements. More recent measurements are more relevant,
so we use a weighted average that gives more weight to recent measurements.

𝑠𝑡 = ෍

𝑎=−∞

+∞

𝑢𝑎𝑤𝑡−𝑎

• Use a weighting function w(a), where a is the age of a measurement. If we apply such
a weighted average operation at every moment, we obtain a new function s
providing a smoothed estimate of the position of the spaceship:

Illustration 1

a b c d e f

x y z

xb+yc+zd

𝑤= [z, y, x]
𝑢 = [a, b, c, d, e, f]

𝑠3

𝐰𝟐 𝐰𝟏 𝐰𝟎

𝐮𝟏 𝒖𝟐 𝐮𝟑

Illustration 1

a b c d e f

x y z

xc+yd+ze

𝑠4

𝐰𝟐 𝐰𝟏 𝐰𝟎

𝐮𝟐 𝒖𝟑 𝐮𝟒

Illustration 1

a b c d e f

x y z

xd+ye+zf

𝐰𝟐 𝐰𝟏 𝐰𝟎

𝐮𝟑 𝒖𝟒 𝐮𝟓

𝑠5

Illustration 1: boundary case

a b c d e f

x y

xe+yf

𝐰𝟐 𝐰𝟏

𝒖𝟒 𝐮𝟓

𝑠6

Illustration 1 as matrix multiplication

y z

x y z

x y z

x y z

x y z

x y

a

b

c

d

e

f

Illustration 2: two dimensional case

a b c d

e f g h

i j k l

w x

y z

aw + bx +
ey + fz

bw + cx +
fy + gz

cw + dx +
gy + hz

ew + fx +
iy + jz

fw + gx +
jy + kz

gw + hx +
ky + lz

Illustration 2: two dimensional case

a b c d

e f g h

i j k l

w x

y z

wa + bx +
ey + fz

Illustration 2

a b c d

e f g h

i j k l

w x

y z

bw + cx +
fy + gz

wa + bx +
ey + fz

Illustration 2

a b c d

e f g h

i j k l

w x

y z

bw + cx +
fy + gz

wa + bx +
ey + fz

Kernel
(or filter)

Feature map

Input

Illustration 2

a b c d

e f g h

i j k l

w x

y z

bw + cx +
fy + gz

wa + bx +
ey + fz

Kernel
(or filter)

Feature map

Input

Advantage: sparse interaction

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

Fully connected layer, 𝑚 × 𝑛 edges

𝑚 output nodes

𝑛 input nodes

Advantage: sparse interaction

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

Convolutional layer, ≤ 𝑚 × 𝑘 edges

𝑚 output nodes

𝑛 input nodes

𝑘 kernel size

Store fewer parameters:

• reduces memory requirements

• improves statistical efficiency.

Advantage: sparse interaction

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

Multiple convolutional layers: larger receptive field

• Receptive field of units in deeper layers larger
than receptive field of units in shallow layers.

• Even though direct connections are sparse,
units in the deeper layers are indirectly
connected most of the input image.

• At the first layer capture more local features,
but as we go deeper in the network we
capture more global features.

Advantage: parameter sharing

Figure from Deep Learning,
by Goodfellow, Bengio,
and Courville

The same kernel are used repeatedly.
E.g., the black edge is the same weight
in the kernel.

Reduce the storage requirements of the
model.

Advantage: equivariant representations

• Equivariant: transforming the input = transforming the output

• Example: input is an image, transformation is shifting

• Convolution(shift(input)) = shift(Convolution(input))

• Useful when care only about the existence of a pattern, rather than
the location

Pooling

Terminology

Figure from Deep Learning,
by Goodfellow, Bengio,
and Courville

Pooling

• Summarizing the input (i.e., output the max of the input)

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

A pooling function replaces the output of the net at a certain location with a summary statistic of the
nearby outputs. . For example, the max pooling takes maximum output within a rectangular neighborhood.

Advantage

Induce invariance

Figure from Deep Learning,
by Goodfellow, Bengio,
and Courville

Variants of pooling

• Max pooling 𝑦 = max{𝑥1, 𝑥2, … , 𝑥𝑘}

• Average pooling 𝑦 = mean{𝑥1, 𝑥2, … , 𝑥𝑘}

• Others like max-out

Motivation from neuroscience

• David Hubel and Torsten Wiesel studied early visual system in human
brain (V1 or primary visual cortex), and won Nobel prize for this

• V1 properties
• 2D spatial arrangement

• Simple cells: inspire convolution layers

• Complex cells: inspire pooling layers

Variants of convolution and pooling

Variants of convolutional layers

• Multiple dimensional convolution

• Input and kernel can be 3D
• E.g., images have (width, height, RBG channels)

• Multiple kernels lead to multiple feature maps (also called channels)

Variants of convolutional layers

• Padding: valid

a b c d e f

x y z

xd+ye+zf

Variants of convolutional layers

• Padding: same

a b c d e f

x y

xe+yf

Variants of convolutional layers

• Stride

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

Variants of pooling

• Stride and padding

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

Case study: LeNet-5

LeNet-5

• Proposed in “Gradient-based learning applied to document
recognition” , by Yann LeCun, Leon Bottou, Yoshua Bengio and Patrick Haffner,
in Proceedings of the IEEE, 1998

LeNet-5

• Proposed in “Gradient-based learning applied to document
recognition” , by Yann LeCun, Leon Bottou, Yoshua Bengio and Patrick Haffner,
in Proceedings of the IEEE, 1998

• Apply convolution on 2D images (MNIST) and use backpropagation

LeNet-5

• Proposed in “Gradient-based learning applied to document
recognition” , by Yann LeCun, Leon Bottou, Yoshua Bengio and Patrick Haffner,
in Proceedings of the IEEE, 1998

• Apply convolution on 2D images (MNIST) and use backpropagation

• Structure: 2 convolutional layers (with pooling) + 3 fully connected layers
• Input size: 32x32x1

• Convolution kernel size: 5x5

• Pooling: 2x2

LeNet-5

Figure from Gradient-based learning applied to document recognition,
by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner

LeNet-5

Figure from Gradient-based learning applied to document recognition,
by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner

LeNet-5

Figure from Gradient-based learning applied to document recognition,
by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner

Filter: 5x5, stride: 1x1,
#filters: 6

LeNet-5

Figure from Gradient-based learning applied to document recognition,
by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner

Pooling: 2x2, stride: 2

LeNet-5

Figure from Gradient-based learning applied to document recognition,
by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner

Filter: 5x5x6, stride: 1x1,
#filters: 16

LeNet-5

Figure from Gradient-based learning applied to document recognition,
by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner

Pooling: 2x2, stride: 2

LeNet-5

Figure from Gradient-based learning applied to document recognition,
by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner

Weight matrix: 400x120

LeNet-5

Figure from Gradient-based learning applied to document recognition,
by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner

Weight matrix: 120x84

Weight matrix: 84x10

