
10-401 Machine Learning: Homework 3
Due 5:00 p.m. Monday, March 5, 2018

Instructions
• Submit your homework on time electronically by submitting to Autolab by 5:00 pm, Monday,

March 5, 2018.

We recommend that you use LATEX, but we will accept scanned solutions as well. This assignment
contains no programming questions, so you do not need to download any extra files from Autolab.
To submit this homework, you should submit a pdf of your solutions on Autolab by navigating to
Homework 3 and clicking the “Submit File” button.

• Late homework policy: Homework is worth full credit if submitted before the due date. Up to 50 %
credit can be received if the submission is less than 48 hours late. The lowest homework grade at the
end of the semester will be dropped. Please talk to the instructor in the case of extreme extenuating
circumstances.

• Collaboration policy: You are welcome to collaborate on any of the questions with anybody you like.
However, you must write up your own final solution, and you must list the names of anybody you
collaborated with on this assignment.
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Problem 1: Logistic Regression and Gradient Descent

1.1: Logistic regression in two dimensions
In this question, we will derive the logistic regression algorithm (the M(C)LE and its gradient). For simplicity,
we assume the dataset is two-dimensional. Given a training set {(xi, yi), i = 1, . . . , n} where xi ∈ R2 is a
feature vector and yi ∈ {0, 1} is a binary label, we want to find the parameters ŵ that maximize the likelihood
for the training set, assuming a parametric model of the form

p(y = 1|x;w) =
1

1 + exp(−w0 − w1x1 − w2x2)
=

exp(w0 + w1x1 + w2x2)

1 + exp(w0 + w1x1 + w2x2)
. (1)

1. [10 Points] Below, we give a derivation of the conditional log likelihood. In this derivation, provide a
short justification for why each line follows from the previous one.

`(w) ≡ ln

n∏
j=1

p(yj | xj , w) (2)

=

n∑
j=1

ln p(yj | xj , w) (3)

=

n∑
j=1

ln
(
p(yj = 1 | xj , w)y

j

p(yj = 0 | xj , w)1−y
j
)

(4)

=

n∑
j=1

[
yj ln p(yj = 1 | xj , w) + (1− yj) ln p(yj = 0 | xj , w)

]
(5)

=

n∑
j=1

[
yj ln

exp(w0 + w1x
j
1 + w2x

j
2)

1 + exp(w0 + w1x
j
1 + w2x

j
2)

+ (1− yj) ln
1

1 + exp(w0 + w1x
j
1 + w2x

j
2)

]
(6)

=

n∑
j=1

[
yj ln

(
exp(w0 + w1x

j
1 + w2x

j
2)
)

+ ln

(
1

1 + exp(w0 + w1x
j
1 + w2x

j
2)

)]
(7)

=

n∑
j=1

[
yj
(
w0 + w1x

j
1 + w2x

j
2

)
− ln

(
1 + exp(w0 + w1x

j
1 + w2x

j
2)
)]
. (8)

Next, we will derive the gradient of the previous expression with respect to w0, w1, w2, i.e., ∂`(w)
∂wi

,
where `(w) denotes the log likelihood from part 1. We will perform a few steps of the derivation, and
then ask you to do one step at the end. If we take the derivative of Expression 8 with respect to wi for
i ∈ {1, 2}, we get the following expression:

∂`(w)

∂wi
=

∂

∂wi

n∑
j=1

[
yj
(
w0 + w1x

j
1 + w2x

j
2

)]
− ∂

∂wi

n∑
j=1

ln
[
1 + exp

(
w0 + w1x

j
1 + w2x

j
2

)]
. (9)

The blue expression is linear in wi, so it can be simplified to
∑n
j=1 y

jxji . For the red expression, we
use the chain rule as follows (first we consider a single j ∈ [1, n])
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∂

∂wi
ln
[
1 + exp

(
w0 + w1x

j
1 + w2x

j
2

)]
(10)

=
1

1 + exp
(
w0 + w1x

j
1 + w2x

j
2

) · ∂

∂wi

(
1 + exp

(
w0 + w1x

j
1 + w2x

j
2

))
(11)

=
1

1 + exp
(
w0 + w1x

j
1 + w2x

j
2

) · exp
(
w0 + w1x

j
1 + w2x

j
2

) ∂

∂wi

(
w0 + w1x

j
1 + w2x

j
2

)
(12)

= xji ·
exp

(
w0 + w1x

j
1 + w2x

j
2

)
1 + exp

(
w0 + w1x

j
1 + w2x

j
2

) (13)

2. [10 Points] Now use Equation 13 (and the previous discussion) to show that overall, Expression 9, i.e.,
∂`(w)
∂wi

, is equal to

∂`(w)

∂wi
=

n∑
j=1

xji (y
j − p(yj = 1 | xj ;w)) (14)

Hint: does Expression 13 look like a familiar probability?

Since the log likelihood is concave, it is easy to optimize using gradient ascent. The final algorithm is as
follows. We pick a step size η, and then perform the following iterations until the change is < ε:

w
(t+1)
0 = w

(t)
0 + η

∑
j

[
yj − p(yj = 1 | xj ;w(t))

]
(15)

w
(t+1)
i = w

(t)
i + η

∑
j

xji

[
yj − p(yj = 1 | xj ;w(t))

]
. (16)

1.2: General questions about logistic regression
1. [7 Points] Explain why logistic regression is a discriminative classifier (as opposed to a generative

classifier such as Naive Bayes).

2. [7 Points] Recall the prediction rule for logistic regression is if p(yj = 1 | xj) > p(yj = 0 | xj), then
predict 1, otherwise predict 0. What does the decision boundary of logistic regression look like? Justify
your answer (e.g., try to write out the decision boundary as a function of w0, w1, w2 and xj1, x

j
2).

Problem 2: Support Vector Machines
Assume we are given a dataset S = {((x1, y1), . . . , (xn, yn)} of labeled examples with label set {1,−1}. In
this problem, you will derive the SVM algorithm from the large margin principle.
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2.1: Hard Margin
Given a linear classifier f(x) = w>x, which predicts 1 if f(x) > 0 and -1 if f(x) < 0, recall the definition
of the margin,

γ =
y · f(x)

||w||2
.

The margin is the distance from a datapoint x to the decision boundary. For the next two problems,
assume the data is linearly separable.

1. [8 Points] We would like to make this margin γ as large as possible, i.e., maximize the perpendicular
distance to the closest point. Thus our objective function becomes

max
w

n
min
i=1

yif(xi)

||w||2
.

(Think about why we use this function.) Show that it is equivalent to the following problem:

min
w

1

2
||w||22 such that yi · (w>xi) ≥ 1, i = 1, . . . , n.

(Hint: does it matter if we rescale w → c · w)?

2. [7 Points] If one of the training samples is removed, will the decision boundary shift toward the point
removed, shift away from the point removed, or remain the same? Justify your answer.

2.2: Soft Margin
Recall from the lecture notes that if we allow some misclassification in the training data, the SVM optimiza-
tion is given by

minimizew,ξi
1

2
||w||22 + C

n∑
i=1

ξi

subject to yi(w
>xi) ≥ 1− ξi ∀i = 1, . . . , n

ξi ≥ 0 ∀i = 1, . . . , n

Recall from the lecture notes ξ1, . . . , ξn are called slack variables. The optimal slack variables have
intuitive geometric interpretation as shown in Figure 1. Basically, when ξi = 0 , the corresponding feature
vector φ(xi) is correctly classified and it will either lie on the margin of the separator or on the correct side
of the margin. Feature vectors with 0 ≤ ξi ≤ 1 lie within the margin but are still correctly classified. When
ξi > 1, the corresponding feature vector is misclassified. Support vectors correspond to the instances with
ξi > 0 or instances that lie on the margin. The optimal vector w can be represented in terms of α1, . . . , αn
as w =

∑n
i=1 αiyiφ(xi).

1. [8 Points] Suppose the optimal ξ1, . . . , ξn have been computed. Use the ξi to obtain an upper bound
on the number of misclassified instances.

2. [8 Points] In the primal optimization of SVM, what is the role of the coefficient C? Briefly explain
your answer by considering two extreme cases, C → 0 and C →∞.
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Figure 1: The relationship between the optimal slack variables and the optimal linear separator in the feature
space. Support vectors are surrounded with circles.

Problem 3: Kernels

3.1: Kernel computation cost
1. [7 Points] Consider we have a two-dimensional input space such that the input vector is x = (x1, x2)T .

Define the feature mapping φ(x) = (x21,
√

2x1x2, x
2
2)T . What is the cooresponding kernel function,

i.e. K(x, z)? Do not leave φ(x) in your final answer.

2. [7 Points] Suppose we want to compute the value of the kernel function K(x, z) from the previous
question, on two vectors x, z ∈ R2. How many additions and multiplications are needed if you

(a) map the input vector to the feature space and the perform the dot product on the mapped features?

(b) compute through the kernel function you derived in question 1?

3.2: Kernel functions
Consider the following kernel function:

K(x, x′) =

{
1, if x = x′

0, otherwise

1. [7 Points] Prove this is a legal kernel. That is, describe an implicit mapping Φ : X → Rm such that
K(x, x′) = Φ(x) · Φ(x′). (You may assume the instance space X is finite.)

2. [7 Points] In this kernel space, any labeling of points inX will be linearly separable. Justify this claim.

3. [7 Points] Since all labelings are linearly separable, this kernel seems perfect for learning any target
function. Why is this actually a bad idea?
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(Bonus) Problem 4: Logistic Regression and M(C)AP
In this question, we assume the same setup as problem 1: we have a training set {(xi, yi), i = 1, . . . , n}
where xi ∈ R2, and a parametric model

p(y = 1|x;w) =
1

1 + exp(−w0 − w1x1 − w2x2)
=

exp(w0 + w1x1 + w2x2)

1 + exp(w0 + w1x1 + w2x2)
. (17)

1. (Bonus) [3 points] Let’s look at a MAP estimate for logistic regression.
Given the Laplace prior p(w) =

∏
i

1
2be

|wi|
b , derive the expression to maximize for the M(C)AP esti-

mate. I.e., compute the expression w∗ = argmaxw ln[p(w)
∏
j p(y

(j)|x(j), w)] (Hint, it should be very
similar to Expression 8, but with an extra term corresponding to the prior term.

2. (Bonus) [3 Points] What is the expression we should get now for the partial derivative for the M(C)AP
estimate? Hint: You should be able to separate out the prior term from the M(C)LE and end up with an
expression similar to Expression 14, but with an extra term.

(Bonus) Problem 5: Kernels and Feature Mapping
Consider a binary classification problem in one-dimensional space where the sample contains four data points
S = {(1,−1), (−1,−1), (2, 1), (−2, 1)} as shown in Figure 2.

1. [3 Points] DefineHt = [t,∞). Consider a class of linear separatorsH = {Ht : t ∈ R}, i.e., ∀Ht ∈ H,
Ht(x) = 1 if x ≥ t, otherwise −1. Is there any linear separator Ht ∈ H that achieves 0 classification
error on this example? If yes, show one of the linear separators that achieves 0 classification error on
this example. If not, briefly explain why there cannot be such a linear separator.

Figure 2: Red points represent instances from class +1 and blue points represent instances from class−1. The
figure on the left is the original data, and the figure on the right is the data after the feature map transformation.

2. [3 Points] Now consider a feature map φ : R → R2 where φ(x) = (x, x2). Apply the feature map
to all instances in sample S to generate a transformed sample S′ = {(φ(x), y) : (x, y) ∈ S} shown
in Figure 2. Let H′ = {ax1 + bx2 + c ≥ 0 : a2 + b2 6= 0} be a collection of half-spaces in R2.
More specifically, Ha,b,c((x1, x2)) = 1 if ax1 + bx2 + c ≥ 0 otherwise −1. Is there any half-space
H ′ ∈ H′ that achieves 0 classification error on the transformed sample S′? If yes, give the equation
of the max-margin linear separator and compute the corresponding margin. For this question, you can
give the equation directly by inspection of Figure 2.

3. [3 Points] What is the kernel corresponding to the feature map φ(·) in the last question, i.e., give the
kernel function K(x, z) : R× R→ R.
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Submission Instructions
You only need to submit the writeup as a pdf file.

Please put these files, together with your writeup, into a folder called hw2, and run the following command
$ tar -cvf hw2.tar hw2
Then submit your tarfile to Autolab.
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