10-315 Recitation

Review of Gradient Descent & Kernels

Misha
21 February 2019

Gradient Descent: Why do we need it?

Gradient Descent: Why do we need it?

* Many learning algorithms can be reduced to an optimization problem:

Logistic regression: I‘I/lvlgl 2. log (1 + exp (—)’i(xiTW + C)))

Linear regression: min Zi”xl-TW +C — yl'“z
w,C

Training deep neural networks

Many other methods (kernel methods, some clustering methods, ...)

Gradient Descent: Why do we need it?

* Gradient descent is a simple, efficient local search heuristic for solving
optimization problems

* Most interesting problems can’t be solved analytically, or the analytic solution
may be hard to compute.

* If we start from a random point of a function and move in a descent direction
we hope to decrease the objective value and reach a better solution.

Gradient Descent: How do we do it?

* Suppose we want to minimize a function f(x) over x € R%

Gradient Descent: How do we do it?

* Suppose we want to minimize a function f(x) over x € R%

e Start at x{(0} ¢ R4
e Fork=0,.., K:
* Compute gradient: g = Vf(X{(k)})
» Update position: x{(k+1)} = x {0} _ pgq

* Here n is called the step-size or sometimes learning rate

Gradient Descent: When does it work?

-
.
‘\‘ \“6‘0

44 #" 0’

N ‘ e 0"
¢$$‘,,;4>

Image from Alexander Amini, Daniela Rus e

Gradient Descent: When does it work?

 Functions must be “nice”

* Almost-everywhere-differentiable, preferably smooth, to
ensure that gradient steps decrease the objective value.

* Convex, preferably strongly-convex, to e
ensure that repeated gradient steps w,%’;,m,,,, LT
n O e e

converge to the global minimum. ‘m‘ "l lll[”,,,,'o,;.g.:;;:‘s:;::;.g;o,;c,‘l,,
SRR [/ IIII”I” 0y SRR
’ ‘\\\\\\\\\V"& % Og &y L I"’ " QQQ‘QQ% s ¢’¢’®0000 " 1’4
\x\%‘@z@z&%&%‘?@«5;glilIl!%,?ggé;;a;»‘:;ggtéz%t:%ﬁi:%f«?;iif?f '

WSOV GG el 0Ny Gtev=—— g

A S 2R A A T A &@@i(@aﬁl i

-t

- -~
- »j' ’_Q.‘<

Image from Alexander Amini, Daniela Rus

Gradient Descent: Advanced

* We have been using fixed step size n. However, you can often reach
the optimum faster if you decrease your step-size as you iterate.

* Is the gradient direction the best direction to go in?

e Often, the case is no — you can use second derivative information to get very
fast convergence on certain functions. The simplest method is Newton’s
method.

* Often requires computing/storing the Hessian Vf, which is very expensive.

Gradient Descent: Looking ahead

* Deep learning:

e Often too slow to compute full gradient at every step, so we compute the
gradient over one or a few data-points — this is called (mini-batch) stochastic
gradient descent (SGD)

* Constrained optimization:

 Sometimes the set we are minimizing over is a subset of R%. In this case can
use projected gradient descent — take a gradient step, then project back to the
subset. This is used for example in certain formulations of support vector
machines, which we will cover next.

Gradient Descent: Review

* Which of the following are “nice”
functions for gradient descent?

¢ f(x) =-x? —x

s fO) =% —x

Gradient Descent: Review

* Which of the following are “nice” Yz
functions for gradient descent?

* f(x) =||lx — y|l5 foranyy € R?

* f(x) = |lx = yll; foranyy € R?

Gradient Descent: Review

 What changes if we want to solve max f (x) over x € R%?

 Under what conditions can we ensure success?

Kernels: What are they?

Kernels: What are they?

* Intuitively, a kernel function is a generalized way of measuring the
similarity between two points:

* The regular Euclidean inner product computes x - y for x,y € R%

* A kernel function K computes K(x,y) = ¢(x) - ¢(y) for some implicit
mapping ¢ on the space to which x, y belong (note this no longer has to be
Euclidean space).

Kernels: Why are they useful?

e Simple algorithms depend on
how nicely separated data is in
the feature space:

e Perceptron, support vector
machines — depend on margin
between classes.

* Clustering algorithms — depend
on clusters being well-separated.

Kernels: Why are they useful?

 However, interesting data is often structured in a way such these
properties don’t hold in the input space.

* The input space where these properties hold might be hard to compute.

Image from lJia Deng

Kernels: Why are they useful?

* Kernels allow us to have algorithms that with guarantees depending
on separability in a different (implicit) space — the space mapped to
by the function ¢ — but without having to compute this space.

Kernels: Why can we use them?

Kernels: Why can we use them?

* Many algorithms can be kernelized — made to depend only on the
inner product between the input points:

* Perceptron
e Support vector machines

* Certain clustering algorithms

Kernels: Perceptron

* Recall the perceptron algorithm:

e Start withw =0

e Fort =0,...

Get example x¢, y¢

Predict w; - x;

Mistake on positive: w1 = W + X

Mistake on negative: wy 1 = Wy — Xx¢

Kernels: Perceptron

* Recall the perceptron algorithm:
e Fort =0,...
* Get example x¢, V¢
* Predict ailK(xil,xt) + -+ ait_lK(xit_l,xt)
* Mistake on positive: set a;, = 1, store x;, = x;

* Mistake on negative: set a;, = —1, store x;, = x;

Kernels: Advanced

e Kernels allow us to compute
decision boundaries over any
classes of objects, so long as we can
define a kernel function over them:

 String kernels — used in comp.
linguistics to classify text and in comp.
biology to classify molecules

* Gaussian kernels have an implicit

mapping to infinite-dimensional space.

0.5 + + +

05+ + rriF+t

Image from Neil Lawrence

0.3

Kernels: Review

* How many mistakes will the kernelized perceptron make (assume the
data has margin y and radius R in the ¢ space)?

Kernels: Review

* How can we show that a function K (x, y) is a kernel?

