10-315 Recitation

VC-Dimension Practice

Misha

21 March 2019

Sample Complexity: Finite Hypothesis Class

- Fix hypothesis class H such that $|H|<\infty$
- Find $h \in H$ with smallest error on training set (ERM)
- In realizable case, if $m \geq \frac{1}{\varepsilon}\left(\log |H|+\log \frac{2}{\delta}\right)$ then we get error at most ε with probability at least $1-\delta$.

Problem: Infinite Hypothesis Classes

Most classes of practical interest are infinite:
E.g., linear separators in R^{d}

E.g., thresholds on the real line

E.g., intervals on the real line

Solution: VC-Dimension

- Want to consider an effective number of hypotheses - how many ways we can split the data using hypotheses from H
- A set of points S is shattered by hypothesis class H if there is a hypothesis in H that classifies S in all $2^{|S|}$ possible ways.
- The VC-dimension d_{H} is the cardinality $|S|$ of the largest set S that can be shattered by H

VC-Dimension Guarantee: Sauer's Lemma

- Fix hypothesis class H such that $d_{H}<\infty$
- Find $h \in H$ with smallest error on training set (ERM)

$$
\text { of size }|S|=d_{H} \text { that is shattered by } H
$$

- In realizable case, if $m \geq \frac{1}{2 \varepsilon}\left(d_{H} \log \frac{1}{\varepsilon}+\log \frac{2}{\delta}\right)$ then we get error at most ε with probability at least $1-\delta$.

How to Find VC-Dimension?

Given a hypothesis class H and sample space X :

How to Find VC-Dimension?

Given a hypothesis class H and sample space X :

- Find $S \subset X$ of size $|S|=d$ that is shattered by H.
- Show that any $S \subset H$ of size $|S|>d$ is not shattered by H.
- Then $d_{H}=d$ is the VC-dimension of H

Practice: Thresholds

Suppose $H=\left\{h(x)=1_{x \geq a}: a \in \mathbb{R}\right\}$ for $X=\mathbb{R}$.

What is the VC-dimension?

Practice: Quadratic Separators

Suppose $H=\left\{h(\boldsymbol{x})=1_{0 \leq a_{0,0}+\sum_{i, j}^{d} a_{i, j} x_{i} x_{j}}: a_{i, j} \in \mathbb{R}\right\}$ for $X=\mathbb{R}^{d}$.

Show that the VC-dimension is at most $O\left(d^{2}\right)$

Practice: Quadratic Separators

Suppose $H=\left\{h(\boldsymbol{x})=1_{0 \leq a_{0,0}+\sum_{i, j}^{d} a_{i, j} x_{i} x_{j}}: a_{i, j} \in \mathbb{R}\right\}$ for $X=\mathbb{R}^{d}$.

Show that the VC-dimension is at most $O\left(d^{2}\right)$

Hint: recall that the VC-dimension of linear separators is $d+1$

Practice: Convex Polygons

Suppose $H=\left\{1_{x \in \text { ConvexHull }\left(p_{1}, \ldots, p_{n}\right)}\right.$: $\left.n \in \mathbb{Z}_{+}, p_{i} \in \mathbb{R}^{2}\right\}$ for $X=\mathbb{R}^{2}$.

What is the VC-dimension?

Does VC-Dimension Roughly Correspond to Number of Parameters?

- Common heuristic that often works:
- Linear separators
- Quadratic separators
- Convex polygons
- Intervals
- Circles
- But also fails:
- Consider $H=\left\{1_{\sin (\theta x) \geq 0}: \theta \in \mathbb{R}\right\}$ for $X=\mathbb{R}$. Single parameter, but for any $m>0$ can shatter any set $S=\left\{2^{-k}: k \in[m]\right\}$, which has size m.

