
10-315 Recitation

Review of Gradient Descent & Kernels

Misha

21 February 2019



Gradient Descent: Why do we need it?



Gradient Descent: Why do we need it?

• Many learning algorithms can be reduced to an optimization problem:

• Logistic regression: min
𝑤,𝑐

σ𝑖 log 1 + exp −𝑦𝑖 𝑥𝑖
𝑇𝑤 + 𝑐

• Linear regression: min
𝑤,𝑐

σ𝑖 𝑥𝑖
𝑇𝑤 + 𝑐 − 𝑦𝑖 2

2

• Training deep neural networks

• Many other methods (kernel methods, some clustering methods, …)



Gradient Descent: Why do we need it?

• Gradient descent is a simple, efficient local search heuristic for solving 
optimization problems

• Most interesting problems can’t be solved analytically, or the analytic solution 
may be hard to compute.

• If we start from a random point of a function and move in a descent direction 
we hope to decrease the objective value and reach a better solution.



Gradient Descent: How do we do it?

• Suppose we want to minimize a function 𝑓(𝑥) over 𝑥 ∈ ℝ𝑑



Gradient Descent: How do we do it?

• Suppose we want to minimize a function 𝑓(𝑥) over 𝑥 ∈ ℝ𝑑

• Start at 𝑥{ 0 } ∈ ℝ𝑑

• For 𝑘 = 0,… ,𝐾:

• Compute gradient: 𝑔 = ∇f(x{ 𝑘 })

• Update position: 𝑥{ 𝑘+1 } = 𝑥{ 𝑘 } − 𝜂𝑔

• Here 𝜂 is called the step-size or sometimes learning rate



Gradient Descent: When does it work?

Image from Alexander Amini, Daniela Rus



Gradient Descent: When does it work?

• Functions must be “nice”

• Almost-everywhere-differentiable, preferably smooth, to 

ensure that gradient steps decrease the objective value.

• Convex, preferably strongly-convex, to 

ensure that repeated gradient steps 

converge to the global minimum.

Image from Alexander Amini, Daniela Rus



Gradient Descent: Advanced

• We have been using fixed step size 𝜂. However, you can often reach 
the optimum faster if you decrease your step-size as you iterate. 

• Is the gradient direction the best direction to go in? 

• Often, the case is no – you can use second derivative information to get very 
fast convergence on certain functions. The simplest method is Newton’s 
method.

• Often requires computing/storing the Hessian ∇𝑓, which is very expensive. 



Gradient Descent: Looking ahead

• Deep learning:

• Often too slow to compute full gradient at every step, so we compute the 
gradient over one or a few data-points – this is called (mini-batch) stochastic 
gradient descent (SGD)

• Constrained optimization:

• Sometimes the set we are minimizing over is a subset of ℝ𝑑. In this case can 
use projected gradient descent – take a gradient step, then project back to the 
subset. This is used for example in certain formulations of support vector 
machines, which we will cover next.



Gradient Descent: Review

• Which of the following are “nice” 
functions for gradient descent?

• 𝑓 𝑥 =
1

2
𝑥2 − 𝑥

• 𝑓 𝑥 = 𝑥3 − 𝑥



Gradient Descent: Review

• Which of the following are “nice” 
functions for gradient descent?

• 𝑓 𝑥 = 𝑥 − 𝑦 2
2 for any 𝑦 ∈ ℝ2

• 𝑓 𝑥 = 𝑥 − 𝑦 1 for any 𝑦 ∈ ℝ2



Gradient Descent: Review

• What changes if we want to solve max𝑓(𝑥) over 𝑥 ∈ ℝ𝑑?

• Under what conditions can we ensure success?



Kernels: What are they?



Kernels: What are they?

• Intuitively, a kernel function is a generalized way of measuring the 
similarity between two points:

• The regular Euclidean inner product computes 𝑥 ⋅ 𝑦 for 𝑥, 𝑦 ∈ ℝ𝑑

• A kernel function 𝐾 computes 𝐾 𝑥, 𝑦 = 𝜙 𝑥 ⋅ 𝜙(𝑦) for some implicit 
mapping 𝜙 on the space to which 𝑥, 𝑦 belong (note this no longer has to be 
Euclidean space).



Kernels: Why are they useful?

• Simple algorithms depend on 
how nicely separated data is in 
the feature space:

• Perceptron, support vector 
machines – depend on margin 
between classes.

• Clustering algorithms – depend 
on clusters being well-separated.



Kernels: Why are they useful?

• However, interesting data is often structured in a way such these 
properties don’t hold in the input space.

• The input space where these properties hold might be hard to compute.

Image from Jia Deng



Kernels: Why are they useful?

• Kernels allow us to have algorithms that with guarantees depending 
on separability in a different (implicit) space – the space mapped to 
by the function 𝜙 – but without having to compute this space.



Kernels: Why can we use them?



Kernels: Why can we use them?

• Many algorithms can be kernelized – made to depend only on the 
inner product between the input points:

• Perceptron

• Support vector machines

• Certain clustering algorithms

• …



Kernels: Perceptron

• Recall the perceptron algorithm:

• Start with 𝑤 = 0

• For 𝑡 = 0,…

• Get example 𝑥𝑡, 𝑦𝑡

• Predict 𝑤𝑡 ⋅ 𝑥𝑡

• Mistake on positive: 𝑤𝑡+1 = 𝑤𝑡 + 𝑥𝑡

• Mistake on negative: 𝑤𝑡+1 = 𝑤𝑡 − 𝑥𝑡



Kernels: Perceptron

• Recall the perceptron algorithm:

• For 𝑡 = 0,…

• Get example 𝑥𝑡, 𝑦𝑡

• Predict 𝑎𝑖1𝐾 𝑥𝑖1 , 𝑥𝑡 +⋯+ 𝑎𝑖𝑡−1𝐾 𝑥𝑖𝑡−1 , 𝑥𝑡

• Mistake on positive: set 𝑎𝑖𝑡 = 1, store 𝑥𝑖𝑡 = 𝑥𝑡

• Mistake on negative: set 𝑎𝑖𝑡 = −1, store 𝑥𝑖𝑡 = 𝑥𝑡



Kernels: Advanced

• Kernels allow us to compute 
decision boundaries over any 
classes of objects, so long as we can 
define a kernel function over them:

• String kernels – used in comp. 
linguistics to classify text and in comp. 
biology to classify molecules

• Gaussian kernels have an implicit 
mapping to infinite-dimensional space. Image from Neil Lawrence



Kernels: Review

• How many mistakes will the kernelized perceptron make (assume the 
data has margin 𝛾 and radius 𝑅 in the 𝜙 space)?



Kernels: Review

• How can we show that a function 𝐾(𝑥, 𝑦) is a kernel?


