Estimating Probabilities from Data

MLE and MAP

Maria-Florina Balcan

01/28/2019
What does this have to do with function approximation?

Instead of learning $F: X \to Y$, learn $P(Y|X)$.

Can design algorithms that learn functions with uncertain outcomes (e.g., predicting tomorrow’s stock price) and that incorporate prior knowledge to guide learning (e.g., a bias that tomorrow’s stock price is likely to be similar to today’s price).
The Joint Distribution

- The key to building probabilistic models is to define a set of random variables, and to consider the joint probability distribution over them.

Example: Boolean variables A, B, C

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.30</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.05</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.10</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.05</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.10</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.25</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Recipe for making a joint distribution of M variables:

1. Make a truth table listing all combinations of values (M Boolean variables → 2^M rows).
2. For each combination of values, say how probable it is.
3. By the axioms of probability, these probabilities must sum to 1.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.30</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.05</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.10</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.05</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.10</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.25</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Using the Joint Distribution

Once we have the Joint Distribution, we can ask for the probability of any logical expression involving these variables.

<table>
<thead>
<tr>
<th>College Degree</th>
<th>Hours worked</th>
<th>Wealth</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>40.5-</td>
<td>Medium</td>
<td>0.253122</td>
</tr>
<tr>
<td>No</td>
<td>40.5-</td>
<td>Rich</td>
<td>0.0245895</td>
</tr>
<tr>
<td>No</td>
<td>40.5+</td>
<td>Medium</td>
<td>0.0421768</td>
</tr>
<tr>
<td>No</td>
<td>40.5+</td>
<td>Rich</td>
<td>0.0116293</td>
</tr>
<tr>
<td>Yes</td>
<td>40.5-</td>
<td>Medium</td>
<td>0.331313</td>
</tr>
<tr>
<td>Yes</td>
<td>40.5-</td>
<td>Rich</td>
<td>0.0971295</td>
</tr>
<tr>
<td>Yes</td>
<td>40.5+</td>
<td>Medium</td>
<td>0.134106</td>
</tr>
<tr>
<td>Yes</td>
<td>40.5+</td>
<td>Rich</td>
<td>0.105933</td>
</tr>
</tbody>
</table>

$$P(E) = \sum_{\text{rows matching } E} P(\text{row})$$
Using the Joint Distribution

Once we have the Joint Distribution, we can ask for the probability of any logical expression involving these variables.

\[P(\text{College & Medium}) = 0.4654 \]

<table>
<thead>
<tr>
<th>College Degree</th>
<th>Hours worked</th>
<th>Wealth</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>40.5-</td>
<td>Medium</td>
<td>0.253122</td>
</tr>
<tr>
<td>No</td>
<td>40.5-</td>
<td>Rich</td>
<td>0.0245895</td>
</tr>
<tr>
<td>No</td>
<td>40.5+</td>
<td>Medium</td>
<td>0.0421768</td>
</tr>
<tr>
<td>No</td>
<td>40.5+</td>
<td>Rich</td>
<td>0.0116293</td>
</tr>
<tr>
<td>Yes</td>
<td>40.5-</td>
<td>Medium</td>
<td>0.331313</td>
</tr>
<tr>
<td>Yes</td>
<td>40.5-</td>
<td>Rich</td>
<td>0.0971295</td>
</tr>
<tr>
<td>Yes</td>
<td>40.5+</td>
<td>Medium</td>
<td>0.134106</td>
</tr>
<tr>
<td>Yes</td>
<td>40.5+</td>
<td>Rich</td>
<td>0.105933</td>
</tr>
</tbody>
</table>

\[P(E) = \sum_{\text{rows matching } E} P(\text{row}) \]
Using the Joint Distribution

Once we have the Joint Distribution, we can ask for the probability of any logical expression involving these variables.

\[
P(\text{Medium}) = 0.7604
\]

<table>
<thead>
<tr>
<th>College Degree</th>
<th>Hours worked</th>
<th>Wealth</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>40.5-</td>
<td>Medium</td>
<td>0.253122</td>
</tr>
<tr>
<td>No</td>
<td>40.5-</td>
<td>Rich</td>
<td>0.0245895</td>
</tr>
<tr>
<td>No</td>
<td>40.5+</td>
<td>Medium</td>
<td>0.0421768</td>
</tr>
<tr>
<td>No</td>
<td>40.5+</td>
<td>Rich</td>
<td>0.0116293</td>
</tr>
<tr>
<td>Yes</td>
<td>40.5-</td>
<td>Medium</td>
<td>0.331313</td>
</tr>
<tr>
<td>Yes</td>
<td>40.5-</td>
<td>Rich</td>
<td>0.0971295</td>
</tr>
<tr>
<td>Yes</td>
<td>40.5+</td>
<td>Medium</td>
<td>0.134106</td>
</tr>
<tr>
<td>Yes</td>
<td>40.5+</td>
<td>Rich</td>
<td>0.105933</td>
</tr>
</tbody>
</table>

\[
P(E) = \sum_{\text{rows matching } E} P(\text{row})
\]
Inference with the Joint Distribution

Once we have the Joint Distribution, can ask for the probability of any logical expression involving these variables.

\[
P(\text{College} | \text{Medium}) = \frac{0.4654}{0.7604} = 0.612
\]

\[
P(E_1 \mid E_2) = \frac{P(E_1 \land E_2)}{P(E_2)} = \frac{\sum_{\text{rows matching } E_1 \text{ and } E_2} \text{P(row)}}{\sum_{\text{rows matching } E_2} \text{P(row)}}
\]
Learning and the Joint Distribution

Suppose we want to learn the function $f: (C, H) \rightarrow W$

Equivalently, $P(W | C, H)$

One solution: learn joint distribution from data, calculate $P(W | C, H)$

<table>
<thead>
<tr>
<th>College Degree</th>
<th>Hours worked</th>
<th>Wealth</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>40.5-</td>
<td>Medium</td>
<td>0.253122</td>
</tr>
<tr>
<td>No</td>
<td>40.5-</td>
<td>Rich</td>
<td>0.0245895</td>
</tr>
<tr>
<td>No</td>
<td>40.5+</td>
<td>Medium</td>
<td>0.0421768</td>
</tr>
<tr>
<td>No</td>
<td>40.5+</td>
<td>Rich</td>
<td>0.0116293</td>
</tr>
<tr>
<td>Yes</td>
<td>40.5-</td>
<td>Medium</td>
<td>0.331313</td>
</tr>
<tr>
<td>Yes</td>
<td>40.5-</td>
<td>Rich</td>
<td>0.0971295</td>
</tr>
<tr>
<td>Yes</td>
<td>40.5+</td>
<td>Medium</td>
<td>0.134106</td>
</tr>
<tr>
<td>Yes</td>
<td>40.5+</td>
<td>Rich</td>
<td>0.105933</td>
</tr>
</tbody>
</table>

e.g., $P(W = \text{rich} | C = \text{no}, H = \text{40.5 }-) = \frac{0.0245895}{0.0245895+0.253122}$
Idea: learn classifiers by learning $P(Y \mid X)$

Consider $Y = \text{Wealth}$

$X = \langle \text{CollegeDegree}, \text{HoursWorked} \rangle$

<table>
<thead>
<tr>
<th>College Degree</th>
<th>Hours worked</th>
<th>Wealth</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>40.5-</td>
<td>Medium</td>
<td>0.253122</td>
</tr>
<tr>
<td>No</td>
<td>40.5-</td>
<td>Rich</td>
<td>0.0245895</td>
</tr>
<tr>
<td>No</td>
<td>40.5+</td>
<td>Medium</td>
<td>0.0421768</td>
</tr>
<tr>
<td>No</td>
<td>40.5+</td>
<td>Rich</td>
<td>0.0116293</td>
</tr>
<tr>
<td>Yes</td>
<td>40.5-</td>
<td>Medium</td>
<td>0.331313</td>
</tr>
<tr>
<td>Yes</td>
<td>40.5-</td>
<td>Rich</td>
<td>0.0971295</td>
</tr>
<tr>
<td>Yes</td>
<td>40.5+</td>
<td>Medium</td>
<td>0.134106</td>
</tr>
<tr>
<td>Yes</td>
<td>40.5+</td>
<td>Rich</td>
<td>0.105933</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>College Degree</th>
<th>Hours worked</th>
<th>$P(\text{rich}\mid C,HW)$</th>
<th>$P(\text{medium}\mid C,HW)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>< 40.5</td>
<td>.09</td>
<td>.91</td>
</tr>
<tr>
<td>No</td>
<td>> 40.5</td>
<td>.21</td>
<td>.79</td>
</tr>
<tr>
<td>Yes</td>
<td>< 40.5</td>
<td>.23</td>
<td>.77</td>
</tr>
<tr>
<td>Yes</td>
<td>> 40.5</td>
<td>.38</td>
<td>.62</td>
</tr>
</tbody>
</table>
Estimating Probabilities from Data

MLE and MAP
Estimating the Bias of a Coin

Problem: Assume we can flip a coin with bias θ several times. Estimate the probability that it turns out heads when we flip it?

Each flip yields a Boolean value for X, $X \sim \text{Bernoulli}(\theta)$

Bernoulli Random Variable $\quad P(X = 1) = \theta; \quad P(X = 0) = 1 - \theta$

We flip it repeatedly, observing the outcome:

- It turns Heads (i.e. $X=1$) α_H times
- It turns Tails (i.e. $X=0$) α_T times

How can we estimate the probability of heads $\theta = P(X = 1)$?
Estimating the Bias of a Coin

Problem: Assume we can flip a coin with bias θ several times. How can we estimate the probability that it turns out heads when we flip it?

We flip it repeatedly, observing the outcome:

- It turns Heads (i.e. $X=1$) α_H times
- It turns Tails (i.e. $X=0$) α_T times

How can we estimate the probability of heads $\theta = P(X = 1)$?

Two Cases:

- Case 1: 100 flips. E.g., 51 Heads ($X=1$) and 49 tails ($X=0$)
- Case 2: 3 flips. E.g., 2 Heads ($X=1$) and 1 tails ($X=0$)
Principles of Estimating Probabilities

Principle 1: Maximum Likelihood Estimation

Choose parameter $\hat{\theta}$ that maximizes likelihood of observed data $P(\text{data}|\hat{\theta})$

$$\hat{\theta}_{\text{MLE}} = \frac{\alpha_H}{\alpha_T + \alpha_H}$$

E.g., 51 Heads ($X=1$) and 49 tails ($X=0$)

Principle 2: Maximum Aposteriori Probability

Choose parameter $\hat{\theta}$ that maximizes likelihood the posterior prob $P(\hat{\theta}|\text{data})$

$$\hat{\theta}_{\text{MAP}} = \frac{\alpha_H + \#\text{halucinated}_Hs}{(\alpha_T + \#\text{halucinated}_Ts) + (\alpha_H + \#\text{halucinated}_Hs)}$$

E.g., 2 Heads ($X=1$) and 1 tails ($X=0$)
Principles of Estimating Probabilities

Principle 1: Maximum Likelihood Estimation

Choose parameter $\hat{\theta}$ that maximizes likelihood of observed data $P(\text{data}|\hat{\theta})$

$$\hat{\theta}_{\text{MLE}} = \frac{\alpha_H}{\alpha_T + \alpha_H}$$

E.g., 51 Heads ($X=1$) and 49 tails ($X=0$)

Principle 2: Maximum Aposteriori Probability

Choose parameter $\hat{\theta}$ that maximizes likelihood the posterior prob $P(\hat{\theta}|\text{data})$

$$\hat{\theta}_{\text{MAP}} = \frac{\alpha_H + \#\text{halucinated_Hs}}{(\alpha_T + \#\text{halucinated_Ts}) + (\alpha_H + \#\text{halucinated_Hs})}$$

E.g., 2 Heads ($X=1$) and 1 tails ($X=0$)
Maximum Likelihood Estimation for Bernoulli Variables

\[P(X = 1) = \theta \quad \text{P}(X = 0) = 1 - \theta \]

Data D: \{1, 0, 0, 1, \ldots \}

Flips produce data D with \(\alpha_H \) heads (X=1) and \(\alpha_T \) tails (X=0)

Flips are i.i.d.:
- independent events
- identically distributed according to the Bernoulli distribution

MLE estimate: choose the value of \(\theta \) that makes D most probable.

Intuition: we are more likely to observe data D if we are in a world where the appearance of this data is highly probable. Therefore, we should estimate \(\theta \) by assigning it whatever value maximizes the probability of having observed D.
Maximum Likelihood Estimation for Bernoulli Variables

\[P(X = 1) = \theta \quad P(X = 0) = 1 - \theta \]

Data \(D: \{1, 0, 0, 1, \ldots \} \)

Flips produce data \(D \) with \(\alpha_H \) heads \((X=1) \) and \(\alpha_T \) tails \((X=0) \)

Flips are i.i.d.:
- independent events
- identically distributed according to the Bernoulli distribution

Therefore \(P(D|\theta) = \theta(1 - \theta)(1 - \theta)\theta \ldots = \theta^{\alpha_H}(1 - \theta)^{\alpha_T} \)

\[\hat{\theta}_{\text{MLE}} = \arg\max_{\theta} P(D|\theta) \]

\[\hat{\theta}_{\text{MLE}} = \arg\max_{\theta} \ln P(D|\theta) \]
Maximum Likelihood Estimation for Bernoulli Variables

\[P(X = 1) = \theta \quad P(X = 0) = 1 - \theta \]

Data \(D \): \{1, 0, 0, 1, \ldots \} \quad \alpha_H \text{ heads and } \alpha_T \text{ tails}

\[\hat{\theta}_{\text{MLE}} = \arg\max_\theta \ln P(D|\theta) \]
\[= \arg\max_\theta \ln[\theta^{\alpha_H} (1 - \theta)^{\alpha_T}] \]

Set derivative to 0.
\[\frac{d}{d \theta} \ln P(D|\theta) = 0 \]
\[\frac{d}{d \theta} \ln P(D|\theta) = \frac{d}{d \theta} [\alpha_H \ln \theta + \alpha_T \ln(1 - \theta)] = \frac{\alpha_H}{\theta} - \frac{\alpha_T}{1 - \theta} \]
\[\frac{d}{d \theta} \ln \theta = \frac{1}{\theta} \]

Therefore
\[\hat{\theta}_{\text{MLE}} = \frac{\alpha_H}{\alpha_T + \alpha_H} \]
Summary: MLE for Bernoulli Variables

Problem: Assume we can flip a coin with bias \(\theta \) several times. Estimate the probability that it turns out heads when we flip it?

Each flip yields a Boolean value for \(X, X \sim \text{Bernoulli}(\theta) \)

Bernoulli Random Variable \(\quad P(X = 1) = \theta; \quad P(X = 0) = 1 - \theta \)

\[
P(X) = \theta^X (1 - \theta)^{1-X}
\]

Data \(D \) of independently, identically distributed (i.i.d) flips produces \(\alpha_H \) heads (\(X=1 \)) and \(\alpha_T \) tails (\(X=0 \))

Therefore \(P(D|\theta) = (\alpha_1, \alpha_0|\theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T} \)

\[
\hat{\theta}_{\text{MLE}} = \text{argmax}_\theta P(D|\theta) = \frac{\alpha_H}{\alpha_T + \alpha_H}
\]
High Probability Bound, Sample Complexity

Problem: Assume we can flip a coin with bias θ several times. Estimate the probability that it turns out heads when we flip it?

Data $D: \{1, 0, 0, 1, \ldots\}$ \[\alpha_H \text{ heads and } \alpha_T \text{ tails}; \ n = \alpha_0 + \alpha_1 \]

$\hat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_T + \alpha_H}$

Hoeffding Inequality:

For any $\epsilon > 0$, \[P(|\hat{\theta}_{MLE} - \theta| \geq \epsilon) \leq 2 e^{-2n\epsilon^2} \]

High Probability Bound: Want to know the coin parameter θ within $\epsilon > 0$ with probability at least $1 - \delta$. How many flips?

Set \[P(|\hat{\theta}_{MLE} - \theta| \geq \epsilon) \leq 2 e^{-2n\epsilon^2} \leq \delta \]

Solve for n: \[n \geq \frac{\ln \delta}{2 \epsilon^2} \]
Principles of Estimating Probabilities

Principle 1: Maximum Likelihood Estimation

Choose parameter $\hat{\theta}$ that maximizes likelihood of observed data $P(\text{data}|\hat{\theta})$

$$\hat{\theta}_{\text{MLE}} = \frac{\alpha_H}{\alpha_T + \alpha_H}$$

Principle 2: Maximum Aposteriori Probability

Choose parameter $\hat{\theta}$ that maximizes likelihood the posterior prob $P(\hat{\theta}|\text{data})$

$$\hat{\theta}_{\text{MAP}} = \frac{\alpha_H + \#\text{halucinated}_\text{Hs}}{(\alpha_T + \#\text{halucinated}_\text{Ts}) + (\alpha_H + \#\text{halucinated}_\text{Hs})}$$
What if we have prior knowledge?

Prior Knowledge: E.g., I know that the coin is “close” to 50-50.

MAP estimate: we should choose the value of Theta that is most probable, given the observed data D and our prior assumptions summarized by $P(\theta)$.
Bayesian Learning

Use Bayes Rule:

\[
P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}
\]

Equivalently:

\[
P(\theta|D) \propto P(D|\theta) \cdot P(\theta)
\]

posterior likelihood prior

MAP estimate: choose parameter \(\hat{\theta} \) that maximizes the posterior prob \(P(\hat{\theta}|\text{data}) \), i.e. it chooses the value that is most probable given observed data and prior belief

Principles of Estimating Probabilities

Principle 1: Maximum Likelihood Estimation (MLE)

Choose parameter $\hat{\theta}$ that maximizes likelihood of observed data $P(D|\hat{\theta})$

$$\hat{\theta}_{MLE} = \arg\max_{\theta} P(D|\theta)$$

Principle 2: Maximum Aposteriori Probability (MAP)

Choose parameter $\hat{\theta}$ that maximizes likelihood the posterior prob $P(\hat{\theta}|D)$, i.e. it chooses the value that is most probable given observed data and prior belief

$$\hat{\theta}_{MAP} = \arg\max_{\theta} P(\theta|D) = \arg\max_{\theta} P(D|\theta)P(\theta)$$

As $n \to \infty$, prior is forgotten

For small sample sizes, prior is important
Which Prior Distribution?

- Prior represents the experts knowledge.
- Simple posterior form (engineer’s approach).

Uninformative Prior

Conjugate Prior
- Closed-form expression of posterior.
 - $P(\theta)$ and $P(\theta|D)$ have **same** form.
Beta Prior Distribution

Assume $\theta \sim \text{Beta}(\beta_H, \beta_T)$ i.e., $P(\theta) = \frac{\theta^\beta_H (1-\theta)^\beta_T}{B(\beta_H, \beta_T)}$

More concentrated as values of β_H, β_T increase
MAP Estimate for Bernoulli Variables with Beta Prior Distribution

Assume $\theta \sim \text{Beta}(\beta_H, \beta_T)$ i.e., $P(\theta) = \frac{\theta^{\beta_H-1}(1-\theta)^{\beta_T-1}}{B(\beta_H, \beta_T)}$

Likelihood function $P(D|\theta) = \theta^{\alpha_H}(1-\theta)^{\alpha_T}$

Posterior: $P(\theta|D) \propto P(D|\theta)P(\theta) = \theta^{\alpha_H+\beta_H-1}(1-\theta)^{\alpha_T+\beta_T-1}$

Interpretation: like MLE, but hallucinating $\beta_H - 1$ additional heads & $\beta_T - 1$ additional tails

$$\hat{\theta}_{\text{MAP}} = \frac{\alpha_H + \beta_H - 1}{(\alpha_T+\beta_T - 1) + (\alpha_H+\beta_H - 1)}$$

Note: as we get more sample effect of prior washed out.
Conjugate Priors

Likelihood function: $P(D|\theta)$

Prior: $P(\theta)$

Posterior: $P(\theta|D) \propto P(D|\theta)P(\theta)$

Conjugate Prior: $P(\theta)$ is the conjugate prior for the likelihood function $P(D|\theta)$ if the forms of $P(\theta)$ and $P(\theta|D)$ are the same.
MAP Estimate for Bernoulli Variables with Beta Prior Distribution

Likelihood function \(P(D|\theta) = \theta^{\alpha_H}(1 - \theta)^{\alpha_T} \) (Binomial)

If prior is beta distribution, \(\theta \sim \text{Beta}(\beta_H, \beta_T) \) i.e., \(P(\theta) = \frac{\theta^{\beta_H-1}(1-\theta)^{\beta_T-1}}{B(\beta_H, \beta_T)} \)

then posterior: \(P(\theta|D) \propto P(D|\theta)P(\theta) \propto \theta^{\alpha_H+\beta_H-1}(1 - \theta)^{\alpha_T+\beta_T-1} \sim \text{Beta}(\alpha_H + \beta_H, \alpha_T + \beta_T) \)

Therefore

\[\hat{\theta}_{\text{MAP}} = \frac{\alpha_H + \beta_H}{(\alpha_T + \beta_T - 1) + (\alpha_H + \beta_H - 1)} \]

Mode of Beta distribution
MAP Estimate for Dice Rolling with Dirichlet Prior Distribution

Dice Roll Problem: 6 outcomes instead of 2.

Likelihood function is \(\sim \) Multinomial(\(\theta_1, \ldots, \theta_k \)) \(P(D|\theta) = \theta_1^{\alpha_1} \theta_2^{\alpha_2} \cdots \theta_k^{\alpha_k} \)

If prior is Dirichlet distribution, \(\theta \sim \text{Dirichlet}(\beta_1, \beta_2, \ldots, \beta_k) \)

then posterior:

\[
P(\theta|D) \propto P(D|\theta)P(\theta) \propto \text{Dirichlet}(\alpha_1 + \beta_1, \ldots, \alpha_k + \beta_k)
\]

For Multinomial, conjugate prior is Dirichlet.
Principles of Estimating Probabilities

Principle 1: Maximum Likelihood Estimation (MLE)
Choose parameter $\hat{\theta}$ that maximizes likelihood of observed data $P(D|\hat{\theta})$

$$\hat{\theta}_{\text{MLE}} = \arg\max_\theta P(D|\theta)$$

Principle 2: Maximum Aafteriori Probability (MAP)
Choose parameter $\hat{\theta}$ that maximizes likelihood the posterior prob $P(\hat{\theta}|D)$, i.e. it chooses the value that is most probable given observed data and prior belief

$$\hat{\theta}_{\text{MAP}} = \arg\max_\theta P(\theta|D) = \arg\max_\theta P(D|\theta)P(\theta)$$

As $n \to \infty$, prior is forgotten

For small sample sizes, prior is important
Bayesians vs. Frequentists

You are no good when sample is small

You give a different answer for different priors
What About Continuous Random Variables?

Gaussian Random Variable

\(X \sim N(\mu, \sigma) \), then

\[
p(x|\mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{\sigma^2}}
\]

\(\mu = 0 \)

\(\sigma^2 \)
What About Continuous Random Variables?

Observed data D:

Parameters: μ - mean, σ^2 variance

Sleep hours are i.i.d.:

- independent events
- identically distributed according to Gaussian distribution

Goal: estimate μ, σ
MLE for Mean of Gaussian

Observed data D:

```
3 4 5 6 7 8 9  
Sleep hrs
```

Probability of i.i.d. samples $D = \{x_1, \ldots, x_N\}$

$$P(D|\mu, \sigma) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^N \prod_{i=1}^{N} e^{-\frac{(x_i-\mu)^2}{\sigma^2}}$$

Log-likelihood of data

$$\ln P(D|\mu, \sigma) = \ln \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^N \prod_{i=1}^{N} e^{-\frac{(x_i-\mu)^2}{\sigma^2}}$$

$$\ln P(D|\mu, \sigma) = -N \ln(\sigma\sqrt{2\pi}) - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{\sigma^2}$$
MLE for Mean of Gaussian

Probability of i.i.d. samples $D = \{x_1, \ldots, x_N\}$

$$P(D|\mu, \sigma) = \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{i=1,\ldots,N} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$

$$\ln P(D|\mu, \sigma) = -N \ln(\sigma \sqrt{2\pi}) - \sum_{\{i=1,\ldots,N\}} \frac{(x_i - \mu)^2}{2\sigma^2}$$

$$\frac{d}{d\mu} \ln P(D|\mu, \sigma) = - \sum_{\{i=1,\ldots,N\}} \frac{d}{d\mu} \frac{(x_i - \mu)^2}{2\sigma^2} = 2 \sum_{\{i=1,\ldots,N\}} \frac{(x_i - \mu)}{2\sigma^2}$$

Set $\frac{d}{d\mu} \ln P(D|\mu, \sigma) = 0$

Therefore $\sum_{\{i=1,\ldots,N\}}(x_i - \mu) = 0$

$\hat{\mu}_{MLE} = \frac{\sum_i x_i}{N}$
MLE for Variance of Gaussian

Probability of i.i.d. samples \(D = \{x_1, \ldots, x_N\} \):

\[
P(D|\mu, \sigma) = \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{i=1}^{N} e^{-\frac{(x_i-\mu)^2}{2\sigma^2}}
\]

\[
\ln P(D|\mu, \sigma) = -N \ln(\sigma \sqrt{2\pi}) - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2}
\]

\[
\frac{d}{d\sigma} \ln P(D|\mu, \sigma) = -N \frac{d}{d\sigma} \ln(\sigma \sqrt{2\pi}) - \sum_{i=1}^{N} \frac{d}{d\sigma} \frac{(x_i - \mu)^2}{2\sigma^2} = -\frac{N}{\sigma} + 2 \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^3}
\]

Set \(\frac{d}{d\mu} \ln P(D|\mu, \sigma) = 0 \):

Therefore

\[
\hat{\sigma}_{\text{MLE}} = \frac{\sum_{i=1}^{N} (x_i - \hat{\mu})^2}{N}
\]
Learning Gaussian Parameters

MLE:
\[\hat{\sigma}_{\text{MLE}} = \frac{\sum_i (x_i - \mu)^2}{N} \]
\[\hat{\mu}_{\text{MLE}} = \frac{\sum_i x_i}{N} \]

Bayesian learning/estimation is also possible.

Conjugate priors:
- Mean: Gaussian prior
- Variance: Wishart distribution
What You Should Know

• MLE, MAP
• Coins, Dice, Gaussian