10-315 Recitation

VC-Dimension Practice

Misha
21 March 2019

Sample Complexity: Finite Hypothesis Class

• Fix hypothesis class H such that $|H| < \infty$

• Find $h \in H$ with smallest error on training set (ERM)

• In realizable case, if $m \geq \frac{1}{\varepsilon} \Big(\log |H| + \log \frac{2}{\delta} \Big)$ then we get error at most ε with probability at least $1 - \delta$.

Problem: Infinite Hypothesis Classes

Most classes of practical interest are infinite:

Solution: VC-Dimension

• Want to consider an *effective* number of hypotheses – how many ways we can split the data using hypotheses from ${\cal H}$

• A set of points S is **shattered** by hypothesis class H if there is a hypothesis in H that classifies S in all $2^{|S|}$ possible ways.

• The **VC-dimension** d_H is the cardinality |S| of the largest set S that can be shattered by H

VC-Dimension Guarantee: Sauer's Lemma

- Fix hypothesis class H such that $d_H < \infty$
- Find $h \in H$ with smallest error on training set (ERM) of size $|S| = d_H$ that is shattered by H.
- In realizable case, if $m \geq \frac{1}{2\varepsilon} \left(d_H \log \frac{1}{\varepsilon} + \log \frac{2}{\delta} \right)$ then we get error at most ε with probability at least 1δ .

How to Find VC-Dimension?

Given a hypothesis class H and sample space X:

How to Find VC-Dimension?

Given a hypothesis class H and sample space X:

• Find $S \subset X$ of size |S| = d that is shattered by H.

• Show that any $S \subset H$ of size |S| > d is not shattered by H.

• Then $d_H = d$ is the VC-dimension of H

Practice: Thresholds

Suppose $H = \{h(x) = 1_{x \ge a} : a \in \mathbb{R}\}$ for $X = \mathbb{R}$.

What is the VC-dimension?

Practice: Quadratic Separators

Suppose
$$H = \{h(\mathbf{x}) = 1_{0 \le a_{0,0} + \sum_{i,j}^{d} a_{i,j} \mathbf{x}_i \mathbf{x}_j} : a_{i,j} \in \mathbb{R} \}$$
 for $X = \mathbb{R}^d$.

Show that the VC-dimension is at most $O(d^2)$

Practice: Quadratic Separators

Suppose
$$H = \{h(\mathbf{x}) = 1_{0 \le a_{0,0} + \sum_{i,j}^{d} a_{i,j} \mathbf{x}_i \mathbf{x}_j} : a_{i,j} \in \mathbb{R} \}$$
 for $X = \mathbb{R}^d$.

Show that the VC-dimension is at most $O(d^2)$

Hint: recall that the VC-dimension of *linear* separators is d+1

Practice: Convex Polygons

Suppose $H = \{1_{x \in ConvexHull(p_1,...,p_n)} : n \in \mathbb{Z}_+, p_i \in \mathbb{R}^2\}$ for $X = \mathbb{R}^2$.

What is the VC-dimension?

Does VC-Dimension Roughly Correspond to Number of Parameters?

- Common heuristic that often works:
 - Linear separators
 - Quadratic separators
 - Convex polygons
 - Intervals
 - Circles
- But also fails:
 - Consider $H=\left\{1_{\sin(\theta x)\geq 0}: \theta\in\mathbb{R}\right\}$ for $X=\mathbb{R}$. Single parameter, but for any m>0 can shatter any set $S=\left\{2^{-k}: k\in[m]\right\}$, which has size m.