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Maria-Florina Balcan Lecture 8: February 4th, 2010

1 VC-dimension and Learnability

Definition 1 The Vapnik-Chervonenkis dimension of C, denoted as VCdim(C), is the car-
dinality of the largest set S shattered by C. If arbitrarily large finite sets can be shattered by C,
then VCdim(C) = oo.

Given a class H, define the class MAJ;(H) to be the class of functions achievable by taking majority
votes over k functions in H. For example, if H is the class of conjunctions and k& = 3 then a typical
function in MAJy(H) might be “f(z) = 1 if x satisfies at least two out of three of z1z4x5, Tox324,
and x3x7.” Let’s say we allow repetitions.

Claim 1 Let MAJy(H) is the class of functions achievable by taking majority votes over k functions
in H. If the hypothesis class H has VC-dimension d, then the class MAJx(H) has VC-dimension
O(kdlog kd).

Proof: Let D be the VC-dimension of MAJy(H), so by definition, there must exist a set S of D
points shattered by MAJ,(H). We know by Sauer’s lemma that there are at most D? ways of
partitioning the points in S using functions in H.

Now, since each function h in MAJ;(H) is determined by some k functions hy, ha, ..., hg in H, this
means that the partitioning of S induced by h is determined by the partitioning of S induced by
hi,...,hg. Since there are at most (D%)¥ = D% ways of selecting k partitions of S consistent with
H (possibly with repetitions), this means there are at most D*® ways of partitioning the points in
S using functions in MAJ,(H).

On the other hand, since S is shattered by MAJ,(H), we know all 2P partitionings are possible.
We therefore must have 2 < D and so D < 2kdlog (kd) (for kd > 4). ®

A General Upper Bound on the Sample Complexity

In previous lectures we have shown that the VC-dimension of a concept class gives an upper bound
on the number of samples needed to learn concepts from the class.

For example, we have shown:

Theorem 1 Let C be an arbitrary hypothesis space of VC-dimension d. Let D be an arbitrary
unknown probability distribution over the instance space and let ¢* be an arbitrary unknown target
function. For any €, 6 > 0, if we draw a sample S from D of size m satisfying
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then with probability at least 1 — 6, all the hypotheses in C' with errp(h) > € are inconsistent with
the data, i.e., errg(h) # 0.

So it is possible to PAC-learn a class C' of VC-dimension d with parameters § and € given that the
number of samples m is at least m > ¢ (g log% + % log %) where c is a fixed constant. So, as long as
VCdim(C) is finite, it is possible to PAC-learn concepts from C even though C' might be infinite.

A Lower Bound on the Sample Complexity

We show that this sample complexity result is tight within a factor of O(log(1/¢)).

Theorem 2 Any algorithm for PAC-learning a concept class of VC dimension d with parameters
€ and 6 < 1/15 must use more than (d — 1)/(64¢€) examples in the worst case.

Proof: Consider a concept class C' with VC dimension d. Let X = {zj,...,24} be shattered by
C. To show a lower bound we construct a particular distribution that forces any PAC algorithm
to take that many examples. The support of this probability distribution is X, so we can assume
WLOG that C' = C(X), so C is a finite class, |C| = 2¢. Note that we have arranged things such
that for all possible labelings of the points in X, there is exactly one concept in C' that induces that
labeling. Thus, choosing the target concept uniformly at random from C' is equivalent to flipping
a fair coin d times to determine the labeling induced by ¢ on X.

Let m = (d — 1)/(64¢), and A be an algorithm that uses at most m i.i.d. examples and then
produces a hypothesis h. We need to show that there exist a distribution D on X and a concept
¢ € C such that the er(h) > e with probability at least 1/15.

We first define D independently of A:
p(z1) =1 — 16¢

16¢
d—1

p(z2) = p(x3) = -+ =p(xq) =

In the following we assume that S is a random i.i.d sample from D of size m. We want to establish

that there is a ¢ so that Prgler(h) > €] > .

Let X' = {z3,...,24}. For any fixed ¢ € C' and hypothesis h, let

er’(h) = Prle(x) # h(z) Az € X'].
For technical reasons, it is easier to prove that Prgler/(h) > €] > 1/15, which is enough since
er'(h) < er(h).

We pick a random ¢ € C' and show that with positive probability ¢ is hard to learn for A, thereby
showing that there must be some fixed ¢ that is hard to learn for A.

Let us now define the event:

B: S contains less than (d — 1)/2 points in X'.



We have:

Prg[B] > 1/2 (1)

To see this, let Z be the number of points in S that are from X’. Clearly, E[Z] = 16em = (d—1)/4.
We have Prg[B] > 1 —Pr[Z > (d —1)/2] > 1/2, since by Markov’s inequality we have Pr[Z >
(d—-1)/2] <1/2.

We can also show:
Ec,g[er’(h) | B] > de (2)

Let S be the set of points that A gets. Choosing a random c is equivalent to flipping a fair coin
for each point in X to determine its label. Since h is independent of the labeling of X’ — S, the
contribution to er’(h) is expected to be 16¢/(2(d — 1)) for each point in X’ — S. When B occurs,
we have | X' — S| > (d — 1)/2; thus the expected value of er’(h) given B is strictly greater than 4e.

Using (1) and (2) we get a lower bound on E. g[er’(h)].

Eesler’(h)] > PrlB] - Besler'(h) | B] > % e = 2e.

So there must exist some ¢* € C such that Eg[er/(h)] > 2e. We take ¢* as the target concept and
show that A is likely to produce a hypothesis with high error rate.

Using the fact that for any h we have er’(h) < Pr[z € X'] = 16¢ we note that

Egler'(h) | er'(h) > €] < 16¢ for any fixed c. (3)

We have:

2¢ < Egler'(h)]
= Prgler’(h) > €] - Egl[er'(h) | er'(h) > €]
+(1 = Prgler’(h) > €]) - Eg[er’(h) | er'(h) < €].

Next we apply (3) to get

2¢ < Egler’'(h)] < Prgler’(h) > €] - 16e + (1 — Prgler’(h) > ¢€]) - €
= 15ePrgler’(h) > €] + e,

which implies Prg[er’(h) > €] > 1/15, as desired. N



