10-315 Recitation

Review of Gradient Descent & Kernels

Misha

21 February 2019

Gradient Descent: Why do we need it?

Gradient Descent: Why do we need it?

Many learning algorithms can be reduced to an optimization problem:

• Logistic regression:
$$\min_{w,c} \sum_{i} \log \left(1 + \exp\left(-y_i(x_i^T w + c)\right)\right)$$

- Linear regression: $\min_{w,c} \sum_{i} ||x_i^T w + c y_i||_2^2$
- Training deep neural networks
- Many other methods (kernel methods, some clustering methods, ...)

Gradient Descent: Why do we need it?

- Gradient descent is a simple, efficient local search heuristic for solving optimization problems
 - Most interesting problems can't be solved analytically, or the analytic solution may be hard to compute.
 - If we start from a random point of a function and move in a descent direction we hope to decrease the objective value and reach a better solution.

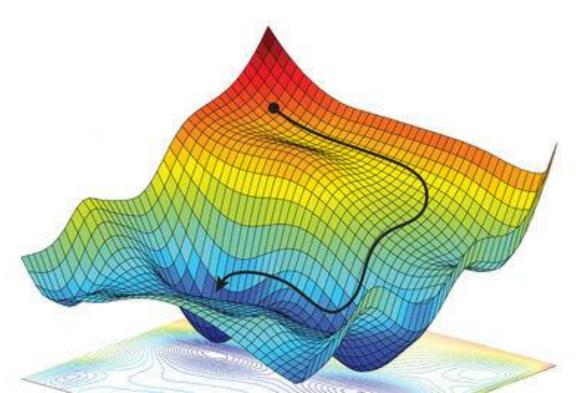
Gradient Descent: How do we do it?

• Suppose we want to minimize a function f(x) over $x \in \mathbb{R}^d$

Gradient Descent: How do we do it?

- Suppose we want to minimize a function f(x) over $x \in \mathbb{R}^d$
 - Start at $x^{\{(0)\}} \in \mathbb{R}^d$
 - For k = 0, ..., K:
 - Compute gradient: $g = \nabla f(x^{\{(k)\}})$
 - Update position: $x^{\{(k+1)\}} = x^{\{(k)\}} \eta g$
 - Here η is called the *step-size* or sometimes *learning rate*

Gradient Descent: When does it work?

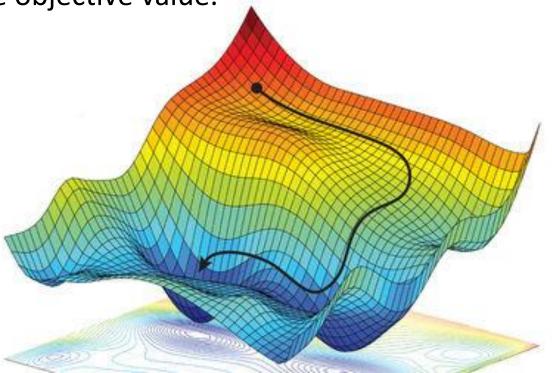


Gradient Descent: When does it work?

Functions must be "nice"

• Almost-everywhere-differentiable, preferably smooth, to ensure that gradient steps decrease the objective value.

• Convex, preferably strongly-convex, to ensure that repeated gradient steps converge to the global minimum.



Gradient Descent: Advanced

• We have been using fixed step size η . However, you can often reach the optimum faster if you decrease your step-size as you iterate.

- Is the gradient direction the best direction to go in?
 - Often, the case is no you can use second derivative information to get very fast convergence on certain functions. The simplest method is Newton's method.
 - Often requires computing/storing the Hessian ∇f , which is very expensive.

Gradient Descent: Looking ahead

• Deep learning:

 Often too slow to compute full gradient at every step, so we compute the gradient over one or a few data-points – this is called (mini-batch) stochastic gradient descent (SGD)

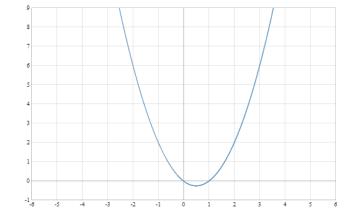
Constrained optimization:

• Sometimes the set we are minimizing over is a subset of \mathbb{R}^d . In this case can use *projected gradient descent* — take a gradient step, then project back to the subset. This is used for example in certain formulations of support vector machines, which we will cover next.

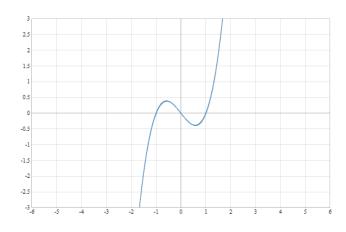
Gradient Descent: Review

• Which of the following are "nice" functions for gradient descent?

$$\bullet \ f(x) = \frac{1}{2}x^2 - x$$



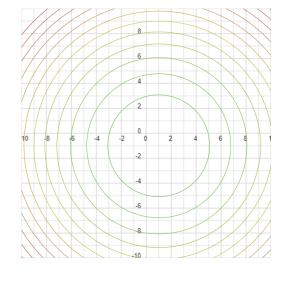
$$\bullet \ f(x) = x^3 - x$$

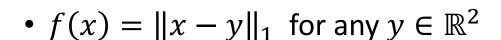


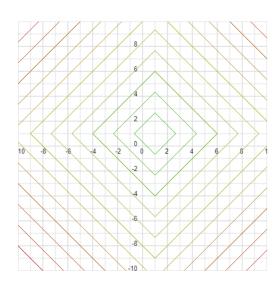
Gradient Descent: Review

• Which of the following are "nice" functions for gradient descent?

•
$$f(x) = ||x - y||_2^2$$
 for any $y \in \mathbb{R}^2$







Gradient Descent: Review

• What changes if we want to solve $\max f(x)$ over $x \in \mathbb{R}^d$?

• Under what conditions can we ensure success?

Kernels: What are they?

Kernels: What are they?

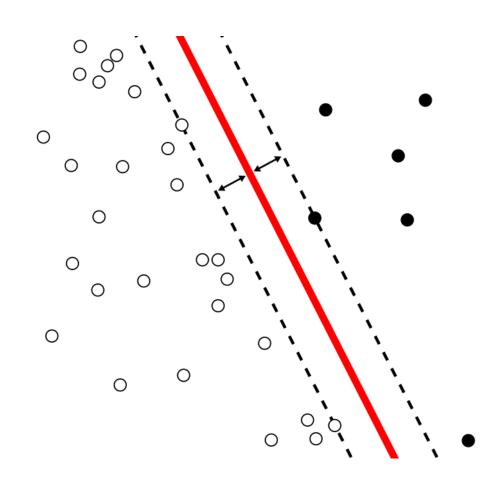
• Intuitively, a kernel function is a generalized way of measuring the similarity between two points:

• The regular Euclidean inner product computes $x \cdot y$ for $x, y \in \mathbb{R}^d$

• A kernel function K computes $K(x,y) = \phi(x) \cdot \phi(y)$ for some implicit mapping ϕ on the space to which x,y belong (note this no longer has to be Euclidean space).

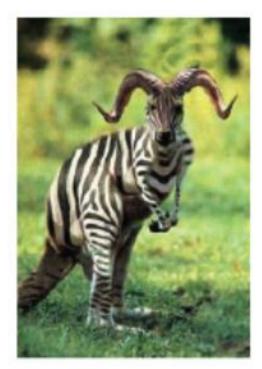
Kernels: Why are they useful?

- Simple algorithms depend on how nicely separated data is in the feature space:
 - Perceptron, support vector machines – depend on margin between classes.
 - Clustering algorithms depend on clusters being well-separated.



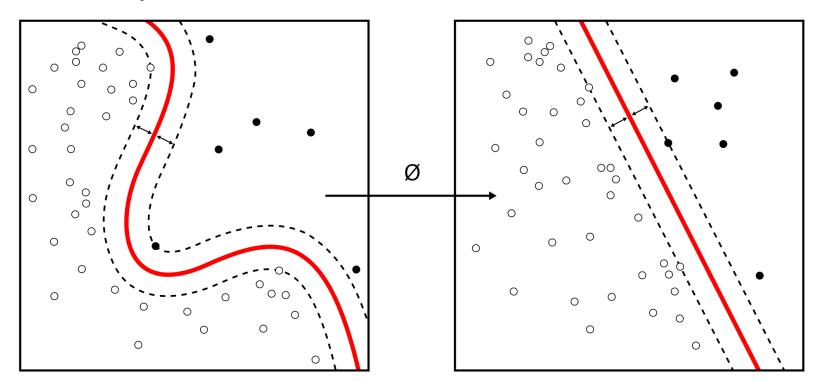
Kernels: Why are they useful?

- However, interesting data is often structured in a way such these properties don't hold in the input space.
- The input space where these properties hold might be hard to compute.



Kernels: Why are they useful?

• Kernels allow us to have algorithms that with guarantees depending on separability in a different (implicit) space – the space mapped to by the function ϕ – but without having to compute this space.



Kernels: Why can we use them?

Kernels: Why can we use them?

• Many algorithms can be *kernelized* – made to depend only on the inner product between the input points:

- Perceptron
- Support vector machines
- Certain clustering algorithms

• ...

Kernels: Perceptron

- Recall the perceptron algorithm:
 - Start with w = 0
 - For t = 0, ...
 - Get example x_t, y_t
 - Predict $w_t \cdot x_t$
 - Mistake on positive: $w_{t+1} = w_t + x_t$
 - Mistake on negative: $w_{t+1} = w_t x_t$

Kernels: Perceptron

Recall the perceptron algorithm:

- For t = 0, ...
 - Get example x_t, y_t
 - Predict $a_{i_1}K(x_{i_1}, x_t) + \dots + a_{i_{t-1}}K(x_{i_{t-1}}, x_t)$
 - Mistake on positive: set $a_{i_t} = 1$, store $x_{i_t} = x_t$
 - Mistake on negative: set $a_{i_t} = -1$, store $x_{i_t} = x_t$

Kernels: Advanced

 Kernels allow us to compute decision boundaries over any classes of objects, so long as we can define a kernel function over them:

- String kernels used in comp.
 linguistics to classify text and in comp.
 biology to classify molecules
- Gaussian kernels have an implicit mapping to infinite-dimensional space.



Image from Neil Lawrence

Kernels: Review

• How many mistakes will the kernelized perceptron make (assume the data has margin γ and radius R in the ϕ space)?

Kernels: Review

• How can we show that a function K(x, y) is a kernel?