Logistic Regression

Maria-Florina Balcan
02/08/2019
Naïve Bayes Recap

• Classifier: \(f^*(x) = \arg \max_y P(y|x) \)

• NB Assumption: \(P(X_1 \ldots X_d|Y) = \prod_{i=1}^{d} P(X_i|Y) \)

• NB Classifier: \(f_{NB}(x) = \arg \max_y \prod_{i=1}^{d} P(x_i|y)P(y) \)

• Assume parametric form for \(P(X_i|Y) \) and \(P(Y) \)
 – Estimate parameters using MLE/MAP and plug in
Generative vs. Discriminative Classifiers

Generative classifiers (e.g. Naïve Bayes)

• Assume some functional form for $P(X,Y)$ (or $P(X|Y)$ and $P(Y)$)
• Estimate parameters of $P(X|Y)$, $P(Y)$ directly from training data
• Use Bayes rule to calculate $P(Y|X)$

Why not learn $P(Y|X)$ directly? Or better yet, why not learn the decision boundary directly?

Discriminative classifiers (e.g. Logistic Regression)

• Assume some functional form for $P(Y|X)$ or for the decision boundary
• Estimate parameters of $P(Y|X)$ directly from training data
Logistic Regression

Assumes the following functional form for $P(Y|X)$:

$$P(Y = 1|X) = \frac{1}{1 + \exp(-(w_0 + \sum_i w_i X_i))} = \frac{\exp(w_0 + \sum_i w_i X_i)}{\exp(w_0 + \sum_i w_i X_i) + 1}$$

Logistic function applied to a linear function of the data

Logistic function (or Sigmoid):

$$\frac{1}{1 + \exp(-z)}$$

Features can be discrete or continuous!
Logistic Regression is a Linear Classifier!

Assumes the following functional form for $P(Y|X)$:

$$P(Y = 1|X) = \frac{1}{1 + \exp(- (w_0 + \sum_i w_i X_i))} = \frac{\exp(w_0 + \sum_i w_i X_i)}{\exp(w_0 + \sum_i w_i X_i) + 1}$$

Decision boundary:

$P(Y = 1|X) > P(Y = 0|X)$?

$w_0 + \sum_i w_i X_i > 0$?

(Linear Decision Boundary)
Logistic Regression is a Linear Classifier!

Assumes the following functional form for \(P(Y|X) \):

\[
P(Y = 1|X) = \frac{1}{1 + \exp(-(w_0 + \sum_i w_i X_i))} = \frac{\exp(w_0 + \sum_i w_i X_i)}{\exp(w_0 + \sum_i w_i X_i) + 1}
\]

Assumes a linear decision boundary: there are weights \(w_i \) s.t. when \(w_0 + \sum_i w_i X_i > 0 \), the example is more likely to be positive, and when this linear function is negative (\(w_0 + \sum_i w_i X_i < 0 \)) the example is more likely to be negative.

\[
w_0 + \sum_i w_i X_i = 0, \quad P(Y = 1|X) = \frac{1}{2}
\]

\[
w_0 + \sum_i w_i X_i \to \infty, \quad P(Y = 1|X) \to 1
\]

\[
w_0 + \sum_i w_i X_i \to -\infty, \quad P(Y = 1|X) \to 0
\]
Logistic Regression is a Linear Classifier!

Assumes the following functional form for \(P(Y|X) \):

\[
P(Y = 1|X) = \frac{1}{1 + \exp(-(w_0 + \sum_i w_i X_i))} = \frac{\exp(w_0 + \sum_i w_i X_i)}{\exp(w_0 + \sum_i w_i X_i) + 1}
\]

\[\Rightarrow P(Y = 0|X) = \frac{1}{\exp(w_0 + \sum_i w_i X_i) + 1}\]

\[\Rightarrow \frac{P(Y = 1|X)}{P(Y = 0|X)} = \frac{\exp(w_0 + \sum_i w_i X_i)}{1} > 1 \]

\[\Rightarrow w_0 + \sum_i w_i X_i > 0?\]
Training Logistic Regression

We’ll focus on binary classification:

\[
P(Y = 0|X, w) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}
\]

\[
P(Y = 1|X, w) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}
\]

How to learn the parameters \(w_0, w_1, \ldots, w_d\)?

Training data: \(\{(X^{(j)}, Y^{(j)}))\}_{j=1}^n\)

\(X^{(j)} = (X_1^{(j)}, \ldots, X_d^{(j)})\)

Maximum Likelihood Estimates:

\[
\hat{w}_{MLE} = \arg \max_w \prod_{j=1}^n P(X^{(j)}, Y^{(j)}|w)
\]

But there’s a problem...

Don’t have a model for \(P(X)\) or \(P(X|Y)\) – only for \(P(Y|X)\)
Training Logistic Regression

How to learn the parameters w_0, w_1, \ldots, w_d?

Training data: \[\{ (X^{(j)}, Y^{(j)}) \}_{j=1}^n \]
\[X^{(j)} = (X_1^{(j)}, \ldots, X_d^{(j)}) \]

Maximum (Conditional) Likelihood Estimates

\[\hat{w}_{MCLE} = \arg \max_w \prod_{j=1}^n P(Y^{(j)}|X^{(j)}, w) \]

Discriminative philosophy – Don’t waste effort learning $P(X)$, focus on $P(Y|X)$ – that’s all that matters for classification!
Expressing Conditional log Likelihood

\[
P(Y = 0|X, w) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)} \quad P(Y = 1|X, w) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}
\]

\[
l(w) \equiv \ln \prod_j P(y^j|x^j, w)
\]

\[
= \sum_j \left[y^j \left(w_0 + \sum_{i=1}^{d} w_i x^j_i \right) - \ln \left(1 + \exp \left(w_0 + \sum_{i=1}^{d} w_i x^j_i \right) \right) \right]
\]
Maximizing Conditional log Likelihood

\[
\max_w l(w) \equiv \ln \prod_j P(y^j|x^j, w) \\
= \sum_j y^j \left(w_0 + \sum_{i=1}^d w_i x_i^j \right) - \ln \left(1 + \exp \left(w_0 + \sum_{i=1}^d w_i x_i^j \right) \right)
\]

Good news: \(l(w) \) is concave in \(w \). Local optimum = global optimum

Bad news: no closed-form solution to maximize \(l(w) \)

Good news: concave functions easy to optimize (unique maximum)
Optimizing concave/convex function

- Conditional likelihood for Logistic Regression is concave
- Maximum of a concave function = minimum of a convex function

Gradient Ascent (concave)/ Gradient Descent (convex)

Gradient:

$$\nabla_w l(w) = \left[\frac{\partial l(w)}{\partial w_0}, \ldots, \frac{\partial l(w)}{\partial w_d} \right]$$

Update rule:

$$\Delta w = \eta \nabla_w l(w)$$

$$w_i^{(t+1)} = w_i^{(t)} + \eta \frac{\partial l(w)}{\partial w_i} \bigg|_t$$
Gradient Ascent for Logistic Regression

Gradient ascent algorithm: iterate until change \(< \epsilon \)

\[
\begin{align*}
 w_0^{(t+1)} &= w_0^{(t)} + \eta \sum_j [y^j - \hat{P}(Y^j = 1|x^j, w^{(t)})] \\
 w_i^{(t+1)} &= w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1|x^j, w^{(t)})]
\end{align*}
\]

For \(i = 1, \ldots, d: \)

look at actual labels of the examples, compare them to our current predictions, and then for each example \(j \) we multiply that difference by the feature value \(x_i^j \) and then add them up.
Gradient Ascent for Logistic Regression

Gradient ascent algorithm: iterate until change $< \epsilon$

$$w_0^{(t+1)} = w_0^{(t)} + \eta \sum_j [y_j - \hat{P}(Y_j = 1|x_j, w^{(t)})]$$

For $i = 1, \ldots, d$:

$$w_i^{(t+1)} = w_i^{(t)} + \eta \sum_j x_i^j[y_j - \hat{P}(Y_j = 1|x_j, w^{(t)})]$$

repeat

- Gradient ascent is simplest of optimization approaches
 - e.g., Newton method, Conjugate gradient ascent, IRLS (see Bishop 4.3.3)
Effect of step-size η

Large η ⇒ Fast convergence but larger residual error
Also possible oscillations

Small η ⇒ Slow convergence but small residual error
That’s all M(C)LE. How about MAP?

\[p(w \mid Y, X) \propto P(Y \mid X, w)p(w) \]

- One common approach is to define priors on \(w \)
 - Normal distribution, zero mean, identity covariance
 - “Pushes” parameters towards zero

- Corresponds to **Regularization**
 - Helps avoid very large weights and overfitting
 - More on this later in the semester

- M(C)AP estimate

\[
\mathbf{w}^* = \arg \max_w \ln p(w) \prod_{j=1}^{n} P(y^j \mid x^j, w)
\]
What you should know

- LR is a linear classifier: decision rule is a hyperplane
- LR optimized by conditional likelihood
 - no closed-form solution
 - concave \Rightarrow global optimum with gradient ascent
 - Maximum conditional a posteriori corresponds to regularization