This homework is due by the start of class on October 28th 2010. You can either submit the homework via the course page on T-Square or hand it in at the beginning of the class on October 28th 2010. Start early!

Groundrules:

- Your work will be graded on correctness, clarity, and conciseness.
- You may collaborate with others on this problem set. However, you must write your own solutions and list your collaborators/sources for each problem.

Problems:

1. **VC-dimension of linear separators:** In this problem you will prove that the VC-dimension of the class H_n of halfspaces (another term for linear threshold functions) in n dimensions is $n + 1$. We will use the following definition: The convex hull of a set of points S is the set of all convex combinations of points in S; this is the set of all points that can be written as $\sum_{i \in S} \lambda_i x_i$, where each $\lambda_i \geq 0$, and $\sum_i \lambda_i = 1$. It is not hard to see that if a halfspace has all points from a set S on one side, then the entire convex hull of S must be on that side as well.

 (a) **[lower bound]** Prove that $\text{VC-dim}(H_n) \geq n + 1$ by presenting a set of $n + 1$ points in n-dimensional space such that one can partition that set with halfspaces in all possible ways. (And, show how one can partition the set in any desired way.)

 (b) **[upper bound part 1]** The following is “Radon’s Theorem,” from the 1920’s.

 Theorem. Let S be a set of $n + 2$ points in n dimensions. Then S can be partitioned into two (disjoint) subsets S_1 and S_2 whose convex hulls intersect.

 Show that Radon’s Theorem implies that the VC-dimension of halfspaces is at most $n + 1$. Conclude that $\text{VC-dim}(H_n) = n + 1$.

 (c) **[upper bound part 2]** Now we prove Radon’s Theorem. We will need the following standard fact from linear algebra. If x_1, \ldots, x_{n+1} are $n + 1$ points in n-dimensional space, then they are linearly dependent. That is, there exist real values $\lambda_1, \ldots, \lambda_{n+1}$ not all zero such that $\lambda_1 x_1 + \ldots + \lambda_{n+1} x_{n+1} = 0$.

 You may now prove Radon’s Theorem however you wish. However, as a suggested first step, prove the following. For any set of $n + 2$ points x_1, \ldots, x_{n+2} in n-dimensional space, there exist $\lambda_1, \ldots, \lambda_{n+2}$ not all zero such that $\sum_i \lambda_i x_i = 0$ and $\sum_i \lambda_i = 0$. (This is called affine dependence.)

2. **Symmetric congestion games:** Consider a network congestion game defined on a directed graph $G = (V, E)$. Assume each player i wants to get from source o and to destination t (so all players have the same set of strategies, which is the set of paths from o to t). Assume that the cost of each edge is monotonically increasing with the number of players using that
edge. Show that these games have a pure Nash equilibrium and provide a polynomial time algorithm to compute a pure Nash equilibrium.

Hints: Try to compute the solution that minimizes the potential function. Think of min-cost network flow.

Extra Credit:

1. **Boosting and Game Theory:** Think about the boosting process in relation to the decision theoretic experts model and derive a boosting algorithm based on this connection.

 Note: You are welcome to read the paper “Game Theory, On-line Prediction and Boosting” by Rob Schapire and Yoav Freund, but please write the solution in your own words.