
10-401 Machine Learning: Homework 5
Due 5:30 p.m. Friday, May 4, 2018

Instructions

• Submission: You must submit your solutions on time electronically by submitting to autolab by 5:30
p.m. Friday, May 4, 2018. On the Homework 5 autolab page, you can click on the “download handout”
link to download the submission template, which is a tar archive containing a Octave .m file for each
programming question. Replace each of these files with your solutions for the corresponding problem,
create a new tar archive of the top-level directory, and submit your archived solutions online by clicking
the “Submit File” button.

DO NOT change the name of any of the files or folders in the submission template. In other words,
your submitted files should have exactly the same names as those in the submission template. Do not
modify the directory structure.

• Grading: This homework is extra credit. There are 20 total points available on this homework. All
of the points on this homework will be applied to your lowest, non-dropped homework.

• Late homework policy: No late submissions will be accepted and no credit will be given after the
deadline since this is an extra-credit homework.

• Collaboration policy: You are welcome to collaborate on any of the questions with anybody you
like. However, you must write up your own final solution, and you must list the names of anybody you
collaborated with on this assignment.
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1 Implementing k-means Clustering [12 pts]

In this problem you will implement Lloyd’s method for the k-means clustering problem and answer several
questions about the k-means objective, Lloyd’s method, and k-means++.

Recall that given a set S = {x1, . . . , xn} ⊂ Rd of n points in d-dimensional space, the goal of k-means
clustering is to find a set of centers c1, . . . , ck ∈ Rd that minimize the k-means objective:

n∑
j=1

min
i∈{1,...,k}

‖xj − ci‖2, (1)

which measures the sum of squared distances from each point xj to its nearest center.
In class we discussed that finding the optimal centers for the k-means objective is NP-hard, which means

that there is likely no algorithm that can efficiently compute the optimal centers. Instead, we often use
Lloyd’s method, which is a heuristic algorithm for minimizing the k-means objective that is efficient in
practice and often outputs reasonably good clusterings. Lloyd’s method maintains a set of centers c1, . . . , ck
and a partitioning of the data S into k clusters, C1, . . . , Ck. The algorithm alternates between two steps:
(i) improving the partitioning C1, . . . , Ck by reassigning each point to the cluster with the nearest center,
and (ii) improving the centers c1, . . . , ck by setting ci to be the mean of those points in the set Ci for
i = 1, . . . , k. Typically, these two steps are repeated until the clustering converges (i.e, the partitioning
C1, . . . , Ck remains unchanged after an update). Pseudocode is given below:

1. Initialize the centers c1, . . . , ck and the partition C1, . . . , Ck arbitrarily.

2. Do the following until the partitioning C1, . . . , Ck does not change:

i. For each cluster index i, let Ci = {x ∈ S : x is closer to ci than any other center}, breaking ties
arbitrarily but consistently.

ii. For each cluster index i, let ci = 1
|Ci|

∑
x∈Ci

x.

Implementing Lloyd’s Method

In the remainder of this problem you will implement and experiment with Lloyd’s method and the k-means++
algorithm on the two dimensional dataset shown in Figure 1.

(b) [3 pts] Complete the function [a] = update assignments(X, C, a). The input X is the n × d data
matrix, C is the k×d matrix of current centers, and a is the n×1 vector of current cluster assignments.
That is, C(i,:) is the center for cluster i and the jth data point, X(j,:), is assigned to cluster a(j).
Your function should output a new n × 1 vector of cluster assignments so that each point is assigned
to the cluster with the nearest center.

(c) [3 pts] Complete the function [C] = update centers(X, C, a). The input arguments are as in part
(b). Your function should output a k× d matrix C whose ith row is the optimal center for those points
in cluster i.

(d) [3 pts] Complete the function [C, a] = lloyd iteration(X, C). This function takes a data matrix X,
initial centers C and runs Lloyd’s method until convergence. Specifically, alternate between updating
the assignments and updating the centers until the the assignments stop changing. Your function
should output the final k × d matrix C of centers and final the n× 1 vector a of assignments.

(e) [3 pts] Complete the function [obj] = kmeans obj(X, C, a). This function takes the n × d data
matrix X, a k×d matrix C of centers, and a n×1 vector a of cluster assignments. Your function should
output the value of the k-means objective of the provided clustering.

We provide you with a function [C, a, obj] = kmeans cluster(X, k, init, num restarts) that
takes an n × d data matrix X, the number k of clusters, a string init which must be either ‘random’ or
‘kmeans++’, and a number of restarts num restarts. This function runs Lloyd’s method num restarts

times and outputs the best clustering it finds.
We encourage you to try out this function on the provided dataset and visualize clusters to learn more

about k means.
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Figure 1: The 2D dataset used for this problem

2 Theory

2.1 k-means on the real line [4 pts]

In this problem you will show that the k-means objective (1) can be minimized in polynomial time when
the data points are single dimensional (d = 1), despite the fact that in general finding the optimal centers is
NP-hard.

(a) [1 pts] Consider the case where k = 3 and we have 4 data points x1 = 1, x2 = 3, x3 = 6, x4 = 7. What
is the optimal clustering for this data? What is the corresponding value of the objective (1).

(b) [1 pts] One might be tempted to think that Lloyd’s method is guaranteed to converge to the global
minimum when d = 1. Show that there exists a suboptimal cluster assignment for the data in part (a)
that Lloyd’s algorithm will not be able to improve (to get full credit, you need to show the assignment,
show why it is suboptimal and explain why it will not be improved).

(c) [1 pts] Assume we sort our data points such that x1 ≤ x2 ≤ · · · ≤ xn. Prove that an optimal cluster
assignment has the property that each cluster corresponds to some interval of points. That is, for each
cluster j, there exits i1 and i2 such that the cluster consists of {xi1 , xi1+1, . . . , xi2}.

(d) [1 pts] Develop an O(kn2) dynamic programming algorithm for single dimensional k-means. (Hint:
from part (c), what we need to optimize are k − 1 cluster boundaries where the ith boundary marks
the largest point in the ith cluster.)

2.2 PCA: Maximizing the variance [2 pts]

Consider N data points X1, ..., XN ∈ Rp such that the sample mean of X is zero: 1
N

∑N
i=1 Xi = 0. Also

consider projection vector u ∈ Rp, where ||u||2 = 1. We would like to maximize the sample variance Ṽ [uTX],
which is the sample variance of X projected onto u. The sample variance of N samples of a variable z is
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Ṽ [z] = 1
N

∑N
i=1 z

2
i , where 1

N

∑N
i=1 zi = 0. We can write an optimization problem to maximize the sample

variance:

max
u

s.t.||u||2=1

Ṽ [uTX] (2)

Reformulate Eq.2 to the following optimization problem, and define the pxp matrix Σ:

max
u

s.t.||u||2=1

uT Σu (3)

2.3 PCA: Minimizing the reconstruction error [2 pts]

Consider the same variables as those defined in the previous question. Instead of maximizing the projected
variance, we now seek to minimize the reconstruction error. In other words, we would like to minimize the
difference between X and the reconstructed uuTX. Note that uuTX first projects X onto u, and then
projects this scalar back into the p-dimensional space along the u axis. Minimizing the reconstruction error
can be written as the following optimization problem.

min
u

s.t.||u||2=1

1

N

N∑
i=1

||Xi − uuTXi||22 (4)

Reformulate Eq. 4 to the following optimization problem with the same Σ as in the previous question.

max
u

s.t.||u||2=1

uT Σu (5)
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