
On-Line Algorithms in Machine LearningAvrim BlumCarnegie Mellon University, Pittsburgh PA 15213. Email: avrim@cs.cmu.eduAbstract. The areas of On-Line Algorithms and Machine Learning areboth concerned with problems of making decisions about the presentbased only on knowledge of the past. Although these areas di�er in termsof their emphasis and the problems typically studied, there are a collec-tion of results in Computational Learning Theory that �t nicely into the\on-line algorithms" framework. This survey article discusses some of theresults, models, and open problems from Computational Learning The-ory that seem particularly interesting from the point of view of on-linealgorithms.The emphasis in this article is on describing some of the simpler, more in-tuitive results, whose proofs can be given in their entirity. Pointers to theliterature are given for more sophisticated versions of these algorithms.1 IntroductionThe areas of On-Line Algorithms and Machine Learning are both concerned withproblems of making decisions from limited information. Although they di�er interms of their emphasis and the problems typically studied, there are a collectionof results in Computational Learning Theory that �t nicely into the \on-line al-gorithms" framework. This survey article discusses some of the results, models,and open problems from Computational Learning Theory that seem particularlyinteresting from the point of view of on-line algorithms. This article is not meantto be comprehensive. Its goal is to give the reader a sense of some of the inter-esting ideas and problems in this area that have an \on-line algorithms" feel tothem.We begin by describing the problem of \predicting from expert advice," whichhas been studied extensively in the theoretical machine learning literature. Wepresent some of the algorithms that have been developed and that achieve quitetight bounds in terms of a competitive ratio type of measure. Next we broadenour discussion to consider several standard models of on-line learning from exam-ples, and examine some of the key issues involved.We describe several interestingalgorithms for on-line learning, including the Winnow algorithm and an algo-rithm for learning decision lists, and discuss issues such as attribute-e�cientlearning and the in�nite attribute model, and learning target functions thatchange over time. Finally, we end with a list of important open problems in thearea and a discussion of how ideas from Computational Learning Theory andOn-Line Algorithms might be fruitfully combined.To aid in the
ow of the text, most of the references and discussions of historyare placed in special \history" subsections within the article.

Chapter 14 in "Online Algorithms: the state of the art", Fiat and Woeginger eds., LNCS #1442, 1998.

2 Predicting from Expert AdviceWe begin with a simple, intuitive problem. A learning algorithm is given thetask each day of predicting whether or not it will rain that day. In order tomake this prediction, the algorithm is given as input the advice of n \experts".Each day, each expert predicts yes or no, and then the learning algorithm mustuse this information in order to make its own prediction (the algorithm is givenno other input besides the yes/no bits produced by the experts). After makingits prediction, the algorithm is then told whether or not, in fact, it rained thatday. Suppose we make no assumptions about the quality or independence ofthe experts, so we cannot hope to achieve any absolute level of quality in ourpredictions. In that case, a natural goal instead is to perform nearly as well as thebest expert so far: that is, to guarantee that at any time, our algorithm has notperformed much worse than whichever expert has made the fewest mistakes todate. In the language of competitive analysis, this is the goal of being competitivewith respect to the best single expert.We will call the sequence of events in which the algorithm (1) receives thepredictions of the experts, (2) makes its own prediction, and then (3) is toldthe correct answer, a trial. For most of this discussion we will assume thatpredictions belong to the set f0; 1g, though we will later consider more generalsorts of predictions (e.g., many-valued and real-valued).2.1 A Simple AlgorithmThe problem described above is a basic version of the problem of \predicting fromexpert advice" (extensions, such as when predictions are probabilities, or whenthey are more general sorts of suggestions, are described in Section 2.3 below).We now describe a simple algorithm called the Weighted Majority algorithm.This algorithm maintains a list of weights w1; : : :wn, one for each expert, andpredicts based on a weighted majority vote of the expert opinions.The Weighted Majority Algorithm (simple version)1. Initialize the weights w1; : : : ; wn of all the experts to 1.2. Given a set of predictions fx1; : : : ; xng by the experts, output the pre-diction with the highest total weight. That is, output 1 ifXi:xi=1wi � Xi:xi=0wiand output 0 otherwise.3. When the correct answer ` is received, penalize each mistaken expertby multiplying its weight by 1=2. That is, if xi 6= `, then wi wi=2; ifxi = ` then wi is not modi�ed.Goto 2.Theorem1. The number of mistakes M made by the Weighted Majority algo-rithm described above is never more than 2:41(m+ lgn), where m is the numberof mistakes made by the best expert so far.

Chapter 14 in "Online Algorithms: the state of the art", Fiat and Woeginger eds., LNCS #1442, 1998.

Proof. Let W denote the total weight of all the experts, so initiallyW = n. Ifthe algorithmmakes a mistake, this means that at least half of the total weight ofexperts predicted incorrectly, and therefore in Step 3, the total weight is reducedby at least a factor of 1=4. Thus, if the algorithm makes M mistakes, we have:W � n(3=4)M : (1)On the other hand, if the best expert has made m mistakes, then its weight is1=2m and so clearly: W � 1=2m: (2)Combining (1) and (2) yields 1=2m � n(3=4)M and therefore:M � 1lg(4=3)(m + lgn)� 2:41(m+ lgn)ut2.2 A Better AlgorithmWe can achieve a better bound than that described above by modifying thealgorithm in two ways. The �rst is by randomizing. Instead of predicting theoutcome with the highest total weight, we instead view the weights as probabil-ities, and predict each outcome with probability proportional to its weight. Thesecond change is to replace \multiply by 1=2" with \multiply by �" for a value� to be determined later.Intuitively, the advantage of the randomized approach is that it dilutes theworst case. Previously, the worst case was that slightly more than half of thetotal weight predicted incorrectly, causing the algorithm to make a mistake andyet only reduce the total weight by 1=4. Now, there is roughly a 50=50 chancethat the algorithm will predict correctly in this case, and more generally, theprobability that the algorithm makes a mistake is tied to the amount that theweight is reduced.A second advantage of the randomized approach is that it can be viewed asselecting an expert with probability proportional to its weight. Therefore, thealgorithm can be naturally applied when predictions are \strategies" or othersorts of things that cannot easily be combined together. Moreover, if the \ex-perts" are programs to be run or functions to be evaluated, then this view speedsup prediction since only one expert needs to be examined in order to producethe algorithm's prediction (although all experts must be examined in order tomake an update of the weights). We now formally describe the algorithm andits analysis.The Weighted Majority Algorithm (randomized version)1. Initialize the weights w1; : : : ; wn of all the experts to 1.2. Given a set of predictions fx1; : : : ; xng by the experts, output xi withprobability wi=W , where W =Pi wi.

Chapter 14 in "Online Algorithms: the state of the art", Fiat and Woeginger eds., LNCS #1442, 1998.

3. When the correct answer ` is received, penalize each mistaken expert bymultiplying its weight by �.Goto 2.Theorem2. On any sequence of trials, the expected number of mistakes Mmade by the Randomized Weighted Majority algorithm described above satis�es:M � m ln(1=�) + lnn1� �where m is the number of mistakes made by the best expert so far.For instance, for � = 1=2, we get an expected number of mistakes less than1:39m+2 lnn, and for � = 3=4 we get an expected number of mistakes less than1:15m + 4 lnn. That is, by adjusting �, we can make the \competitive ratio"of the algorithm as close to 1 as desired, at the expense of an increase in theadditive constant. In fact, by adjusting � dynamically using a typical \guess anddouble" approach, one can achieve the following:Corollary 3. On any sequence of trials, the expected number of mistakes Mmade by a modi�ed version of the Randomized Weighted Majority algorithmdescribed above satis�es: M � m + lnn+O(pm lnn)where m is the number of mistakes made by the best expert so far.Proof of Theorem 2. De�ne Fi to be the fraction of the total weight on the wronganswers at the ith trial. Say we have seen t examples. Let M be our expectednumber of mistakes so far, so M =Pti=1Fi.On the ith example, the total weight changes according to:W W (1� (1� �)Fi)since we multiply the weights of experts that made a mistake by � and there isan Fi fraction of the weight on these experts. Hence the �nal weight is:W = n tYi=1(1� (1� �)Fi)Let m be the number of mistakes of the best expert so far. Again, using thefact that the total weight must be at least as large as the weight on the bestexpert, we have: n tYi=1(1� (1� �)Fi) � �m (3)

Chapter 14 in "Online Algorithms: the state of the art", Fiat and Woeginger eds., LNCS #1442, 1998.

Taking the natural log of both sides we get:lnn+ tXi=1 ln(1� (1� �)Fi) � m ln �� lnn� tXi=1 ln(1� (1� �)Fi) � m ln(1=�)� lnn + (1� �) tXi=1 Fi � m ln(1=�)M � m ln(1=�) + lnn1� �Where we get the third line by noting that � ln(1 � x) > x, and the fourth byusing M =Pti=1 Fi. ut2.3 History and ExtensionsWithin the Computational Learning Theory community, the problem of pre-dicting from expert advice was �rst studied by Littlestone and Warmuth [28],DeSantis, Markowsky and Wegman [15], and Vovk [35]. The algorithms describedabove as well as Theorems 1 and 2 are from Littlestone and Warmuth [28], andCorollary 3, as well as a number of re�nements, are from Cesa-Bianchi et al.[12]. Perhaps one of the key lessons of this work in comparison to work of amore statistical nature is that one can remove all statistical assumptions aboutthe data and still achieve extremely tight bounds (see Freund [18]). This prob-lem and many variations and extensions have been addressed in a number ofdi�erent communities, under names such as the \sequential compound decisionproblem" [32] [4], \universal prediction" [16], \universal coding" [33], \univer-sal portfolios" [13], and \prediction of individual sequences"; the notion of thecompetitiveness is also called the \min-max regret" of an algorithm. A web pageuniting some of these communities and with a discussion of this general problemnow exists at http://www-stat.wharton.upenn.edu/Seq96.A large variety of extensions to the problem described above have been stud-ied. For example, suppose that each expert provides a real number between 0and 1 as its prediction (e.g., interpret a real number p as the expert's beliefin the probability of rain) and suppose that the algorithm also may produce areal number between 0 and 1. In this case, one must also specify a loss function| what is the penalty for predicting p when the outcome is x? Some commonloss functions appropriate to di�erent settings are the absolute loss: jp� xj, thesquare loss: (p�x)2, and the log loss: �x ln p� (1�x) ln(1� p). Papers of Vovk[35, 36], Cesa-Bianchi et al. [12, 11], and Foster and Vohra [17] describe optimalalgorithms both for these speci�c loss functions and for a wide variety of generalloss functions.A second extension of this framework is to broaden the class of algorithmsagainst which the algorithm is competitive. For instance, Littlestone, Long, and

Chapter 14 in "Online Algorithms: the state of the art", Fiat and Woeginger eds., LNCS #1442, 1998.

Warmuth [27] show that modi�cations of the algorithms described above areconstant-competitive with respect to the best linear combination of experts,when the squared loss measure is used. Merhav and Feder [29] show that one canbe competitive with respect to the best o�-line strategy that can be implementedby a �nite state machine.Another variation on this problem is to remove all semantics associated withspeci�c predictions by the experts and to simply talk about losses. In this vari-ation, the learning algorithm is required in each iteration to select an expert to\go with". For instance, suppose we are playing a 2-player matrix game as therow player. Each row can be viewed as an expert. To play the game we proba-bilistically select some expert (row) to use, and then, after the game is done, we�nd out our loss and that of each expert. If we are playing repeatedly againstsome adversary, we then would get another opportunity to probabilistically se-lect an expert to use and so forth. Freund and Schapire show that extensionsof the randomized Weighted Majority Algorithm discussed above can be madeto �t nicely into this scenario [19] (see also the classic work of Blackwell [4]).Another scenario �tting this framework would be a case where each expert isa page-replacement algorithm, and an operating system needs to decide whichalgorithm to use. Periodically the operating system computes losses for the var-ious algorithms that it could have used and based on this information decideswhich algorithm to use next.Ordentlich and Cover [14] [30] describe strategies related to the random-ized Weighted Majority algorithm for a problem of on-line portfolio selection.They give an on-line algorithm that is optimally competitive against the best\constant-rebalanced portfolio" (CRP). Their algorithm can be viewed as cre-ating one expert for every CRP and then allocating its resources among them.This setting has the nice property that the market automatically adjusts theweights, so the algorithm itself just initially divides its funds equally among allin�nitely-many CRPs and then lets it sit. A simple analysis of their algorithmwith extensions to transaction costs is given in [10].3 On-Line Learning from ExamplesThe previous section considered the problem of \learning from expert advice".We now broaden our focus to consider the more general scenario of on-line learn-ing from examples. In this setting there is an example space X , typically f0; 1gn.Learning proceeds as a sequence of trials. In each trial, an example x 2 X ispresented to the learning algorithm. The algorithm then predicts either 1 or 0(whether the example is positive or negative) and �nally the algorithm is toldthe true label ` 2 f0; 1g. The algorithm is penalized for each mistake made; i.e.,whenever its prediction di�ers from `. Our goal is to make as few mistakes aspossible. Typically, the presentation of examples will be assumed to be under thecontrol of an adversary. This setting is also broadly called the Mistake Boundlearning model.The scenario described so far is not too di�erent from the standard framework

Chapter 14 in "Online Algorithms: the state of the art", Fiat and Woeginger eds., LNCS #1442, 1998.

of On-Line Algorithms: we are given an on-line sequence of tasks and we wantour penalty to be not too much larger than that of the best o�-line algorithm.However, for the task of predicting labels, the \best we could do if there was nohidden information" would be to make zero mistakes, whereas no on-line algo-rithm could do better than make mistakes half the time if the labels were chosenrandomly. Thus, some further restriction on the problem is necessary in order tomake nontrivial statements about algorithms. Several natural restrictions are:(1) to restrict the labels to being determined by some \reasonable" function ofthe examples, (2) to restrict the o�-line algorithms being compared against tosome \reasonable" class of algorithms, and (3) to restrict the adversary to havingsome sort of randomness in its behavior. Each of these restrictions correspondsto a standard model studied in Computational Learning Theory, and we describethese in more detail below.To describe these models, we need the notion of a concept class. A conceptclass C is simply a set of Boolean functions over the domain X (each Booleanfunction is sometimes called a concept), along with an associated representa-tion of these functions. For instance, the class of disjunctions over f0; 1gn is theclass of all functions that can be described as a disjunction over the variablesfx1; : : : ; xng. The class of DNF formulas contains all Boolean functions, eachwith a description length equal to the size of its minimum DNF formula repre-sentation. In the discussion below, we will use n to denote the description lengthof the examples, and size(c) to denote the description length of some conceptc 2 C.We now describe three standard learning problems.Learning a concept class C (in the Mistake Bound model): In this set-ting, we assume that the labels attached to examples are generated by someunknown target concept c 2 C. That is, there is some hidden concept c be-longing to the class C, and in each trial, the label ` given to example x isequal to c(x). The goal of the learning algorithm is to make as few mistakesas possible, assuming that both the choice of target concept and the choiceof examples are under the control of an adversary. Speci�cally, if an algo-rithm has the property that for any target concept c 2 C it makes at mostpoly(n; size(c)) mistakes on any sequence of examples, and its running timeper trial is poly(n; size(c)) as well, then we say that the algorithm learnsclass C in the mistake bound model. If, furthermore, the number of mistakesmade is only poly(size(c)) � polylog(n) | that is, if the algorithm is robustto the presence of many additional irrelevant variables | then the algorithmis also said to be attribute e�cient.Algorithms have been developed for learning a variety of concept classes inthe Mistake Bound model, such as disjunctions, k-DNF formulas, decisionlists, and linear threshold functions. Below we will describe a very elegant andpractical algorithm called the Winnow Algorithm, that learns disjunctionsin the mistake bound model and makes only O(r logn) mistakes, where ris the number of variables that actually appear in the target disjunction.Thus, Winnow is attribute-e�cient. This algorithm also has the property

Chapter 14 in "Online Algorithms: the state of the art", Fiat and Woeginger eds., LNCS #1442, 1998.

that it can be used to track a target concept that changes over time, andwe will describe a sense in which the algorithm can be viewed as beingO(logn) competitive for this task. We will also discuss a few general resultson attribute-e�cient learning and a model known as the in�nite-attributemodel.Agnostic Learning / Being Competitive with the class C: In this model,we make no assumptions about the existence of any relationship between thelabels and the examples. Instead, we simply set our goal to be that of per-forming nearly as well as the best concept in C. This is sometimes calledthe agnostic learning model and can be viewed as the problem of learninga concept class in the presence of adversarial noise. In this article, to usethe terminology from On-Line Algorithms, we will call this the goal of beingcompetitive with respect to the best concept in C. Speci�cally, let us say thatan algorithm is �-competitive with respect to C if there exists a polynomial psuch that for any sequence of examples and any concept c 2 C, the number ofmistakes made by the algorithm is at most �mc+ p(n; size(c)), where mc isthe number of mistakes made by concept c. The algorithm should have run-ning time per trial polynomial in n and size(c) where c is the best conceptin C on the data seen so far.If we consider the class C of single-variable concepts over f0; 1gn (that is, Cconsists of n concepts fc1; : : : ; cng where ci(x) = xi), then this is really thesame as the problem of \learning from expert advice" discussed in Section2 (just think of the example as the list of predictions of the experts), andthe algorithms of Section 2 show that for all � > 0, one can achieve (1 + �)-competitiveness with respect to the best concept in this class.It is worth noting that if we do not care about computational complexity(i.e., we remove the restriction that the algorithm run in polynomial timeper trial) then we can achieve (1 + �)-competitiveness for any concept classC over f0; 1gn. Speci�cally, we have the following theorem.Theorem4. For any concept class C over f0; 1gn and any � > 0 there isa non-polynomial time algorithm that on any sequence of examples, for allc 2 C, makes at most (1 + �)mc +O(size(c)) mistakes.Proof. We simply associate one \expert" with each concept c 2 C, and runthe Randomized Weighted Majority algorithm described in Section 2 withthe modi�cation that the initial weight given to a concept c is 2�2size(c).This assignment of initial weights means that initially, the total weight Wis at most 1. Therefore, inequality (3) is replaced by the statement that forany concept c 2 C, after t trials we have:tYi=1(1� (1� �)Fi) � �mc2�2size(c)where mc is the number of mistakes make by c. Solving this inequality asin the proof of Theorem 2 yields the guarantee that for any c 2 C, the total

Chapter 14 in "Online Algorithms: the state of the art", Fiat and Woeginger eds., LNCS #1442, 1998.

number of mistakes M made by the algorithm satis�es:m � mc ln(1=�) + 2size(c)1� � :On the other hand, this algorithm clearly does not run in polynomial timefor most interesting concept classes since it requires enumerating all of thepossible concepts c 2 C.1 utA second fact worth noting is that in many cases there are NP-hardnessresults if we require the learning algorithm to use representations from theclass C. For instance, it is NP-hard, given a set S of labeled examples, to�nd the disjunction that minimizes the number of disagreements with thissample. However, this does not necessarily imply that it is NP-hard to achievea competitive ratio approaching 1 for learning with respect to the class ofdisjunctions, since the hypothesis used by the learning algorithm need notbe a disjunction.As mentioned in the Open Problems section, it is unknown whether it ispossible to achieve a good competitive ratio with respect to the class ofdisjunctions with a polynomial time algorithm.Learning C in the presence of random noise: This model lies somewhat inbetween the two models discussed so far. In this model, we assume thatthere is a target concept c 2 C just like in the standard Mistake Boundmodel. However, after each example is presented to the learning algorithm,the adversary
ips a coin and with probability � < 1=2, gives the algorithmthe wrong label. That is, for each example x, the correct label c(x) is seenwith probability 1��, and the incorrect label 1�c(x) is seen with probability�, independently for each example. Usually, this model is only considered forthe case in which the adversary itself is restricted to selecting examplesaccording to some �xed (but unknown) distribution D over the instancespace. We will not elaborate further on this model in this article, since theresults here have less of an \on-line algorithms" feel to them, except to saythat a very nice theory has been developed for learning in this setting, withsome intriguing open problems, including one we list in Section 4.One �nal point worth mentioning is that there are a collection of simple re-ductions between many standard concept classes. For instance, if one has an algo-rithm to learn the class of monotone disjunctions (functions such as x1_x5_x9),then one can also learn non-monotone disjunctions (like x1 _ x5), conjunctions,k-CNF formulas for constant k, and k-DNF formulas for constant k, by just per-forming a transformation on the input space. Thus, if several classes are relatedin this way, we need only discuss the simplest one.1 In the PAC learning setting, there is a similar but simpler fact that one can learnany concept class in the presense of malicious noise by simply �nding the concept inC that has the fewest disagreements on the sample.

Chapter 14 in "Online Algorithms: the state of the art", Fiat and Woeginger eds., LNCS #1442, 1998.

3.1 Some Simple AlgorithmsAs an example of learning a class in the Mistake Bound model, consider thefollowing simple algorithm for learning monotone disjunctions. We begin withthe hypothesis h = x1_x2_ : : :_xn. Each time a mistake is made on a negativeexample x, we simply remove from h all the variables set to 1 by x. Notice thatwe only remove variables that are guaranteed to not be in the target function,so we never make a mistake on a positive example. Since each mistake removesat least one variable from h, this algorithm makes at most n mistakes.A more powerful concept class is the class of decision lists. A decision list isa function of the form: \if `1 then b1, else if `2 then b2, else if `3 then b3, ...,else bm," where each `i is a literal (either a variable or its negation) and eachbi 2 f0; 1g. For instance, one possible decision list is the rule: \if x1 then positive,else if x5 then negative, else positive." Decision lists are a natural representationlanguage in many settings and have also been shown to have a collection of usefultheoretical properties.The following is an algorithm that learns decision lists, making at mostO(rn)mistakes if the target function has r relevant variables (and therefore has lengthO(r)). The hypotheses used by the algorithm will be a slight generalization ofdecision lists in which we allow several \if/then" rules to co-exist at the samelevel: if several \if" conditions on the same level are satis�ed, we just arbitrarilychoose one to follow.1. Initialize h to the one-level list, whose level contains all 4n + 2 possible\if/then" rules (this includes the two possible ending rules).2. Given an example x, look at the �rst level in h that contains a rule whose\if" condition is satis�ed by x. Use that rule for prediction (if there areseveral choices, choose one arbitrarily).3. If the prediction is mistaken, move the rule that was used down to the nextlevel.4. Return to step 2.This algorithm has the property that at least one \if/then" rule moves onelevel lower in h on every mistake. Moreover, notice that the very �rst rule inthe target concept c will never be moved, and inductively, the ith rule of c willnever move below the ith level of h. Therefore, each \if/then" rule will fall atmost L levels, where L is the length of c, and thus the algorithm makes at mostO(nL) = O(nr) mistakes.3.2 The Winnow AlgorithmWe now describe a more sophisticated algorithm for learning the class of (mono-tone) disjunctions than that presented in the previous section. This algorithm,called the Winnow Algorithm, is designed for learning with especially few mis-takes when the number of relevant variables r is much less than the total numberof variables n. In particular, if the data is consistent with a disjunction of r out

Chapter 14 in "Online Algorithms: the state of the art", Fiat and Woeginger eds., LNCS #1442, 1998.

of the n variables, then the algorithm will make at most O(r logn) mistakes. Af-ter describing this result, we then show how the Winnow algorithm can be usedto achieve in essence an O(logn) competitive ratio for learning a disjunctionthat changes over time. We also discuss the behavior of Winnow in the agnosticsetting. Variations on this algorithm can be used to learn Boolean thresholdfunctions as well, but we will stick to the problem of learning disjunctions tokeep the analysis simpler.Like the Weighted Majority algorithm discussed earlier, the Winnow algo-rithm maintains a set of weights, one for each variable.The Winnow Algorithm (a simple version)1. Initialize the weights w1; : : : ; wn of the variables to 1.2. Given an example x = fx1; : : : ; xng, output 1 ifw1x1 + w2x2 + : : :+wnxn � nand output 0 otherwise.3. If the algorithm makes a mistake:(a) If the algorithm predicts negative on a positive example, then foreach xi equal to 1, double the value of wi.(b) If the algorithm predicts positive on a negative example, then foreach xi equal to 1, cut the value of wi in half.4. Goto 2.Theorem5. The Winnow Algorithm learns the class of disjunctions in the Mis-take Bound model, making at most 2 + 3r(1 + lgn) mistakes when the targetconcept is a disjunction of r variables.Proof. Let us �rst bound the number of mistakes that will be made on positiveexamples. Any mistake made on a positive example must double at least one ofthe weights in the target function (the relevant weights), and a mistake madeon a negative example will not halve any of these weights, by de�nition of adisjunction. Furthermore, each of these weights can be doubled at most 1 + lgntimes, since only weights that are less than n can ever be doubled. Therefore,Winnow makes at most r(1 + lgn) mistakes on positive examples.Now we bound the number of mistakes made on negative examples. Thetotal weight summed over all the variables is initially n. Each mistake made ona positive example increases the total weight by at most n (since before doubling,we must have had w1x1+ : : :wnxn < n). On the other hand, each mistake madeon a negative example decreases the total weight by at least n=2 (since beforehalving, we must have had w1x1+ : : :+wnxn � n). The total weight never dropsbelow zero. Therefore, the number of mistakes made on negative examples is atmost twice the number of mistakes made on positive examples, plus 2. That is,2+2r(1+ lgn). Adding this to the bound on the number of mistakes on positiveexamples yields the theorem. utHow well does Winnow perform when the examples are not necessarily allconsistent with some target disjunction? For a given disjunction c, let us de�ne

Chapter 14 in "Online Algorithms: the state of the art", Fiat and Woeginger eds., LNCS #1442, 1998.

mc to be the number of mistakes made by concept c, and let Ac be the numberof attribute errors in the data with respect to c, which we de�ne as follows.For each example labeled positive but that satis�es no relevant variables of c,we add 1 to Ac; for each example labeled negative but that satis�es k relevantvariables of c, we add k to Ac. So, if concept c is a disjunction of r variables,then mc � Ac � rmc. It is not hard to show that Winnow has the followingbehavior for agnostic learning of disjunctions.Theorem6. For any sequence of examples and any disjunction c, the number ofmistakes made by Winnow is O(Ac + r logn), where r is the number of relevantvariables for c. Since Ac � rmc, this means that Winnow is O(r)-competitivewith respect to the best disjunction of r variables.In fact, by randomizing and tuning the Winnow algorithm to the speci�cvalue of r, one can achieve the following stronger statement.Theorem7. Given r, one can tune a randomized Winnow algorithm so thaton any sequence of examples and any disjunction c of r variables, the expectednumber of mistakes made by the algorithm isAc + (2 + o(1))pAcr ln(n=r)as Ac=(r ln nr)!1.These kinds of theorems can be viewed as results in a generalization of the\experts" scenario discussed in Section 2. Speci�cally, consider an algorithmwithaccess to n \specialists". On every trial, each specialist may choose to make aprediction or it may choose to abstain (unlike the \experts" scenario in whicheach expert must make a prediction on every trial). That is, we can think of thespecialists as only making a prediction when the situation �ts their \specialty".Using a proof much like that used to prove Theorem 6, one can show that aversion of the Winnow algorithm is constant-competitive with respect to thebest set of specialists, where we charge a set one unit for every mistake made bya specialist in the set, and one unit whenever all specialists in the set abstain.3.3 Learning drifting disjunctionsFor the problem of learning a static target concept with no noise in the data,there is no real notion of \competitiveness". The algorithm just makes some�xed upper bounded number of mistakes. However, a natural variation on thisscenario, which is also relevant to practice, is to imagine that the target functionis not static and instead changes with time. For instance, for the case of learninga disjunction, we might imagine that from time to time, variables are added to orremoved from the target function. In this case, a natural measure of \adversarycost" is the number of additions and deletions made to the target function, andthe obvious goal is to make a number of mistakes that is not too much largerthan the adversary's cost.

Chapter 14 in "Online Algorithms: the state of the art", Fiat and Woeginger eds., LNCS #1442, 1998.

Speci�cally, consider the following game played against an adversary. Thereare n variables and a target concept that initially is the disjunction of zero ofthem (it says everything is negative). Then, each round of the game proceeds asfollows.Adversary's turn: The adversary may change the target concept by adding orremoving some variables from the target disjunction. The adversary pays acost of 1 for each variable added. (Since the number of variables removed overtime is bounded by the number added over time, we may say that removingvariables is free.) The adversary then presents an example to the learningalgorithm.Learner's turn: The learning algorithm makes a prediction on the examplegiven, and then is told the correct answer (according to the current targetconcept). The algorithm is charged a cost of 1 if it made a mistake.Consider the variation on the Winnow algorithm that never allows any weightto decrease below 1=2; that is, when a mistake is made on a negative example,only weights of value 1 or more are cut in half. Surprisingly, this Winnow variantguarantees that its cost is at most O(logn) times the adversary cost. So in asense it is O(logn)-competitive for this problem. Note that Theorem 5 can beviewed as a special case of this in which in its �rst move, the adversary adds rvariables to the target function and then makes no changes from then on.Theorem8. The Winnow variant described above, on any sequence of examples,makes at most O(cA logn) mistakes, where cA is the adversary's total cost so far.Proof. Consider the total weight on all the variables. The total weight is initiallyn. Each mistake on a positive example increases the total weight by at most nand each mistake on a negative example decreases the total weight by at leastn=4 (because Pwixi � n and at most n=2 of this sum can come from weightsequal to 1=2, so at least n=2 of the sum gets cut in half). Therefore, the numberof mistakes on negative examples is bounded by 4(1 + Mp) where Mp is thenumber of mistakes made on positive examples. So, we only need to bound thenumber of mistakes on positives.Let R denote the set of variables in the current target function (i.e., thecurrently relevant variables), and let r = jRj. Consider the potential function� = r log(2n)�Xi2R lgwi:Consider now how our potential function � can change. Each time we makea mistake on a positive example, � decreases by at least 1. Each time we makea mistake on a negative example, � does not change. Each time the adversaryadds a new relevant variable, � increases by at most log(2n) + 1 (log(2n) forthe increase in r and 1 for the possibility that the new weight wi equals 1=2 solgwi = �1). Each time the adversary removes a relevant variable, � does notincrease (and may decrease if the variable removed has weight less than 2n).In summary, the only way that � can increase is by the adversary adding a

Chapter 14 in "Online Algorithms: the state of the art", Fiat and Woeginger eds., LNCS #1442, 1998.

new relevant variable, and each mistake on a positive example decreases � byat least 1; furthermore, � is initially zero and is always non-negative. Therefore,the number of mistakes we make on positive examples is bounded by log(2n)+1times the adversary's cost, proving the theorem. ut3.4 Learning from String-Valued attributes and the In�niteAttribute ModelThe discussion so far has focused on learning over the instance space X = f0; 1gn.I.e., examples have Boolean-valued attributes. Another common setting is onein which the attributes are string-valued; that is, X = (��)n. For instance,one attribute might represent an object's color, another its texture, etc. If thenumber of choices for each attribute is small, we can just convert this to theBoolean case, for instance by letting \x1 = red" be a Boolean variable that iseither true or false in any given example. However, if the number of choices foran attribute is large or is unknown apriori, this conversion may blow up thenumber of variables.This issue motivates the \in�nite attribute" learning model. In this model,there are in�nitely many boolean variables x1; x2; x3; : : :, though any given ex-ample satis�es only �nite number of them. An example is speci�ed by listing thevariables satis�ed by it. For instance, a typical example might be fx3; x9; x32g,meaning that these variables are true and the rest are false in the example. Letn be the size of (the number of variables satis�ed by) the largest example seenso far. The goal of an algorithm in this setting is to make a number of mistakespolynomial in the size of the target function and n, but independent of the to-tal number of variables (which is in�nite). The running time per trial shouldbe polynomial in the size of the target function and the description length ofthe longest example seen so far. It is not hard to see that this can model thesituation of learning over (��)n.Some algorithms in the standard Boolean-attribute setting fail in the in�niteattribute model. For instance, listing all variables and then crossing o� the onesfound to be irrelevant as in the simple disjunction-learning algorithm presentedin Section 3.1 clearly does not work. The decision-list algorithm presented fails aswell; in fact, there is no known polynomial-time algorithm for learning decisionlists in this setting (see the Open Problems section).On the other hand, algorithms such as Winnow can be adapted in a straight-forward way to succeed in the in�nite attribute model. More generally, the fol-lowing theorem is known.Theorem9. Let C be a projection and embedding-closed concept class2. If thereis an attribute-e�cient algorithm for learning C over f0; 1gn, then C can belearned in the In�nite-Attribute model.2 This is just a \reasonableness condition" saying that one can take a concept in Cde�ned on n1 variables and embed it into a space with n2 > n1 variables and stillstay within the class C, and in the reverse direction, one can �x values of some ofthe variables and still have a legal concept. See [9] for details.

Chapter 14 in "Online Algorithms: the state of the art", Fiat and Woeginger eds., LNCS #1442, 1998.

3.5 HistoryThe Winnow algorithm was developed by Littlestone in his seminal paper [24],which also gives a variety of extensions and introduces the Mistake-Bound learn-ing model. The Mistake Bound model is equivalent to the \extended equivalencequery" model of Angluin [1], and is known to be strictly harder for polynomial-time algorithms than the PAC learning model of Valiant [34, 22] in which (amongother di�erences) the adversary is required to select examples from a �xed dis-tribution [6]. Agnostic learning is disussed in [23].Littlestone [26] gives a variety of results on the behavior of Winnow in thepresence of various kinds of noise. The improved bounds of Theorem 7 are fromAuer and Warmuth [3]. The use of Winnow for learning changing concepts isfolklore (and makes a good homework problem); Auer and Warmuth [3] providea more sophisticated algorithm and analysis, achieving a stronger result thanTheorem 8, in the style of Theorem 7. The Winnow algorithm has been shownto be quite successful in practical tasks as well, such as predicting links followedby users on the Web [2], and a calendar scheduling application [7].The algorithm presented for learning decision lists is based on Rivest's algo-rithm for the PAC model [31], adapted to the Mistake Bound model by Little-stone [25] and Helmbold, Sloan and Warmuth [20]. The In�nite-Attribute modelis de�ned in Blum [5] and Theorem 9 is from Blum, Hellerstein, and Littlestone[9].4 Open Problems1. Can the bounds of Corollary 3 be achieved and improved with asmooth algorithm? The bound of Corollary 3 is achieved using a \guessand double" algorithm that periodically throws out all it has learned so farand restarts using a new value of �. It would seem more natural (and likelyto work better in practice) to just smoothly adjust � as we go along, neverrestarting from scratch. Can an algorithm of this form be shown to achievethis bound, preferably with even better constants? (See [12] for the preciseconstants.)2. Can Decision Lists be learned Attribute-E�ciently?Recall from Sec-tion 3.1 that a decision list is a function of the form: \if `1 then b1, else if`2 then b2, else if `3 then b3, ..., else bm," where each `i is a literal (ei-ther a variable or its negation) and each bi 2 f0; 1g. We saw in Section3.1 that decision lists with r relevant variables can be learned with at mostO(rn) mistakes in the mistake-bound model. An alternative approach usingthe Winnow algorithm makes O(r2r logn) mistakes. Can decision lists belearned attribute-e�ciently? I.e., with mistake bound poly(r) � polylog(n)?3. Can Parity functions be learned Attribute-E�ciently? Let Cparitydenote the class of functions over f0; 1gn that compute the parity of somesubset of variables. For instance, a typical function in Cparity would be x1�

Chapter 14 in "Online Algorithms: the state of the art", Fiat and Woeginger eds., LNCS #1442, 1998.

x5 � x22. It is easy to learn Cparity in the mistake-bound model makingat most n mistakes, by viewing each labeled example as a linear equalitymodulo 2 (each new example either is linearly dependent on the previousset and therefore its label can be deduced, or else it provides a new linearlyindependent vector). Can Cparity be learned attribute-e�ciently?4. Can Decision Lists or Parity functions be learned in the In�niteAttributemodel?Can either the class of decision lists or the class of parityfunctions be learned in the In�nite Attribute model? For the case of decisionlists, you may assume, if you wish, that none of the literals `i are negationsof variables.5. Is there a converse to Theorem 9?6. Can tolerance to random noise be boosted? Suppose for some conceptclass C and some �xed constant noise rate � > 0 there exists a polynomialtime algorithm A with the following property: for any target concept c 2 Cand any distribution D on examples, A achieves an expected mistake rateless than 1=2�1=p(n) for some polynomial p after seeing polynomiallymanyexamples. Does this imply that there must exist a polynomial time algorithmB that succeeds in the same sense for all constant noise rates � < 1=2. (SeeKearns [21] for related issues.)7. What Competitive Ratio can be achieved for learning with re-spect to the best Disjunction? Is there a polynomial time algorithmthat given any sequence of examples over f0; 1gn makes a number of mis-takes at most cmdisj + p(n), where mdisj is the number of mistakes madeby the best disjunction, for some constant c and polynomial p? How aboutc = n� or c = r� for some � < 1, where r is the number of relevant vari-ables in the best disjunction. (Making nmdisj mistakes is easy using any ofthe standard disjunction-learning algorithms, and we saw that the Winnowalgorithm makes O(rmdisj) mistakes.)8. Can Disjunctions be Weak-Learned in the presence of adversarialnoise? For some polynomial p(n) and some constant c > 0, does thereexist an algorithm with the following guarantee: Given any sequence of texamples over f0; 1gn such that at least a (1� c) fraction of these examplesare consistent with some disjunction over f0; 1gn, the algorithm makes atmost t[12 � 1p(n)] mistakes (in expectation, if the algorithm is randomized).That is, given that there exists a disjunction that is \nearly correct" (say99%) on the data, can the algorithm achieve a performance that is slightly(1=poly) better than guessing? The algorithm may require that t � q(n) forsome polynomial q.9. Can Linear Threshold Functions be Weak-Learned in the presenceof adversarial noise? Same question as above, except replace \disjunc-tions" with \linear threshold functions". An a�rmative answer to this ques-tion would yield a quasi-polynomial (npolylog(n)) time algorithm for learning

Chapter 14 in "Online Algorithms: the state of the art", Fiat and Woeginger eds., LNCS #1442, 1998.

DNF formulas, and more generally for learning AC0 functions, in the PAClearning model. This implication follows from standard complexity theoryresults that show that AC0 can be approximated by low-degree polynomi-als.5 ConclusionsThis article has surveyed a collection of problems, models, and algorithms inComputational Learning Theory that look particularly interesting from the pointof view of On-Line Algorithms. These include algorithms for combining the ad-vice of experts, the model of on-line agnostic learning (or learning in the pres-ence of worst-case noise) and the problem of learning a drifting target concept.It seems clear that a further crossover of ideas between Computational LearningTheory and On-Line Algorithms should be possible. Listed below are a few ofthe respective strengths and weaknesses of these areas where this crossover mayprove to be especially fruitful.The notion of state. The notion of an algorithm having a state, where thereis a cost associated with changing state, is central to the area of On-LineAlgorithms. This allows one to study problems in which the decisions madeby an algorithm involve \doing something" rather than just predicting, andwhere the decisions made in the present (e.g., whether to rent or buy) a�ectthe costs the algorithm will pay in the future. This issue has been virtuallyignored in the Computational Learning Theory literature since that litera-ture has tended to focus on prediction problems. In prediction problems thestate of an algorithm is usually just its current hypothesis and there is nonatural penalty for changing state. Nonetheless, as Computational LearningTheory moves to analyze more general sorts of learning problems, it seemsinevitable that the notion of state will begin to play a larger role, and ideasfrom On-Line Algorithms will be crucial. Some work in this direction appearsin [8].Limiting the power of the adversary. In the On-Line Algorithms literature,it is usually assumed that the adversary has unlimited power to choose aworst-case sequence for the algorithm. In the machine learning setting, it isnatural to assume there is some sort of regularity to the world (after all, ifthe world is completely random, there is nothing to learn). Thus, one oftenassumes that the world produces labels using a function from some limitedconcept class, or that examples are are drawn from some �xed distribution,or even that this �xed distribution is of some simple type. One can thenparametrize one's results as a function of the adversary's power, producingespecially good bounds when the adversary is relatively simple. This sortof approach may prove useful in On-Line Algorithms (in fact, it alreadyhas) for achieving less pessimistic sorts of bounds for many of the problemscommonly studied.

Chapter 14 in "Online Algorithms: the state of the art", Fiat and Woeginger eds., LNCS #1442, 1998.

Limiting the class of o�-line algorithms being compared to. In the typ-ical machine learning setup, if one does not restrict the adversary, then toachieve any non-trivial bound one must limit the class of o�-line algorithmsagainst which one is competing. This sort of approach may also be useful inOn-Line Algorithms for achieving more reasonable bounds.AcknowledgementsI would like to thank Yoav Freund for helpful discussions and pointers. This workwas supported in part by NSF National Young Investigator grant CCR-9357793and a Sloan Foundation Research Fellowship.References1. D. Angluin. Queries and concept learning. Machine Learning, 2(4):319{342, 1988.2. R. Armstrong, D. Freitag, T. Joachims, and T. Mitchell. Webwatcher: A learningapprentice for the world wide web. In 1995 AAAI Spring Symposium on Informa-tion Gathering from Heterogeneous Distributed Environments, March 1995.3. P. Auer and M.K. Warmuth. Tracking the best disjunction. In Proceedings ofthe 36th Annual Symposium on Foundations of Computer Science, pages 312{321,1995.4. D. Blackwell. An analog of the minimax theorem for vector payo�s. Paci�c J.Math., 6:1{8, 1956.5. A. Blum. Learning boolean functions in an in�nite attribute space. MachineLearning, 9:373{386, 1992.6. A. Blum. Separating distribution-free and mistake-bound learning models over theboolean domain. SIAM J. Computing, 23(5):990{1000, October 1994.7. A. Blum. Empirical support for winnow and weighted-majority based algorithms:results on a calendar scheduling domain. In Proceedings of the Twelfth Interna-tional Conference on Machine Learning, pages 64{72, July 1995.8. A. Blum and C. Burch. On-line learning and the metrical task system problem.In Proceedings of the 10th Annual Conference on Computational Learning Theory,pages 45{53, 1997.9. A. Blum, L. Hellerstein, and N. Littlestone. Learning in the presence of �nitely orin�nitely many irrelevant attributes. J. Comp. Syst. Sci., 50(1):32{40, 1995.10. A. Blum and A. Kalai. Universal portfolios with and without transaction costs.In Proceedings of the 10th Annual Conference on Computational Learning Theory,pages 309{313, 1997.11. N. Cesa-Bianchi, Y. Freund, D. P. Helmbold, and M. Warmuth. On-line predic-tion and conversion strategies. In Computational Learning Theory: Eurocolt '93,volume New Series Number 53 of The Institute of Mathematics and its ApplicationsConference Series, pages 205{216, Oxford, 1994. Oxford University Press.12. N. Cesa-Bianchi, Y. Freund, D.P. Helmbold, D. Haussler, R.E. Schapire, and M.K.Warmuth. How to use expert advice. In Annual ACM Symposium on Theory ofComputing, pages 382{391, 1993.13. T.M. Cover. Universal portfolios. Mathematical Finance, 1(1):1{29, January 1991.14. T.M. Cover and E. Ordentlich. Universal portfolios with side information. IEEETransactions on Information Theory, 42(2), March 1996.

Chapter 14 in "Online Algorithms: the state of the art", Fiat and Woeginger eds., LNCS #1442, 1998.

15. A. DeSantis, G. Markowsky, and M. Wegman. Learning probabilistic predictionfunctions. In Proceedings of the 29th IEEE Symposium on Foundations of Com-puter Science, pages 110{119, Oct 1988.16. M. Feder, N. Merhav, and M. Gutman. Universal prediction of individual se-quences. IEEE Transactions on Information Theory, 38:1258{1270, 1992.17. D.P. Foster and R.V. Vohra. A randomization rule for selecting forecasts. Opera-tions Research, 41:704{709, 1993.18. Y. Freund. Predicting a binary sequence almost as well as the optimal biased coin.In Proceedings of the 9th Annual Conference on Computational Learning Theory,pages 89{98, 1996.19. Y. Freund and R. Schapire. Game theory, on-line prediction and boosting. In Pro-ceedings of the 9th Annual Conference on Computational Learning Theory, pages325{332, 1996.20. D. Helmbold, R. Sloan, and M. K. Warmuth. Learning nested di�erences of inter-section closed concept classes. Machine Learning, 5(2):165{196, 1990.21. M. Kearns. E�cient noise-tolerant learning from statistical queries. In Proceedingsof the Twenty-Fifth Annual ACM Symposium on Theory of Computing, pages 392{401, 1993.22. M. Kearns, M. Li, L. Pitt, and L. Valiant. On the learnability of boolean formu-lae. In Proceedings of the Nineteenth Annual ACM Symposium on the Theory ofComputing, pages 285{295, New York, New York, May 1987.23. M. Kearns, R. Schapire, and L. Sellie. Toward e�cient agnostic learning. MachineLearning, 17(2/3):115{142, 1994.24. N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2:285{318, 1988.25. N. Littlestone. personal communication (a mistake-bound version of Rivest'sdecision-list algorithm). 1989.26. N. Littlestone. Redundant noisy attributes, attribute errors, and linear-thresholdlearning using winnow. In Proceedings of the Fourth Annual Workshop on Com-putational Learning Theory, pages 147{156, Santa Cruz, California, 1991. MorganKaufmann.27. N. Littlestone, P. M. Long, and M. K. Warmuth. On-line learning of linear func-tions. In Proc. of the 23rd Symposium on Theory of Computing, pages 465{475.ACM Press, New York, NY, 1991. See also UCSC-CRL-91-29.28. N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Informa-tion and Computation, 108(2):212{261, 1994.29. N. Merhav and M. Feder. Universal sequential learning and decisions from individ-ual data sequences. In Proc. 5th Annu. Workshop on Comput. Learning Theory,pages 413{427. ACM Press, New York, NY, 1992.30. E. Ordentlich and T.M. Cover. On-line portfolio selection. In COLT 96, pages310{313, 1996. A journal version is to be submitted to Mathematics of OperationsResearch.31. R.L. Rivest. Learning decision lists. Machine Learning, 2(3):229{246, 1987.32. H. Robbins. Asymptotically subminimax solutions of compound statistical deci-sion problems. In Proc. 2nd Berkeley Symp. Math. Statist. Prob., pages 131{148,1951.33. J. Shtarkov. Universal sequential coding of single measures. Problems of Informa-tion Transmission, pages 175{185, 1987.34. L.G. Valiant. A theory of the learnable. Comm. ACM, 27(11):1134{1142, Novem-ber 1984.

Chapter 14 in "Online Algorithms: the state of the art", Fiat and Woeginger eds., LNCS #1442, 1998.

35. V. Vovk. Aggregating strategies. In Proceedings of the Third Annual Workshopon Computational Learning Theory, pages 371{383. Morgan Kaufmann, 1990.36. V. G. Vovk. A game of prediction with expert advice. In Proceedings of the 8thAnnual Conference on Computational Learning Theory, pages 51{60. ACM Press,New York, NY, 1995.

This article was processed using the LaTEX macro package with LLNCS style

Chapter 14 in "Online Algorithms: the state of the art", Fiat and Woeginger eds., LNCS #1442, 1998.

