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Abstract In this paper, we design negotiation strategies for non-mediated (i.e., to-
tally decentralized) negotiation among multiple agents on multiple issues where the
agents have no knowledge about the preferences of other agents. Most of the existing
literature on non-mediated (i.e., totally decentralized) negotiation considers agents
with either full information or with probabilistic beliefs about other agents’ prefer-
ences on the issues. However, in reality, it is usually not possible for agents to have
complete information about other agents’ preferences or accurate probability distribu-
tions. We design a reactive negotiation strategy for general multiagent multi-attribute
negotiation, where the agents have non-linear utility functions and no information
about the utility functions of other agents. We prove that agents generating offers us-
ing our negotiation strategy reaches to an agreement acceptable to all the agents. We
also prove that rational agents do not have any incentive to deviate from the proposed
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strategy. We further present simulation results to demonstrate that on randomly gen-
erated problem instances, the negotiation solution obtained by using our strategy is
quite close to the Nash bargaining solution.

Keywords Multiagent Negotiation - Distributed Decision Making - Decision
Making under Uncertainty

1 Introduction

In multi-attribute negotiation, two or more parties (or agents), with limited common
knowledge about each others’ preferences, want to arrive at an agreement on a set of
issues over which they have possible conflicting preferences [45, 17,35-37,26]. Dur-
ing a negotiation, there are both cooperative and competitive objectives that drive the
behavior of an agent. Any agreement is better than the best alternative to negotiated
agreement (or BATNA), which implies that an agent would prefer to reach an agree-
ment rather than the negotiation breaking down. On the other hand, she would like to
reach an agreement that is most beneficial to herself. Over the years, different mod-
els with diverse objectives have been developed for negotiation. Some models try to
explain human behavior in negotiation. Other models are for designing autonomous
software agents for application in negotiation support systems and/or distributed de-
cision making in autonomous multiagent systems. We study the negotiation problem
from the perspective of designing systems of autonomous intelligent agents.

The extant literature on the mathematical study of negotiation can be divided into
two broad classes, namely, mediated negotiation and non-mediated negotiation. In a
mediated negotiation, the presence of a non-biased mediator is presumed and agents
interact with each other through the mediator. In a non-mediated negotiation agents
interact with each other directly. In this paper, we consider non-mediated negotiation.
Within the non-mediated negotiation literature, researchers make different assump-
tions about the number of negotiating agents, the number of issues they are nego-
tiating on, and the knowledge that an agent has regarding other agent’s preferences
(modeled using utility functions). Most work to date has focused on two-agent sin-
gle issue negotiation, although there has been some work on two-agent, multi-issue
negotiation (e.g., [15]) or with multiagent, single issue negotiation (e.g., [4]). Fur-
thermore, computational modeling of multi-attribute negotiation has either assumed
(a) complete knowledge of the preference structure of the opponents, i.e., the utility
of the agents are assumed to be known, (e.g., [34]) or (b) a probability distribution
over the preferences of the agents is known (e.g., [22,6,30]). Much of the literature
also assume linear additive utility functions for the agents.

When the utility function is assumed to be linear and information about the oppo-
nent’s utility function is known, monotonic concession strategies and Zeuthen strate-
gies [11] have been proposed for negotiation. Rational strategies that correspond to
sequential equilibrium of a game have been proposed for probabilistic knowledge
about opponent (e.g., [13]). However, these strategies cannot be used if there is no
knowledge about the opponents’ utility functions and the utility functions are non-
linear. In general, a negotiation may involve multiple agents and multiple issues, the
utility functions of the agents may be nonlinear and the agents may not have any



Automated Multiagent Negotiation on Multiple Issues with Private Information 3

knowledge about the utility of the other players. A fundamental open question in
multiagent negotiation in such a general setting, that we study in this paper, is the
following: Is it possible to design negotiation strategies for agents so that they prov-
ably come to an agreement given that they have no prior knowledge about the utility
functions of other agents?

More formally, we consider m (> 2) agents negotiating on a set of N (> 1) is-
sues. We assume that the agents propose sequentially in a pre-specified order (that
may be decided before negotiation begins). When there are two agents, the agents
propose alternately. Each agent has a (strictly) concave nonlinear private utility func-
tion (known only to herself). Therefore, she can compute the utility of any offer to
herself but cannot compute the utility of an offer to any other agent. Each agent also
has a private reservation utility. A reservation utility is the lowest utility of offers an
agent can accept in a negotiated agreement. Consequently, any offer with a utility less
than the reservation utility is not acceptable to that agent. For agents with general util-
ity functions, the utility of an offer is not simply a sum of the utilities of the individual
issues. Therefore, we allow the agents to negotiate with package offers where agents
negotiate on multiple issues simultaneously (instead of issue by issue negotiations).
Although issue by issue offers are more convenient mathematically, packaged offers
have the advantage that they allow agents to make trade-offs over different issues,
which is a realistic feature of many negotiations [14]. Our goal is to design strategies
for generating packaged offers for agents with private information that provably lead
to an acceptable agreement for all the agents.

To illustrate the difficulty of generating an acceptable solution in a multi-issue ne-
gotiation, it is instructive to consider the geometry of a negotiation problem. Figure 1
gives a geometric view of the offer space for three agents (called A, B, C) negotiating
on two-issues. The 3 curves, R4, Rp, and R¢ denote the set of all offers with value
equal to the reservation utility of the agents A, B, and C respectively (i.e., their reser-
vation curves). For each afent, the convex set bounded by the reservation curve is the
feasible offer set and any offer within this set is an acceptable offer to an agent since
it’s utility is not less than the reservation utility. For example, OIA is a feasible offer
for agent A. The zone of agreement (the hatched region in Figure 1) is the set of offers
that is acceptable to all agents. Any point within the zone of agreement is called a sat-
isficing agreement. The objective of the agents is to find a satisficing agreement. Note
that the agents do not know the other agents’ utility functions, and therefore, the zone
of agreement is unknown to the agents. Thus, geometrically speaking, in negotiation,
the goal of the agents is to find a point in the zone of agreement, under the restriction
that none of the agents have any explicit knowledge of the zone of agreement. Note
that if the zone of agreement is empty, no agreement can be achieved.

Let us consider two agents negotiating on a single issue (e.g., a buyer and a seller
negotiating on the price of a house). Here, if the zone of agreement is non-empty (i.e.,
if the lowest price at which the seller is willing to sell is less than the highest price
the buyer is willing to pay), there will always be an agreement reached in the negotia-
tion. This is because an offer of an agent with utility equal to her reservation utility is
acceptable to the other agent. Even for multi-issue negotiation where the agents (with
linear additive utility functions) negotiate issue by issue and have a different reserva-
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Fig. 1 Illustrative sketch of the offer space of 3 agents, A, B, and C, negotiating on 2 issues. The 3 curves,
R4, Rp, and R are the reservation curves of the agents A, B, and C respectively. All offers that lie on
the reervation curve has utility equal to the reservation utility. The convex sets bounded by the three curves

are the feasible offer sets (e.g., 0:4 is a feasible offer for agent A). The zone of agreement is the common
intersection of the three sets which is the hatched region.

tion price! for each issue (e.g., [13]), an agreement can be reached trivially by one
of the parties proposing offers corresponding to her reservation price for each issue.
However, for packaged multiagent multi-attribute negotiation with nonlinear utility
functions, it is non-trivial for an agent to find an offer acceptable to other agents. Even
if she makes an offer that is on her reservation utility, it may still not be acceptable to
the other agent. Figure 1 shows that although the offers O 4, Op, and O¢ gives the
agents A, B, C, their least possible utilities (i.e., they concede as much as they can),
O4, Op, and O¢ do not lie in the (unknown) zone of agreement and hence neither
of them are acceptable to all the agents. In general, there are possibly infinite number
of offers that lie on an agent’s reservation utility that are unacceptable to the other
agents. Thus, in contrast to single issue negotoiation, for multi-issue negotiation with
private information and nonlinear utility function, it is non-trivial to generate offers
acceptable to all agents.

Contributions: In this paper, we present a class of strategies called sequential
projection strategies for generating offers and prove that the agents following such
strategies will reach an agreement. The sequential projection strategies consists of
two steps: (a) A concession step in which the agents reduce the utility of offers that
are acceptable to them (unless they have reached their reservation utility) (b) An
offer generation step in which the agents use the previous offers of their opponents
to generate a new offer with utility equal to their current acceptable utility. Note that
in step (a), although the agents will concede, the amount by which they concede (or

I Note that we use “price” here to be consistent with the literature [13].
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the rule by which they decide on the amount to concede) is not specified. Thus, there
is a degree of freedom in the choice of concession rule (or concession strategy). We
show that the convergence holds for general concave utility functions irrespective of
the specific concession strategy the agents adopt (as long as the agents concede up to
their individual reservation utilities). This class of sequential projection strategies is a
generalization of the alternate projection heuristic that was proposed in the literature
for two agents [27,44].

The concession step is always present (either directly or indirectly) in non-mediated
negotiation strategies where the agents take turns to make offers. It is assumed that
the utility agents obtain from reaching an agreement decreases with time. There are
two rationales given for this assumption. The first is that the value of an outcome
may be time-sensitive and may decrease with time, The second is that in negotiations
with deadlines, the agents must be willing to propose an offer with their reservation
utility at the deadline, since any agreement is better than no agreement. Furthermore,
the agents also want to maximize their own utility and thus they should start at their
maximum utility and concede as time progresses. A common feature of the conces-
sion strategies in the literature [27,44] is that they are assumed to be properties of the
agents themselves and not reactive to the concession strategies of the other agents.
Hence it is not clear in those works whether the agents had any incentive to concede.
Although in real life negotiations, negotiators do concede with time, the concession
behavior is seen even in negotiations where the utility of issues do not decrease with
time or there are no hard deadlines for negotiation. This is because negotiators do
want to come to an agreement and know that if others realize that they are not con-
ceding then there is a chance that the negotiation may stall and one party may walk
out. Here, we design concession strategies for negotiation that conform to this intu-
ition. In other words, we show that during negotiation, concession is rational even
without hard deadlines or issues where utility does not decrease with time. We prove
that if the agents use a reactive concession strategy, i.e., each agent concedes by an
amount equal to her estimate of the amount of concession of her opponents, then the
agents have no incentive to deviate from the concession strategy.

To the best of our knowledge, for non-mediated negotiation, this is the first pa-
per that provides negotiation strategies with guaranteed convergence to a satisficing
solution for general multi-attribute, multilateral negotiation with agents having non-
linear utility functions and no knowledge about other agents’ preferences. We also
demonstrate the performance of the reactive sequential projection strategy through
simulations for two agent negotiation as well as for more general multiagent negoti-
ation.

The remainder of this paper is organized as follows. In Section 2 we give an
overview of the related literature. In Section 3 we outline the framework of automated
negotiation and state the problem that we are studying more formally. In Section 4 we
show our convergence proof of the the sequential projection strategy that we develop
here. Thereafter, in Section 5 we prove that it is rational for the agents to use a reac-
tive concession strategy in the absence of any knowledge about the utility functions
of other agents. In Section 6, we present simulation results on randomly generated ne-
gotiation instances. Finally in Section 7, we summarize our contributions and outline
avenues of future work.
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2 Related Literature

The literature on negotiation can be divided into two broad categories, namely, me-
diated negotiation and non-mediated negotiation [43]. In mediated negotiation, it is
assumed that there is an unbiased mediator who collects the agents preferences and
proposes offers to the agents [27,5,31]. In non-mediated negotiation agents inter-
act with each other and exchange their offers and preferences directly. In this paper,
we are concerned with non-mediated negotiation and therefore we will restrict our
literature review to papers that do not assume the presence of a mediator.

Earlier papers in negotiation or bargaining focused on two-agent single-issue ne-
gotiation. In a complete information setting, different axiomatic solution concepts
were proposed, including, Nash bargaining solution [34], Kalai-Smorodinsky solu-
tion [25], egalitarian solution [24], pareto-optimal solution. However, the process by
which agents should arrive at such a solution was not detailed. It is usually diffi-
cult for agents to arrive at the solutions mentioned above, especially in the absence
of information about the other agents’ preferences. In such settings the notion of a
satisficing solution has been used (see [33] where the authors use the notion of a sat-
isficing solution for solving a distributed planning problem). In our paper, we assume
that agents have no information about other agents’ preferences. Hence, we will be
using a satisficing solution as our solution concept.

To model the iterative negotiation process, the alternating-offer game (or proto-
col) was proposed by Rubinstein [38]. The alternating offer protocol is one of the
most popular negotiation protocols for bilateral single-issue setting. Work in eco-
nomics using the framework of the alternating-offer game often focuses on the single
issue problem. In the original alternating-offer game in [38], as well as subsequent
literature (e.g., [32]), the two players (or agents) with complete information have in-
centive to concede because it is assumed that the utility of the negotiation outcome
decreases with time. Transaction cost of bargaining is another reason for the play-
ers to concede (see [8]). Some studies (e.g., [10], [7]) consider outside options as an
alternative incentive for the players (or agents) to concede over time. These studies
also extend the alternating-offer game to the setting where the two players have in-
complete and asymmetric information, i.e., they are uncertain about the opponent’s
type [18,10,9]. In [40], the authors prove that for single issue negotiation with dead-
line, the rational strategy is to wait for the deadline and make an offer corresponding
to one’s reservation utility. Note that in this case, there is always an agreement. In
other words, in single issue negotiation continuous concession is not a rational strat-
egy. In single issue negotiation with non-empty zone of agreement there is always
an agreement and in the presence of hard deadline and private information waiting is
the best strategy even for risk averse agents [40]. However, for the multi-attribute set-
ting, one cannot guarantee that an agreement will be reached using the above strategy
(as illustrated by Figure 1). In our setting, the agents have no information about the
opponent’s utility structure or type, and we do not assume that the utility of negoti-
ated agreement decreases with time. In our setting, the players concede as a part of
the search process to achieve a possible agreement in the absence of any information
about the opponent’s utility.
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The literature using Al methods focuses on developing tractable heuristics for
negotiating agents to generate offers. Although there is a large body of automated
negotiation literature (see [43] for a comprehensive review), most prior work assumes
either full information or commonly known random distributions. The alternating-
offer game has also been extended to multi-agent or multi-issue negotiation (e.g.,
[14] , [15], [4]). They usually assume that there are two issues in the negotiation
and that the agents utility functions are linear and additive on the values of the two
issues (e.g. [2], [28]). In the presence of incomplete information, Bayesian learning
has been proposed in agents’ negotiation strategy [29]. A classification method for
learning an opponent’s preferences during a bilateral multi-issue negotiation using
Bayesian techniques was developed in [39]. However, the Bayesian updating rule is
only applicable when the agents are of certain set of types.

A common feature of the concession strategies in the literature is that they are
assumed to be properties of the agents themselves and not reactive to the concession
strategies of the other agents (notable exceptions being [1,41]). In [11], the necessity
and difficulty of setting up a monotonic concession protocol is discussed. The au-
thor proposes several definitions of multilateral concession and analyzes their prop-
erties. However, all of these definitions are in the framework of complete information.
In [41], the author proposes a reactive tit-for-tat negotiation strategy and [1] proposes
an extension of contract net protocols to negotiations. Empirical work where reactive
strategies for agents have been proposed include [3, 16]. Experimental comparisons
of human negotiation vs automated negotiation have been made in [16] and it was
shown that reactive concession strategies performed much better than non-reactive
strategies. Therefore, we present a reactive strategy for the agents to concede and
prove that it is a rational strategy.

Mathematically, our work is most closely related to [23,27,44]. In [23] presents
a constraint decentralized proposal method for multi-agent negotiations under the as-
sumption of quasi-linear utility function with a neutral coordinator. Our paper, by
contrast, theoretically addresses incomplete information and does not need the pres-
ence of a mediator. In [44], the authors consider more than two agents negotiating
on multiple issues assuming neither prior information of agents nor linearly addi-
tive utility functions. However, they restrict their setting to be with three agents and
two issues, and their analysis about the convergence is solely via simulations. In our
work, we provide a general theoretical proof of convergence of the sequential pro-
jection protocol that is valid for any number of agents and issues. This paper extends
our previous work [46] on bilateral multi-issue negotiation. A sucinct version of this
work without the proofs and details appeared as an extended abstract in [47].

3 The Negotiation Framework

In this section, we will define the terminology that will be used throughout the paper
and present a formal statement of the negotiation problem that we are studying. For
designing negotiating agents, we need the following key elements: (a) Notion of solu-
tion to the negotiation problem (b) Negotiation protocol and (c) Negotiation strategy.
The solution to a negotiation problem helps in defining the termination criterion of
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the negotiation. The negotiation protocol defines when an agent should provide her
offers to the other agents. The negotiation strategy gives a method for agents to decide
on the offers that they want to propose.

We consider m self-interested agents ¢ € {1,2,...,m}, negotiating on a set of
issues j € {1,2,..., N}. Let [0, 1] denote the unit interval in R and [0, 1]V be the
unit hypercube in RY. We assume that the issues take on continuous values and
the negotiation domain for each issue is {2; = [0, 1] with 0 and 1 corresponding to
the extreme values of the issues. Any point within the unit hypercube is a package
offer or simply an offer. We assume that the utility function of agent i, u; (z), i =
1,2,...,m, is continuous and concave Vz € [0, l]N. Without loss of generality, we
can normalize the range of the agent 4’s utility function to [0, 1]. Each agent, 4, has
a reservation utility, ru;. Any offer with utility less than its reservation utility is not
acceptable to that agent. The set of all feasible offers that an agent ¢ can accept is
At = {x € 0,1 |u; (z) > ru;}. The set A is strictly convex for each i. The zone
of agreement, Z, is defined as the common intersection of the feasible offer sets of all
agents, i.e., Z = O?;lAi. Since the zone of agreement is the intersection of a finite
number of convex sets, it is a convex set. Any offer (i.e., point) within the zone of
agreement is acceptable to all the agents. From the above definitions, it follows that
for a solution to exist to any negotiation problem, the zone of agreement has to be
non-empty. Any point within the zone of agreement is acceptable to every agent and
we call such a solution a satisficing solution to the negotiation. Note that the zone of
agreement is fixed by the utility functions and reservation utilities and cannot change
during a negotiation.

There has been different definitions proposed for a proper negotiation solution.
Axiomatic solution concepts has been proposed for bargaining games (e.g., Nash
bargaining solution [34], Kalai-Smorodinsky solution [25], egalitarian solution [24],
pareto-optimal solution). The set of points that satisfy these different solution require-
ments are all subsets of the zone of agreement. However, computing them requires
that all the agents know each others utility functions. Since an agent does not know
the utility function of her opponent, we use a satisficing solution as our solution con-
cept. A satisficing solution is any agreement that gives the negotiators a utility greater
than or equal to their reservation utility. The use of a satisficing solution in this very
general setting where the agents have no information about their opponents is in the
spirit of Herbert Simon [42].

A key issue in designing negotiating software agents is to choose a protocol
for negotiation. For two agent negotiation, we will assume that the agents use an
alternating-offer protocol [38], where an agent proposes its offer and the other agent
responds to the offer by accepting it or proposing a new offer. For general multi-agent
negotiation, we will use a generalization of the alternating offer protocol, namely, a
sequential-offer protocol. In a sequential-offer protocol, each agent proposes an of-
fer in a fixed sequence. We use a sequential protocol in the multi-agent setting and
assume that the agents propose their offers in a given order. An agent computes her
own offer using the latest offers of all the other agents (including herself) and either
proposes a new offer or accepts the current offer, if the offers made by the previous
agent is within her acceptable offer set. When all agents accept the current offer the
negotiation ends. Given the negotiation protocol, the problem in designing a negotiat-
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ing agent is to compute a strategy for generating offers, which is stated more formally
below.

Problem Statement: Given m agents negotiating on n issues where (a) each
agent, 1, has a strictly concave private utility function, u;, and (b) the zone of agree-
ment has a nonempty interior, find a method for computing the offer an agent should
propose such that it is guaranteed that the agents will follow the offer generation
method and eventually reach an agreement.

3.1 Overview of Solution Approach

Informally speaking, a negotiating agent not only wants to reach an agreement with
the other agent but also may want to obtain as much utility as possible. Thus, when
agents start out in a negotiation, they want to propose offers that have the highest
utility for them and gradually move towards offers with lower utility. However, they
will neither propose nor accept any offer with utility lower than their reservation util-
ity. This intuition implies that, during negotiation, agents gradually reduce the utility
of offers acceptable to them (which is very often seen in practice). Thus agents use a
concession strategy to determine their current utility at time ¢ (denoted by s;(¢)). This
concession continues until an agent reaches her reservation utility. In other words,
si(t) is a monotonically decreasing function of ¢ and s;(t) > ru;, Vt.

In the literature the concession strategy is usually assumed to be non-reactive. It is
assumed that there is a decay parameter for the utility and this decay parameter is just
a property of the agent and does not depend on the other agents concession behavior
(e.g., [12]). In contrast, we assume a reactive strategy of concession, where an agent
concedes according to her perception of how much the other agents present in the
negotiation concede. For agent i, let A% be the set of all offers that have utilities higher
than s;(t) at time ¢. The set, AL = {x € [0,1]" |u; (z) > s;(¢)}, is called the current
feasible offer set of agent 4. For all ¢, Ai is a convex set and Aﬁ C Ag C...C A
The boundary of the set A! is called the indifference surface (or curve) of agent i at
time ¢.

Agent Strategy: The negotiation strategy that we will use consists of two steps [27].
When it is the turn of agent ¢ to make an offer, she accepts the current offer if it is
satisficing. Otherwise, agent ¢ uses the last two offers of every other agent j to com-
pute the difference in the utilities of the offers to her (we denote this by Aw,;. The
amount by which agent i reduces her utility to compute her current utility is equal
to the minimum Aw;; computed over all the other agents j. She then generates an
offer on the indifference surface corresponding to her current utility by projecting the
mean of all the other agents latest offers to her current indifference surface. Note that
this method generates an offer that is satisficing to the agent and closest (in terms of
Euclidean distance) to an average offer made by the other agents.

In the next section, we will first present the sequential projection method for
computing offers for an agent and then give a convergence proof for the method. For
presentation purposes, we will first assume that agents use some strategy for con-
cession without making any assumptions of what the strategy is. We will show that
under this very general assumption the sequential projection method ensures that the
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agents converge to an agreement. We will then restrict our attention to the class of
concessions strategies that ensures that the agents reach their reservation utility in fi-
nite time. We will show that in these conditions, the agents can reach an agreement in
finite time. Finally, we will show that agents using a reactive concession strategy is a
rational strategy since it allows the agents to determine if any of the other agents stop
conceding. Although the results in this paper on multiagent negotiation is applicable
to two agent negotiation, we will discuss the two agent negotiation separately since
this problem is important by itself. For the presentation of the proofs we will present
the proofs for the general multiagent case.

4 Offer Generation Method

We now present the sequential projection method for an agent to generate her offer,
given the latest offers of all the other agents. As stated before, the agents make their
proposals in a fixed pre-determined sequence. We assume at period ¢t = 0, each of the
agents propose an offer maximizing her own utility. After initialization, the agents
proposes sequentially, such that at time ¢ = 1, agent 1 proposes, at time ¢ = 2, agent
2 proposes and so on. Let 27 be the standing offer (i.e., the last offer the agent j made)
of agent j in period t. let P4 [x] be the projection of point  on the set A with P being
the projection operator. If a proposal by an agent ¢ is not the same as the standing
offers made by all the other agents in period ¢, agent 7 4+ 1 proposes her own offer at
time ¢ + 1. The agent determines her offer by projecting the convex combination of
all of the agents’ standing offers to her current indifference surface in period t + 1.
More specifically, agent 7 4- 1 at period ¢ + 1 proposes

m
i+1 ) 49 .0
Tit1 —PAlﬁ[Zat xt} ey
j=1

where A;ﬁ is the set of acceptable offers for agent ¢ + 1 at time ¢ + 1, the weight
that agent ¢ puts on the standing offer of agent j is ai’j and Z;”zl ai’j =1

In order to understand the working of the offer generation method, let us first look
at the two-agent case. In this case, as stated below, we can choose the weights ai’j
such that the agent uses only the last offer of her opponent to determine her offer.
This method was presented in [27] and we call it the alternating projection method.
Figure 2 presents an example of the alternating projection proposing method for two
agents negotiating on two issues. In this example, the solid indifference curves belong
to agent 1 and the dashed indifference curves belong to agent 2. In period ¢ — 4, agent
1 proposes an offer x}_,. Agent 2 rejects this offer and both agents update their
indifference curves. In period ¢ — 3, agent 2 identifies #7_5 on her indifference curve
such that 22 _; is the projection of x}_ to her indifference curve. Agent 2 offers 27 _,
agent 1 rejects this, and both agents update her indifference curve. In period ¢ — 2,
agent 1 identifies z;_, by projection of 7 5 to her current indifference curve and
proposes it to agent 2. The process continues until an offer is accepted or the deadline
is reached.
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Fig. 2 The alternating projection protocol for two issues and two agents

For general multiagent negotiation, to simplify the notations and presentation,
we assume a;” = 1/mfori,j € {1,2,---,m},t > 0 (although the discussion and
results below holds for general values of a;” satisfying > a;”’ = 1). Therefore, agent
i+1 at period t+1 proposes an offer according to ;1] = P At [% Py ) } , where
xi is the newest offer proposed by agent j until period ¢. For notational convenience,
we define w; = % Z;”:l x]. Figure 3 illustrates the sequential projection method
for three agents negotiating on two issues. At time ¢ — 1, it is agent 1’s turn to make
an offer. The standing offers at period + — 1 from agent 2 is z7_; = x?_; since
agent 2’s previous proposal was at time ¢ — 3. Similarly, the standing offer of agent
3is x}_, = x}_,. Agent 1 combines the most recent offers of every agent, i.e.,
xi_4, T35, x5 to compute the point w;_» and project onto her indifference surface
at ¢ — 1 (the solid curve which is obtained using her concession strategy). Similarly,
at time ¢, it is agent 2’s turn to offer and she computes her own offer by projecting the

point w;_1 (computed by averaging z;_,,z7_5,z3_,) and the negotiation proceeds.

4.1 Convergence of Offer Generation Method

In this section, we prove that if the agents follow a sequential projection strategy
along with a concession strategy for offer generation the agents can converge to an
agreement if the zone of agreement is non-empty. For multi-issue negotiation with
private utility function, the agents don’t know the non-empty zone of agreement,
even if one exists. Therefore, the existence of non-empty zone of agreement cannot
guarantee that agents will reach an agreement, even if they are given enough time.
Thus, we need to examine whether the negotiation strategy is convergent or not. The
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Fig. 3 The sequential projection method for three agents negotiating on two issues.

convergence results are valid for any concession strategy and we will not make any as-
sumption about the rate of concession. This implies that our results hold even if each
agent in the negotiation can have a different concession strategy. Since the alternating
projection strategy for two agents is a special case of the multiagent sequential pro-
jection strategy, it also implies that the alternating projection strategy for two agent
negotiation is a provably convergent strategy.

We will now state the main convergence theorems and lemmas required to prove
the results. The proofs of all the theorems and the lemmas are presented in Appendix
A. We will first need a classical result from convex geometry [].

Lemma 1 Let A be a nonempty closed convex set in |0, 1]N. Then for any © €
[0, 1]N ,y € A, we have the following:

(Palz] —y) (y — ) < —||Palz] — yl°, 2)
|Pafz] — )| < llz = y)|* — || Pa[z] — yl*. 3)

Proof See Appendix A.

Lemma 1 is a classical result from the convexity of the set that will be used for
proving our main results. Theorem 1 states that the offer generation method ensures
that the distance between the new offer generated by an agent and the mean of all
the previous offers never increases. This fact is used in proving our main claim in
Theorem 2

Theorem 1 Let xi be the offer of agent i at time t and w; be mean of the standing

. ; 29 . .
offers at time t from all agents. Then the sequence {> .-, Hxi — Wy || } is monotoni-
cally non-increasing with t.
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Proof See Appendix A.

Theorem 2 [f the zone of agreement has a non-empty interior, the sequential projec-
tion proposing protocol will always converge to an agreement.

Proof See Appendix A.

4.2 Finite Time Convergence of Offer Generation Method

In the previous subsection, we did not make any assumptions about the time an agent
takes to concede to the reservation utility. In theory, an agent can adopt a concession
strategy such that the reservation utility is reached asymptotically (or in infinite time).
However, for practical purposes, we can assume that agents will use a concession
strategy such that they reach their reservation utility in finite time. We now study
the finite time convergence properties of the sequential projection method for offer
generation.

To understand finite time convergence properties of a method for computing of-
fers, we study the following question: Given that the concession strategies of the
agents are such that all the agents reach their reservation utilities in finite time, say
Ty, do the agents converge to an agreement in finite time (provided the zone of agree-
ment has a non-empty interior)? Note that here also, we do not make any assumptions
about the specific concession strategy used by the agents. The answer to this question
is yes in general and we prove this in Theorem 3 below.

Theorem 3 For m agents negotiating on N issues, if the agents use concession
strategies such that they reach their reservation utility in finite time, then they can
reach an agreement in finite time (assuming that the zone of agreement has a non-
empty interior).

Proof See Appendix A.

Theorem 3 is an immediate result from Theorem 1 and Theorem 2. Intuitively
speaking, as we can guarantee the convergence of the sequence {) ;" ||x§ —wy Hz}
using the fact that the sequence is non-increasing (by Theorem 1) and that the se-
quence has finite sum (shown in Theorem 2) , we have Ve > 0, 3T > 0, s.t., V¢t > T,
> Hx% — th2 < €. In words, the distance between the offers generated by an
agent and the mean of the current offers of all the agents will decrease to zero (within
a numerical error tolerance €) in finite time.

5 Incentive of agents to concede

In the previous sections, we described a class of convergent negotiation strategies for
automated agents. We proved that if agents use any strategy from the class of con-
ceding sequential projection strategies then it is guaranteed that the agents will reach
an agreement provided the zone of agreement is non-empty. As stated earlier, any
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concession strategy in the class consists of determining the utility of the offer that an
agent should propose and choosing one offer from all the alternatives with the same
utility. We first note that if an agent ¢ concedes, there is no incentive for her to propose
an offer on the indifference surface that is not the projection of the convex combina-
tion of other agents’ offers. This is because all points on the indifference surface of
agent ¢ have the same utility and by proposing another point she may decrease the
chance of reaching an agreement (since the convergence proof holds only for projec-
tions). However, it is not clear what should be the choice of the concession rate, i.e.,
a choice of concession rate that doesn’t leave the agent vulnerable to be exploited
by other agents who may be using different concession rates. Here we show that if
the agents use a reactive concession strategy, then the agents are not vulnerable to
exploitation.

We prove that there is a reactive concession strategy, namely, conceding by an
amount equal to the minimum of the perceived change in utility of the other agents’
offers that is rational. More precisely, we prove that if any of the agents do not con-
cede, it is possible for the other agents to determine this within a finite number of
rounds and hence stop conceding. This combined with the fact that an agent does not
know other agents’ utility provides the threat of the negotiation coming to a stall, even
if the zone of agreement is non-empty. Since the utility of a negotiated agreement is
not worse than the utility for breakdown, it is rational for an agent to concede.

We now prove that if agent ¢ stops conceding, and all other agents use a reactive
strategy, the negotiation can stall. As shown in Figure 4, let agent i propose ¢ at

u;(x) = ui(xti) = s;(t)

..v-"~._n_l‘t'l-(x)=5j(t) vy

Note: A= u;(x*;;) — u;(x,%) u;(x) = w;(x*y)

Fig. 4 Figure for proving that there is an incentive to concede

time ¢. If agent ¢ stops to concede from time ¢, all offers proposed by agent ¢ after
time ¢ are on the indifference curve u; (z) = u; (z}) = s; (¢). Let ] ; be the point
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on the indifference surface u; (x) = s; (t) such that u; (x) = u; (2} ;) is the high-
est possible perceived utility by agent j. Therefore, without loss of generality, the
minimum of the perceived utility improvement from other agents’ offers (including
agent 7) for agent j would be smaller or equal to A; = u; (x;* j) — Uy (x%) Thus,if
agent ¢ stops conceding, using the reactive strategy agent 7 would concede by no
more than A;. If A; < s; (t) — u; (27 ;), where s; (¢) is the current utility level
of agent j at time ¢, the negotiation will stall (see Figure 4 for the two-issue case),
as there would be no agreement between agent ¢ and agent j. Since agent ¢ has no
knowledge about the utility function of other agents, she is uncertain about whether

Vi, 7 € {1,2,---,m}, j # i, the largest possible perceived utility improvement
from agent ’s offers, A; = u; (7 ;) — u; (2}), is larger than s; (t) — u; (] ;).

Thus, agent ¢ is not sure about whether there will be an agreement or not if she stops
to concede at any time ¢. Since an agreement would provide higher utility than her
reserved utility for no agreement, agent ¢ would not stop conceding. Therefore, all
of the agents would keep conceding through the negotiation process. The above dis-
cussion shows that concession is rational for agents even in negotiations without any
hard deadlines or when the utility of negotiated outcome does not decrease with time.

6 Simulation Results

In this section we present simulation results depicting the practical performance of
our reactive negotiation strategy. We evaluate our solution with respect to the Nash
bargaining solution [34]. An alternative is to evaluate the solution by measuring
its distance from the Pareto optimal solution set. However, in higher dimensional
settings that appear in general multilateral multi-attribute negotiation, there are no
known efficient algorithms to compute the Pareto optimal set. Hence, we use the
Nash solution, which is also Pareto optimal. The Nash solution maximizes the joint
utility (i.e., the product of the utilities) of the agents. For the class of (strictly) con-
cave utility functions that we consider, the Nash solution can be obtained by solving
a convex optimization problem and hence we can easily find this solution irrespective
of the number of negotiating agents or number of negotiation issues.

For the utility function of the agents we have assumed a very general hyper-
quadric function [21]

up(z) =1— Z |H;(z)

where z is the n-dimensional proposal vector, H;(z) = Z;\le a;jxj, s = li/mg, L, m; €
Z7F; f(x) is strictly concave if 1 < n; < co. Hyperquadrics are a very general class
of functions used in computer graphics [21] and can model a wide range of convex
functions. The feasible set of offers for an agent k at time ¢ is the intersection of the
unit n-dimensional hypercube [0, 1]V with u(x) > s (t). Popular convex functions
for modeling utilities in economics like the Cobb-Douglas functions can be shown to

be special cases of the hyperquadric function. The sole reason for using this function
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Fig. 5 Sequence of offers made by 5 agents in a three-issue negotiation scenario when agent 1 stops
conceding. The agents use sequential projection along with reactive concession for generating offers. The
agents come to a deadlock and no agreement is obtained although in this case the zone of agreement in
non-empty (to avoid clutter, the zone of agreement is not shown here). This shows that an agent may not
reach an agreement at all if she does not concede.

is that it is possible to generate a wide variety of preference structures for the agents
with these functions.

The perceived utility of agent ¢ for agent;’s offer, x; is u;(x ;). Thus the minimum
perceived utility change from all other agents’ offers by agent 7 at round ¢ is

A () = min ug (2l ) = ui(2f7) )
J

where xg_l] and xg—z] denote the last two offers proposed by agent j. The current
utility of agent 4 in round ¢ is given by s;(t) = s;(t — N) — Au;(t), where s;(t) is the
acceptable utility of agent ¢ at time ¢. Figure 5 shows a simulation where the agent
1 stops conceding after reaching half of its reservation utility. Since all other agents
are reactive, they realize within a few steps that agent 1 is not conceding and they
also stop conceding. Hence the agents do not reach an agreement, as the concession
of the agents stop, although their zone of agreement is nonempty. Thus, in the results
that follow, we do not allow any agents to stop conceding, since that may result in no
agreement.

Table 1 shows the performance of the algorithm when the adjusted time-dependent
concession strategy is used. The reservation utility of the agents are assumed to be
0.2 here. The number of agents are varied between 2 and 9. The results are aver-
aged over 100 random runs for each row of the table. The numerical tolerance used
for convergence is 0.001. As can be seen from Table 1 (second and third columns),
the number of rounds required for convergence are fairly constant. The fourth column
gives the ratio of our solution to the Nash solution. For randomly generated instances,
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Table 1 Performance of the sequential projection algorithm with reactive concession strategy.

Number of | Number of rounds | Ratio of Joint Utility
agents Mean SD Mean SD
2 72.07 10.30 0.9278 0.0874
3 86.39 15.57 0.8825 0.0865
5 94.68 7.49 0.8819 0.0851
7 95.46 6.74 0.8846 0.0740
9 96.72 5.17 0.9023 0.0691

Table 2 Performance of the sequential projection algorithm with 9 agents negotiating on different number
of issues.

Number of | Number of rounds | Ratio of Joint Utility
issues Mean SD Mean SD
2 79.00 4.67 0.9162 0.0653
3 89.00 4.06 0.9267 0.0247
4 91.56 5.46 0.9377 0.0348
5 94.60 4.16 0.9014 0.0539

Table 3 Performance of the sequential projection algorithm with 5 agents negotiating on 5 issues with
different reservation utilities.

Reservation | Number of rounds | Ratio of Joint Utility
utilities Mean SD Mean SD
0.1 77.70 6.60 0.8546 0.0717
0.2 79.60 5.02 0.8938 0.0570
0.3 84.20 5.94 0.8993 0.0474
0.4 80.30 5.62 0.8785 0.0551

the solution obtained is quite close to the Nash bargaining solution (fourth and fifth
columns).

In order to check the robustness of the algorithm, we check the sensitivity of the
algorithm to the number of issues and the reservation utility of the agents. Table 2
shows the performance of the algorithm for 9 agents negotiating on different number
of issues. The results in Table 2 shows the number of rounds is quite stable if we
increase the number of issues. Table 3 shows the performance of the algorithm for 5
agents negotiating on 5 issues with different reservation utilities. The results in Table
3 shows the number of rounds is quite stable if we increase the reservation utilities of
the agents as long as the zone of agreement is non-empty.

It should be noted that during each round, each agent simply computes the closest
point on a convex set to a given convex set. This computation is usually very fast and
can be done at a rate of the order of 1000 computations per second for less than 10
issues on current processors. For 9 agents it takes less than a second to reach the
agreement. Thus, the negotiation strategy is computationally simple and outcomes
can be obtained without much of a delay.
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7 Concluding Remarks

In this paper, we propose a class of sequential projection strategies for general mul-
tilateral multi-attribute negotiation where agents have no knowledge about the other
players’ utility functions. We prove that if all agents use any strategy from this class
they are guaranteed to arrive at an agreement. Further, a sequential projection strategy
with a reactive concession function is a rational strategy for the agents. The conver-
gence guarantees hold for any nonlinear concave utility function. We also performed
computational experiments to demonstrate that, in practice, the quality of solution ob-
tained by our algorithm is quite close to the Nash bargaining solution (that maximizes
the joint utility of the agents). The negotiation converges in a reasonable number of
iterations and scales well as the number of agents or number of issues are increased.

This work can be extended in several directions. One direction is to design ra-
tional strategies for agents to negotiate in the presence of hard deadlines. Another
possibility is to extend this sequential projection method to negotiation between mul-
tiple negotiation teams. At present our agents are myopic in nature and do not try to
learn the other agents utility function from the sequence of offers. It would also be
interesting to investigate whether the agents can be incorporated with some learning
capability so that they converge faster to an agreement or to a more efficient solution.
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8 Appendix A

Proof (Lemma 1) :
For any z € [0, I]N, y € A, Pa[z] is the projection of point x on set A. We have

(Palz] —y) (y — ) = (Paz] —y) (y — Pa[z])

/ ®)
+ (Pale) = y) (Pale] - o).
Since A is a convex set, by the property of the projection operator, we have
(Palz] —y) (Pala] —2) <0, (6)

Using (6) in (5) we obtain inequality (2), namely,

(Pale] =)' (y—2) < = ||Pafa] — yl*.

We also have

|1Pa 2] — z|” = lz — y||* + || Pa [2] — y®
+2(Palz] —y) (y — x) (7)
<z —yl® = |Pa 2] -yl

where the last inequality was obtained using (2).

Proof (Theorem 1) :
Let agent ¢ + 1 be the agent proposing an offer ;7 in period ¢ + 1. Then we have

i+1

i+1 Y

vily = Py [wi] 2y = 27, # i, and ®)
1 i1 i1

wipr = wy + — (ziiy — ). ©)

Using the results above, we can get
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m .
Z ||$§+1 — w1 )?
=1

Jj=

m
= Z 4741 — wepr|® + lzit] — wega|?
—1
il

<.
Y.

NE

. m—1_ . .
I = will? + T it - a2

1

J
+2 (x;ﬂ — xi"’l)/ (xi“ — wt) . (10)

By Lemma 1, we have
(il = ™) (@ = w) < = |J2iit - 27

which in turn gives

m .
Z Hxi+1 - wt+1||2

j=1
m
<3 fad — w2 = P R
j=1
m .
<Dl —w?
j=1

Proof (Theorem 2) :

Suppose 3 s, s.t. A; = N, AL # @, (otherwise V¢, N™, A} = &, which implies
there is no interior point contained in the set lim;_,~, N7, A?) then as A} C A}, for
i € {1,2,...,m}, we have Vt > s, Al + &. Let

ey = Pai [wi1] —wi 1. (1)

Without loss of generality, we assume agent 1 proposes in period s + 1. Then by
Lemma 1,Vi € {1,2,--- ,m},

letsall” < lewsior — 2l = [y, — 2

Lm‘
s

Thus, by summing (12) over all agents, we get

IN

J 2 i 2
i — || — ot —al”. (12)

m m

SIENERI 3

i=1j=1

. 2 m ) 9
=] = leb=all. a3
=1
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Moreover, z =zl =--- =2, jandal,, =l ., =--- =2’ . There-
fore,
m m 2
D) Ol ERE
i=1 j=1
m — . m .
:Z Z |xs+j_x|‘2+ZHxi+jfl _37“2}
=1 j=1 Jj=t
m  m ) m )
=D > ey =P+ Y0 el —al?
j=li=5+1 Jj=11:i=1
m . m .
=Y (m=j)llaly; =+ dllad,, (14)
j=1 j=1
By substituting (14) into (13), we obtain
Dollebl> <> — (751 = 2l = oty — 2] (15)
i=1 i=1

The inequality (15) holds for s = s +kmand 2%, 1y,,1; = Thipmpi1s Yk € N,
S0

Z He;-&-kmﬂ‘ H

NE

k=11=1

<5 L ety ol [l — o]
k:li:17n
m .

=3 = {llebsis =2l = llebs msi — =] (16)
=1

When R — oo, the inequality (16) implies

hm Z Hes+km+l | =0.

Hence, limy . ||e}|| = 0 for all 4.
Proof (Theorem 3) :
From inequality (16) in Theorem 2, we have
R m
[ea——

=1i=1

N} . 2 : 2
> L [letics = 2l = b — 2l

=1

o

IN
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Moreover, from the definition of ei, we can obtain

> |

=1

i
es+(k+1)m+i

9 M. ,
< Z ||eé+k’m+i|| , Vke N.
i=1

Thus,

m ] 9
§ : He;-i-Rm-i-iH
=1

1 ) , .
<% ; % {Hxl’sﬂfl || = |laty pmss — mm

3

< F 3 ety -l
= R P m s+i—1

which implies, Ve > 0, there exists T > 0, where

S et — )
i=1m s+i—1

€

T=s+R +1

such that vVt > T, 3" | Hei“2 <e.

9 Appendix B

For completeness purpose, we present the convex optimization formulation for find-
ing the Nash bargaining solution. In [34], Nash gave an axiomatic approach to define
reasonable outcomes in a negotiation. This discussion is available in the original pa-
per and many subsequent works. In this paper, we are using a convex optimization
approach for computing the Nash bargaining solution. Hence, we will restrict our
discussion to the formulation of the optimization problem. Let there be m agents ne-
gotiating on n issues with the issues taking on continuous values between 0 and 1 .
Let u;(z) be the utility function of agent ¢, which is assumed to be concave. Without
loss of generality, we assume that no-agreement results in a utility of 0. The objective
function to be maximized is the joint utility, namely,

fla) =] wix) (17)
=1

Since u;(x) is concave and non-negative, f(x) is non-negative, and hence maximiz-
ing f(x) is equivalent to maximizing log(f(z)). Let z; denote the jth component of
z. The convex optimization problem to be solved for computing the Nash equilibrium
is

maximize Z log(u;(x))

=t (18)
st. wi(z)>ru; i=1,...,m,

0<z; <1, Vj=1,...,n.
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where ru; is the ultimate reservation utility of agent 7. Since each u; is a concave
function of z, the set of constraints in (18) forms a convex set. The objective func-
tion to be maximized is a sum of log-concave functions and hence the problem is
a convex optimization problem. In the paper, we have used the solver CVX [20, 19]
implemented in MATLAB for obtaining the Nash bargaining solutions.



