Support Vector Machines (SVMs).
Kernelizing SVMs

Maria-Florina Balcan
02/22/2019
Amdin

- Hwk 3: due Monday Feb 25th
- Midterm: March 4th, in class.
Margin Important Theme in ML

- If large margin, # mistakes Peceptron makes is small (independent on the dim of the ambient space)!

- Large margin can help prevent overfitting.
 - If large margin γ and if alg. produces a large margin classifier, then amount of data needed depends only on R/γ [Bartlett & Shawe-Taylor ’99].

- Ideas: Directly search for a large margin classifier!!

Support Vector Machines (SVMs).
Geometric Margin

Definition: The *margin* of example x w.r.t. a linear sep. w is the distance from x to the plane $w \cdot x = 0$.

WLOG homogeneous linear separators $[w_0 = 0]$.

If $||w|| = 1$, margin of x w.r.t. w is $|x \cdot w|$.

Diagram:

- Margin of example x_1
- Margin of example x_2
Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the distance from x to the plane $w \cdot x = 0$.

Definition: The margin γ_w of a set of examples S wrt a linear separator w is the smallest margin over points $x \in S$.

Definition: The margin γ of a set of examples S is the maximum γ_w over all linear separators w.
Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

First, assume we know a lower bound on the margin γ

Input: γ, $S=\{(x_1, y_1), \ldots, (x_m, y_m)\}$;

Find: some w where:

- $||w||^2 = 1$
- For all i, $y_i w \cdot x_i \geq \gamma$

Output: w, a separator of margin γ over S

The case where the data is truly linearly separable by margin γ
Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

E.g., search for the best possible γ

Input: $S=\{(x_1, y_1), \ldots, (x_m, y_m)\}$;

Find: some w and maximum γ where:

- $\|w\|^2 = 1$
- For all i, $y_i w \cdot x_i \geq \gamma$

Output: maximum margin separator over S
Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

Input: \(S = \{(x_1, y_1), ..., (x_m, y_m)\}; \)

Maximize \(\gamma \) under the constraint:

- \(||w||^2 = 1 \)
- For all \(i, y_i w \cdot x_i \geq \gamma \)
Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

Input: \(S=\{(x_1, y_1), \ldots, (x_m, y_m)\} \);

Maximize \(\gamma \) under the constraint:

1. \(||w||^2 = 1 \)
2. For all \(i \), \(y_i w \cdot x_i \geq \gamma \)

This is a constrained optimization problem.

- Famous example of constrained optimization: linear programming, where objective fn is linear, constraints are linear (in)equalities
Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

Input: \(S = \{(x_1, y_1), \ldots, (x_m, y_m)\} \);

Maximize \(\gamma \) under the constraint:

- \(\|w\|^2 = 1 \)
- For all \(i \), \(y_i w \cdot x_i \geq \gamma \)

This constraint is non-linear.

In fact, it's even non-convex
Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

Input: $S=\{(x_1, y_1), \ldots, (x_m, y_m)\}$

Maximize γ under the constraint:

- $||w||^2 = 1$
- For all i, $y_i w \cdot x_i \geq \gamma$

$w' = w/\gamma$, then $\max \gamma$ is equiv. to minimizing $||w'||^2$ (since $||w'||^2 = 1/\gamma^2$).
So, dividing both sides by γ and writing in terms of w' we get:

Input: $S=\{(x_1, y_1), \ldots, (x_m, y_m)\}$

Minimize $||w'||^2$ under the constraint:

- For all i, $y_i w' \cdot x_i \geq 1$
Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

Input: \(S=\{(x_1, y_1), \ldots, (x_m, y_m)\}; \)

\[
\min_w \|w\|^2 \quad \text{s.t.:}
\]

- For all \(i \), \(y_i w \cdot x_i \geq 1 \)

- The objective is convex (quadratic)
- All constraints are linear
- Can solve efficiently (in poly time) using standard quadratic programming (QP) software

This is a constrained optimization problem.
Support Vector Machines (SVMs)

Question: what if data isn’t perfectly linearly separable?

Issue 1: now have two objectives

- maximize margin
- minimize # of misclassifications.

Ans 1: Let’s optimize their sum: minimize

\[\|w\|^2 + C(\# \text{ misclassifications}) \]

where \(C \) is some tradeoff constant.

Issue 2: This is computationally very hard (NP-hard).

[even if didn’t care about margin and minimized # mistakes]
Support Vector Machines (SVMs)

Question: what if data isn't perfectly linearly separable?
Replace “# mistakes” with upper bound called “hinge loss”

Input: \(S=\{(x_1, y_1), \ldots, (x_m, y_m)\}; \)
Minimize \(||w'||^2 \) under the constraint:
 - For all \(i \), \(y_i w' \cdot x_i \geq 1 \)

Input: \(S=\{(x_1, y_1), \ldots, (x_m, y_m)\}; \)
Find \(\text{argmin}_{w,\xi_1,\ldots,\xi_m} ||w||^2 + C \sum_i \xi_i \) s.t.:
 - For all \(i \), \(y_i w \cdot x_i \geq 1 - \xi_i \)
 - \(\xi_i \geq 0 \)
 - \(\xi_i \) are “slack variables”
Support Vector Machines (SVMs)

Question: what if data isn’t perfectly linearly separable?
Replace “# mistakes” with upper bound called “hinge loss”

Input: \(S=\{(x_1, y_1), \ldots, (x_m, y_m)\}\);
Find \(\text{argmin}_{w, \xi_1, \ldots, \xi_m} \|w\|^2 + C \sum_i \xi_i\) s.t.:
 - For all \(i\), \(y_i w \cdot x_i \geq 1 - \xi_i\)
 \(\xi_i \geq 0\)

\(\xi_i\) are “slack variables”

\(C\) controls the relative weighting between the twin goals of making the \(\|w\|^2\) small (margin is large) and ensuring that most examples have functional margin \(\geq 1\).

Graphically, the optimization problem is illustrated with a margin of \(1\) and \(C\) as the upper bound for the hinge loss.

\(l(w, x, y) = \max(0, 1 - y w \cdot x)\)
Support Vector Machines (SVMs)

Question: what if data isn't perfectly linearly separable? Replace “# mistakes” with upper bound called “hinge loss”

Input: $S=\{(x_1, y_1), \ldots, (x_m, y_m)\}$;

Find $\arg\min_{w, \xi_1, \ldots, \xi_m} ||w||^2 + C \sum_i \xi_i$ s.t.:

- For all i, $y_i w \cdot x_i \geq 1 - \xi_i$
- $\xi_i \geq 0$

Total amount have to move the points to get them on the correct side of the lines $w \cdot x = \pm 1$, where the distance between the lines $w \cdot x = 0$ and $w \cdot x = 1$ counts as “1 unit”.

$l(w, x, y) = \max(0, 1 - y w \cdot x)$
Support Vector Machines (SVMs)

Input: $S=\{(x_1, y_1), \ldots, (x_m, y_m)\}$

Find $\arg\min_w, \xi_1, \ldots, \xi_m \|w\|^2 + C \sum \xi_i$ s.t.:

- For all i, $y_i w \cdot x_i \geq 1 - \xi_i$

 $\xi_i \geq 0$

Which is equivalent to:

Can be kernelized!!!

Input: $S=\{(x_1, y_1), \ldots, (x_m, y_m)\}$

Find $\arg\min_{\alpha} \frac{1}{2} \sum_i \sum_j y_i y_j \alpha_i \alpha_j x_i \cdot x_j - \sum \alpha_i$ s.t.:

- For all i, $0 \leq \alpha_i \leq C_i$

 $\sum_i y_i \alpha_i = 0$

Lagrangian Dual
SVMs (Lagrangian Dual)

Input: $S=\{(x_1, y_1), \ldots, (x_m, y_m)\}$;
Find $\arg\min_\alpha \frac{1}{2} \sum_i \sum_j y_i y_j \alpha_i \alpha_j x_i \cdot x_j - \sum_i \alpha_i$ s.t.:
- For all i, $0 \leq \alpha_i \leq C_i$
 \[\sum_i y_i \alpha_i = 0 \]
- Final classifier is: $w = \sum_i \alpha_i y_i x_i$
- The points x_i for which $\alpha_i \neq 0$ are called the “support vectors”
What you should know

- The importance of margins in machine learning.
- The SVM algorithm. Primal and Dual Form.
- Kernelizing SVM.