Maria-Florina Balcan

1 VC-dimension and Learnability

Definition 1 The Vapnik-Chervonenkis dimension of C, denoted as VCdim(C), is the cardinality of the largest set S shattered by C. If arbitrarily large finite sets can be shattered by C, then $VCdim(C) = \infty$.

Given a class H, define the class $MAJ_k(H)$ to be the class of functions achievable by taking majority votes over k functions in H. For example, if H is the class of conjunctions and k = 3 then a typical function in $MAJ_k(H)$ might be "f(x) = 1 if x satisfies at least two out of three of $x_1x_4x_5$, $x_2x_3x_4$, and x_3x_7 ." Let's say we allow repetitions.

Claim 1 Let $MAJ_k(H)$ is the class of functions achievable by taking majority votes over k functions in H. If the hypothesis class H has VC-dimension d, then the class $MAJ_k(H)$ has VC-dimension $O(kd \log kd)$.

Proof: Let D be the VC-dimension of $MAJ_k(H)$, so by definition, there must exist a set S of D points shattered by $MAJ_k(H)$. We know by Sauer's lemma that there are at most D^d ways of partitioning the points in S using functions in H.

Now, since each function h in $\operatorname{MAJ}_k(H)$ is determined by some k functions h_1, h_2, \ldots, h_k in H, this means that the partitioning of S induced by h is determined by the partitioning of S induced by h_1, \ldots, h_k . Since there are at most $(D^d)^k = D^{dk}$ ways of selecting k partitions of S consistent with H (possibly with repetitions), this means there are at most D^{kd} ways of partitioning the points in S using functions in $\operatorname{MAJ}_k(H)$.

On the other hand, since S is shattered by $MAJ_k(H)$, we know all 2^D partitionings are possible. We therefore must have $2^D \leq D^{kd}$, and so $D \leq 2kd \log (kd)$ (for $kd \geq 4$).

A General Upper Bound on the Sample Complexity

In previous lectures we have shown that the VC-dimension of a concept class gives an upper bound on the number of samples needed to learn concepts from the class.

For example, we have shown:

Theorem 1 Let C be an arbitrary hypothesis space of VC-dimension d. Let D be an arbitrary unknown probability distribution over the instance space and let c^* be an arbitrary unknown target function. For any ϵ , $\delta > 0$, if we draw a sample S from D of size m satisfying

$$m \ge \frac{8}{\epsilon} \left[d \ln \left(\frac{16}{\epsilon} \right) + \ln \left(\frac{2}{\delta} \right) \right].$$

then with probability at least $1 - \delta$, all the hypotheses in C with $err_D(h) > \epsilon$ are inconsistent with the data, i.e., $err_S(h) \neq 0$.

So it is possible to PAC-learn a class C of VC-dimension d with parameters δ and ϵ given that the number of samples m is at least $m \ge c \left(\frac{d}{\epsilon} \log \frac{1}{\epsilon} + \frac{1}{\epsilon} \log \frac{1}{\delta}\right)$ where c is a fixed constant. So, as long as VCdim(C) is finite, it is possible to PAC-learn concepts from C even though C might be infinite.

A Lower Bound on the Sample Complexity

We show that this sample complexity result is tight within a factor of $O(\log(1/\epsilon))$.

Theorem 2 Any algorithm for PAC-learning a concept class of VC dimension d with parameters ϵ and $\delta \leq 1/15$ must use more than $(d-1)/(64\epsilon)$ examples in the worst case.

Proof: Consider a concept class C with VC dimension d. Let $X = \{x_1, \ldots, x_d\}$ be shattered by C. To show a lower bound we construct a particular distribution that forces any PAC algorithm to take that many examples. The support of this probability distribution is X, so we can assume WLOG that C = C(X), so C is a finite class, $|C| = 2^d$. Note that we have arranged things such that for all possible labelings of the points in X, there is exactly one concept in C that induces that labeling. Thus, choosing the target concept uniformly at random from C is equivalent to flipping a fair coin d times to determine the labeling induced by c on X.

Let $m = (d-1)/(64\epsilon)$, and A be an algorithm that uses at most m i.i.d. examples and then produces a hypothesis h. We need to show that there exist a distribution D on X and a concept $c \in C$ such that the $er(h) > \epsilon$ with probability at least 1/15.

We first define D independently of A:

$$p(x_1) = 1 - 16\epsilon$$

 $p(x_2) = p(x_3) = \dots = p(x_d) = \frac{16\epsilon}{d-1}$

In the following we assume that S is a random i.i.d sample from D of size m. We want to establish that there is a c so that $\Pr_S[er(h) > \epsilon] > \frac{1}{15}$.

Let $X' = \{x_2, \ldots, x_d\}$. For any fixed $c \in C$ and hypothesis h, let

$$er'(h) = \Pr[c(x) \neq h(x) \land x \in X'].$$

For technical reasons, it is easier to prove that $\Pr_S[er'(h) > \epsilon] > 1/15$, which is enough since $er'(h) \leq er(h)$.

We pick a random $c \in C$ and show that with positive probability c is hard to learn for A, thereby showing that there must be some fixed c that is hard to learn for A.

Let us now define the event:

 $B: \quad S \text{ contains less than } (d-1)/2 \text{ points in } X'.$

We have:

$$\Pr_S[B] \geq 1/2 \tag{1}$$

To see this, let Z be the number of points in S that are from X'. Clearly, $E[Z] = 16\epsilon m = (d-1)/4$. We have $\Pr_S[B] \ge 1 - \Pr[Z \ge (d-1)/2] \ge 1/2$, since by Markov's inequality we have $\Pr[Z \ge (d-1)/2] \le 1/2$.

We can also show:

$$\mathbf{E}_{c,S}[er'(h) \mid B] > 4\epsilon \tag{2}$$

Let S be the set of points that A gets. Choosing a random c is equivalent to flipping a fair coin for each point in X to determine its label. Since h is independent of the labeling of X' - S, the contribution to er'(h) is expected to be $16\epsilon/(2(d-1))$ for each point in X' - S. When B occurs, we have |X' - S| > (d-1)/2; thus the expected value of er'(h) given B is strictly greater than 4ϵ . Using (1) and (2) we get a lower bound on $E_{c,S}[er'(h)]$.

$$\mathbf{E}_{c,S}[er'(h)] \ge \Pr_{S}[B] \cdot \mathbf{E}_{c,S}[er'(h) \mid B] > \frac{1}{2} \cdot 4\epsilon = 2\epsilon$$

So there must exist some $c^* \in C$ such that $E_S[er'(h)] > 2\epsilon$. We take c^* as the target concept and show that A is likely to produce a hypothesis with high error rate.

Using the fact that for any h we have $er'(h) \leq \Pr[x \in X'] = 16\epsilon$ we note that

$$\mathbf{E}_{S}[er'(h) \mid er'(h) > \epsilon] \leq 16\epsilon \text{ for any fixed } c.$$
(3)

We have:

$$2\epsilon < \mathbf{E}_{S}[er'(h)]$$

= $\Pr_{S}[er'(h) > \epsilon] \cdot \mathbf{E}_{S}[er'(h) | er'(h) > \epsilon]$
+ $(1 - \Pr_{S}[er'(h) > \epsilon]) \cdot \mathbf{E}_{S}[er'(h) | er'(h) \le \epsilon].$

Next we apply (3) to get

$$2\epsilon < \mathcal{E}_{S}[er'(h)] \leq \Pr_{S}[er'(h) > \epsilon] \cdot 16\epsilon + (1 - \Pr_{S}[er'(h) > \epsilon]) \cdot \epsilon$$

= $15\epsilon \Pr_{S}[er'(h) > \epsilon] + \epsilon,$

which implies $\Pr_S[er'(h) > \epsilon] > 1/15$, as desired.