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Abstract

Several systems possess the flexibility to serve requests in more than one way. For instance, a distributed
storage system storing multiple replicas of the data can serve a request from any of the multiple servers that
store the requested data, or a computational task may be performed in a compute-cluster by any one of multiple
processors. In such systems, the latency of serving the requests may potentially be reduced by sending redundant
requests: a request may be sent to an excess number of servers, and it is deemed served when the requisite number
of servers complete service. Such a mechanism trades off the possibility of faster execution of at least one copy of
the request with the increase in the delay due to an increased load on the system. Due to this tradeoff, it is unclear
when redundant requests may actually help. Several recent works empirically evaluate the latency performance of
redundant requests in diverse settings.

This work aims at a rigorous analytical study of the latency performance of redundant requests, with the primary
goals of characterizing the situations when sending redundant requests will help (and when not), and designing
optimal redundant-requesting policies. We first present a model that captures the key features of such systems. We
show that when service times are i.i.d. memoryless or “heavy”, and when the additional copies of already-completed
jobs can be removed with negligible costs, redundant requests reduce the average latency. On the other hand, when
service times are “light” or when service times are memoryless and removal of jobs results in a non-negligible
penalty, not having any redundancy in the request is optimal under high loads. Our results hold for arbitrary arrival
processes.

I. INTRODUCTION

Several systems possess the flexibility to serve requests in more than one way. For instance: in a cluster with
n processors, a computation may be performed at any one of the n processors; in a distributed storage system
where data is stored using an (n, k) Reed-Solomon code, a read-request may be served by reading data from any
k of the n servers; in a network with n available paths from the source to the destination, communication may be
performed by transmitting across any one of the n paths. In such settings, the latency of serving the requests can
potentially be reduced by sending redundant requests. Under a policy of sending redundant requests, each request
is attempted to be served in more than one way. The request is deemed served when it is served in any one of
these ways. Following this, the other copies of this request may be removed from the system.

It is unclear whether such a policy of having redundant requests will actually reduce the latency (or not). On one
hand, for any individual request, one would expect the latency to reduce since the time taken to process the request
is the minimum of the processing times of its multiple copies. On the other hand, introducing redundancy in the
requests consumes additional resources and increases the overall load on the system, thereby adversely affecting
the latency.

Many recent works such as [1]–[11] perform empirical studies on the latency performance of sending redundant
requests, and report reductions in latency in several scenarios (but increases in some others). However, despite a
significant interest among practitioners, to the best of our knowledge, no rigorous analytical characterization is
known as to when redundant requests help in reducing latency (and when not). This precisely forms the goal of
our work. In this paper, we consider a model based on the ‘MDS queue’ model [12], which captures the key
features of such systems, and can be used as a building block for more complex systems. Under this model, for
several classes of distributions of the arrival, service and removal times, we derive the optimal redundant-requesting
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n k
Arrival
process

Service
distribution Buffers

Removal
cost Load Optimal policy Theorem #

any 1 any i.i.d., memoryless centralized 0 any send to all 1
any any any i.i.d., memoryless centralized 0 any send to all 2
any 1 any i.i.d., heavy-everywhere centralized 0 high send to all 3
any 1 any i.i.d., light-everywhere centralized any high no redundancy 4
any 1 any i.i.d., memoryless centralized >0 high no redundancy 5
any any any i.i.d., memoryless distributed 0 any send to all 6
any 1 any i.i.d., heavy-everywhere distributed 0 high send to all 7
any 1 any i.i.d., light-everywhere distributed any high no redundancy 8
any 1 any i.i.d., memoryless distributed >0 high no redundancy 9

TABLE I: Summary of analytical characterizations of when redundant requests reduce latency, and the optimal policy of
redundant-requesting under various settings. The ‘heavy-everywhere’ and ‘light-everywhere’ classes of distributions are defined
subsequently in Section IV. An example of a heavy-everywhere distribution is a mixture of exponential distributions; two
examples of light-everywhere distributions are an exponential distribution shifted by a constant, and the uniform distribution.
By ‘high load’ we mean a 100% utilization of the servers.

policies. These results are summarized in Table I. Our proof techniques allow for arbitrary arrival sequences and
are not restricted to (asymptotic) steady-state settings.

The remainder of this paper is organized as follows. Section II discusses related literature. Section III presents
the system model with a centralized buffer. Section IV presents analytical results for such a centralized setting.
Section V describes a distributed setting where each server has its own buffer. Section VI presents analytical results
under this distributed setting. Finally, Section VII presents conclusions and discusses open problems. Appendix A
presents properties and examples of the heavy-everywhere and light-everywhere distributions defined in the paper.
Appendix B contains proofs of all the analytical results.

II. RELATED LITERATURE

Policies that try to reduce latency by sending redundant requests have been previously studied empirically in [1]–
[11]. These works evaluate the performance under redundant requests for several applications, and report reduction
in the latency in many cases. For instance, Ananthanarayanan et al. [5] consider the setting where requests take
the form of computations to be performed at processors. In their setting, requests have diffferent workloads, and
the authors propose adding redundancy in the requests with lighter workloads. They observe that on the PlanetLab
network, the average completion time of the requests with lighter workloads improves by 47%, at the cost of
just 3% extra resources. Huang et al. [6] consider a distributed stoage system where the data is stored using an
(n = 16, k = 12) Reed-Solomon code. For k′ ∈ {12, 13, 14, 15}, they perform the task of decoding the original data
by connecting to k′ of the nodes and decoding from the k pieces of encoded data that arrive first. They empirically
observe that the latency reduces upon increase in k′. In a related setup, codes and algorithms tailored specifically
for employing redundant requests in distributed storage are designed in [13] for latency-sensitive settings, allowing
for data stored in a busy or a failed node to be obtained by downloading little chunks of data from other nodes.
In particular, these codes provide the ability to connect to more nodes than required and use the data received
from the first subset to respond, treating the other slower nodes as erasures. Vulimiri et al. [7] propose sending
DNS queries to multiple servers. They observe that on PlanetLab servers, the latency of the DNS queries reduces
with an increase in the number of DNS servers queried. Dean and Barroso [8] observe a reduction in latency in
Google’s system when requests are sent to two servers instead of one. Liang and Kozat [9] perform experiments
on the Amazon EC2 cloud. They observe that when the rate of arrival of the requests is low, the latency reduces
when the requests are sent to a higher number of servers. However, when the rate of arrival is high, they observe
that a high redundancy in the requests increases the latency.

To the best of our knowledge, there has been no rigorous theoretical characterization of the settings where
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Algorithm 1 First-come, first-served scheduling policy with redundant requests
On arrival of a request (“batch”)

divide the batch into r jobs
assign as many jobs (of the new batch) as possible to idle servers
append the remaining jobs (if any) as a new batch at the end of the buffer

On completion of processing by a server (say, server s0)
let set S = {s0}
if the job that departed from s0 was the kth job served from its batch then

for every server that is also serving jobs from this batch do
remove the job and add this server to set S

end for
end if
for each s ∈ S do

if there exists at least one batch in the buffer such that no job of this batch has been served by s then
among all such batches, find the batch that had arrived earliest
assign a job from this batch to s

end if
end for

sending redundant requests helps (and where it does not help). The two related theoretical results that we know
of are [14] and [9]. In [14], Joshi et al. consider the arrival process to be Poisson and the service to be i.i.d.
memoryless, and provide bounds on the average latency faced by a batch in the steady state when the requests
are sent (redundantly) to all the servers. However, no comparisons are made with other schemes of redundant
requests, including the scheme of having no redundancy in the requests. In fact, our work can be considered
as complementary to that of [14], since we complete this picture by proving that under the models considered
therein, sending (redundant) requests to all servers is indeed the optimal choice. In [9], Liang and Kozat provide an
approximate analysis of a system similar to that described in this paper under the assumption that arrivals follow a
Poisson process, and using insights from their approximations, they experiment with certain scheduling policies on
the Amazon EC2 cloud. However, no measures of the accuracy of these approximations are provided, and neither
is it known whether these approximations lead to any upper/lower bounds.

III. SYSTEM MODEL: CENTRALIZED BUFFER

We shall first describe the system model followed by an illustrative example. The model is associated to three
parameters: two parameters n and k that are associated to the system, and the third parameter r that is associated
to the redundant-requesting policy. The system comprises a set of n servers. A request can be served by any
arbitrary k distinct servers out of this collection of n servers. Several applications fall under the special case of
k = 1: a compute-cluster where computational tasks can be performed at any one of multiple processors, or a
data-transmission scenario where requests comprise packets that can be transmitted across any one of multiple
routes, or a distributed storage system with data replicated in multiple servers. Examples of settings with k > 1

include: a distributed storage system employing an (n, k) Reed-Solomon code wherein the request for any data can
be served by downloading the data from any k of the n servers, or a compute-cluster where each job is executed
at multiple processors in order to guard from possible errors during computation.

The policy of redundant requesting is associated to a parameter r (k ≤ r ≤ n) which we call the ‘request-
degree’. Each request is sent to r of the servers, and upon completion of any k of these, it is deemed complete.
To capture this, we consider each request as a batch of r jobs, wherein each of the r jobs can be served by any
arbitrary r distinct servers. The batch is deemed served when any k of its r jobs are serviced. At this point in
time, the remaining (r − k) jobs of this batch are removed from the system. Such a premature removal of a job
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Fig. 1: Illustration of the setting for parameters n = 4, k = 2 and request-degree r = 3, as described in Example 1.

from a server may lead to certain overheads: the server may need to remain idle for some (random) amount of
time before it becomes ready to serve another job. We shall term this idle time as the removal cost.

We assume that the time that a server takes to service a job is independent of the arrival and service times of
other jobs. We further assume that the jobs are processed in a first-come-first-served fashion, i.e., among all the
waiting jobs that an idle server can serve, it serves the one which had arrived the earliest. Finally, to be able to
perform valid comparisons, we assume that the system is stable in the absence of any redundancy in the requests
(i.e., when r = k). The arrival process may be arbitrary, and the only assumption we make is that the arrival
process is independent of the present and past states of the system.

We consider a centralized system in this section, where requests enter into a (common) buffer of infinite capacity.
The choice of the server that serves a job may be made at any point in time. (This is in contrast to the distributed
system considered subsequently in Section V, wherein this choice must be made upon arrival of the request into
the system).

The scheduling algorithm is formalized in Algorithm 1. Note that the case of r = k corresponds to the case
where no redundancy is introduced in the requests, while r = n corresponds to maximum redundancy with each
batch being sent to all the servers.

The following example illustrates the working of the system.

Example 1. Fig. 1 illustrates the system model and the working of Algorithm 1 when n = 4, k = 2 and r = 3.
The system has n = 4 servers and a common buffer as shown in Fig. 1a. Let us denote the four servers (from
left to right) as servers 1, 2, 3 and 4. Each request comes as a batch of r = 3 jobs, and hence we denote each
batch (e.g., A, B, C, etc.) as a triplet of jobs (e.g., {A1, A2, A3}, {B1, B2, B3}, {C1, C2, C3}, etc.). A batch is
considered served if any k = 2 of the r = 3 jobs of that batch are served.

Fig. 1b depicts the arrival of batch A. As shown in Fig. 1c, three of the idle servers begin serving the three
jobs {A1, A2, A3}. Fig. 1c depicts the arrival of batch B followed by batch C. Server 4 begins service of job
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B1 as shown in Fig. 1d, while the other jobs wait in the buffer. Now suppose server 1 completes servicing job
A1 (Fig. 1e). This server now becomes idle to serve any of the jobs remaining in the buffer. We allow jobs to
be processed in a first-come first-served manner, and hence server 1 begins servicing job B2 (assignment of B3

instead would also have been valid). Next, suppose the second server completes service of A2 before any other
servers complete their current tasks (Fig. 1f). This results in the completion of a total of k = 2 jobs of batch A,
and hence batch A is deemed served and is removed the system. In particular, job A3 is removed from server 3

(this may cause the server to remain idle for some time, depending on the associated removal cost). Servers 2 and
3 are now free to serve other jobs in the buffer. These are now populated with jobs B3 and C1 respectively. Next
suppose server 3 completes serving C1 (Fig. 1g). In this case, since server 3 has already served a job from batch
C, it is not allowed to service C2 or C3 (since the jobs of a batch must be processed by distinct servers). Since
there are no other batches waiting in the buffer, server 3 thus remains idle (Fig. 1h).

IV. ANALYTICAL RESULTS FOR THE CENTRALIZED BUFFER SETTING

In this section, we consider the model presented in Section III that has a centralized buffer. We find redundant-
requesting policies that minimize the average latency under various settings. This minimization is not only over
redundant-requesting policies with a fixed value of the request-degree r (as described in Section III) but also over
policies that can choose different request-degrees for different batches. The proofs of these results are provided in
Appendix B.

The first two results, Theorems 1 and 2, consider the service times to follow an exponential (memoryless)
distribution.

Theorem 1 (memoryless service, no removal cost, k = 1). Consider a system with n servers such that any one
server suffices to serve any request, the service-time is i.i.d. memoryless, and there is no removal cost. For any
r1 < r2, the average latency in a system with request-degree r1 is larger than the average latency in a system
with request-degree r2. Furthermore, the distribution of the buffer occupancy in the system with request-degree
r1 dominates (is larger than) that in the system with request-degree r2. Finally, among all possible redundant
requesting policies, the average latency is minimized when each batch is sent to all n servers, i.e., when request-
degree r = n.

Theorem 2 (memoryless service, no removal cost, general k). Consider a system with n servers such that any
k of them can serve a request, the service-time is i.i.d. memoryless, and there is no removal cost. The average
latency is minimized when all batches are sent to all the servers, i.e., when r = n for every batch. Furthermore,
the distribution of the buffer occupancy in the system with request-degree r = n is strictly dominated by (i.e., is
smaller than) a system with any other request-degree.

Fig. 2 depicts simulations that corroborate this result.

We now move on to some more general classes of service-time distributions. The first class of distributions is
what we term heavy-everywhere, defined as follows.

Definition 1 (Heavy-everywhere distribution). A distribution on the non-negative real numbers is termed heavy-
everywhere if for every pair of values a > 0 and b ≥ 0 with P (X > b) > 0, the distribution satisfies

P (X > a+ b | X > b) ≥ P (X > a) . (1)

In words, under a heavy-everywhere distribution, the need to wait for a while makes it more likely that a bad
event has occurred, thus increasing the possibility of a greater wait than usual.

For example, a mixture of independent exponential distributions satisfies (1) and hence is heavy-everywhere.
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Fig. 2: Simulation results showing the average latency for
various values of the request-degree r, in a (n = 10, k =
5) system with i.i.d. memoryless service with rate 1 and
arrivals following a Poisson process with rate λ.
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Fig. 3: Average latency in a (n = 4, k = 1) system
with a heavy-everywhere service time. The service time
is distributed as a mixture of exponential distributions and
the arrival process is Poisson with a rate λ.
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Fig. 4: Average latency in a (n=4, k=1) system with a light-
everywhere service time. The service time is distributed as
an exponential distribution with rate 1 shifted by a constant
of value 1 and the arrival process is Poisson with a rate λ.
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Fig. 5: Average latency in a (n=4, k=1) system with the
service time following an exponential distribution with rate
1, wherein removing an unfinished job from a server requires
the server to remain idle for a time distributed exponentially
with rate 10.

Some properties of heavy-everywhere distributions are discusses in Appendix A.

A second class of distributions is what we call light-everywhere distributions, defined as follows.

Definition 2 (Light-everywhere distribution). A distribution on the non-negative real numbers is termed light-
everywhere if for every pair of values a > 0 and b ≥ 0 with P (X > b) > 0, the distribution satisfies

P (X > a+ b | X > b) ≤ P (X > a) . (2)

In words, under a light-everywhere distribution, waiting for some time brings you closer to completion, resulting
in a smaller additional waiting time.

For example, an exponential distribution that is shifted by a positive constant is light-everywhere, and so is the
uniform distribution. Some properties of light-everywhere distributions are discussed in Appendix A

The following theorems present results for systems with service-times belonging to one of these two classes of
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Fig. 6: Illustration of the setting with distributed buffers for parameters n = 4, k = 2 and request-degree r = 3, as described
in Example 2.

distributions.

Theorem 3 (heavy-everywhere service, no removal cost, k = 1, high load). Consider a system with n servers
such that any one server suffices to serve any request, the service-time is i.i.d. heavy-everywhere, and there is no
removal cost. When the system has a 100% server utilization, the average latency is minimized when each batch
is sent to all n servers, i.e., when r = n for each batch.

This is corroborated in Fig. 3 which depicts simulations with the service time X distributed as a mixture of
exponentials:

X ∼
{

exp( rate = 0.1) w.p. 0.2
exp( rate = 1) w.p. 0.8 .

Note that Theorem 3 addresses only the scenario of high loads and predicts minimization of latency when r = n

in this regime; simulations of Fig. 3 further seem to suggest that the policy of r = n minimizes the average latency
for all loads. Similar phenomena are observed in simulations for k > 1.

Theorem 4 (light-everywhere service, any removal cost, k = 1, high load). Consider a system with n servers such
that any one server suffices to serve any request, and the service-time is i.i.d. light-everywhere. When the system
has a 100% server utilization, the average latency is minimized when there is no redundancy in the requests, i.e.,
when r = k for all batches.

This is corroborated in Fig. 4 which depicts simulations with the service time X distributed as a sum of a
constant and a value drawn from an exponential distribution:

P (X > x) =

{
e−(x−1) if x ≥ 1

1 otherwise .

We observe in Fig. 4 that at high loads, the absence of any redundant requests (i.e., r = 1) minimizes the average
latency, which is as predicted by the theory. We also observe in the simulations for this setting that redundant
requests do help when arrival rates are low, but start hurting beyond a certain threshold on the arrival rate. Similar
phenomena are observed in simulations for k > 1.

The next theorem revisits memoryless service times, but under non-negligible removal costs.

Theorem 5 (memoryless service, non-zero removal cost, k = 1, high load). Consider a system with n servers such
that any one suffices server to serve any request, and the service-time is i.i.d. memoryless, and removal of a job
from a server incurs a non-negligible cost. When the system has a 100% server utilization, the average latency is
minimized when there is no redundancy in the requests, i.e., when r = k for all batches.
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Fig. 5 presents simulation results for such a setting. The figure shows that under this setting, redundant requests
lead to a higher latency at high loads, as predicted by theory.

V. SYSTEM MODEL: DISTRIBUTED BUFFERS

The model with distributed buffers closely resembles the case of a centralized buffer. The only difference is
that in this distributed setting, each server has a buffer of its own, and the jobs of a batch must be sent to some r
of the n buffers as soon as the batch arrives in the system. The protocol for choosing these r servers for each
batch may be arbitrary for the purposes of this paper, but for concreteness, the reader may assume that the r

least-loaded buffers are chosen. The setting with distributed buffers is illustrated in the following example.

Example 2. Fig. 6 illustrates the system model and the working of the system in the distributed setting, for
parameters n = 4, k = 2 and r = 3. The system has n = 4 servers, and each of these servers has its own buffer,
as shown in Fig. 6a. Denote the four servers (from left to right) as servers 1, 2, 3 and 4. Fig. 6a depicts a scenario
wherein batch A is already being served by the first three servers, and batch B just arrives. The three servers
(buffers) to which batch B will be sent to must be selected at this time. Suppose the algorithm chooses to send
the batch to buffers 2, 3 and 4 (Fig. 6b). Now suppose server 1 completes service of job A1 (Fig. 6c). Since there
is no job waiting in the first buffer, server 1 remains idle. Note that in contrast, a centralized setting would have
allowed the first server to start processing either job B2 or B3. Next, suppose server 2 completes service of job
A2 (Fig. 6d). With this, k = 2 jobs of batch A are served, and the third job A3 is thus removed. Servers 2 and 3

can now start serving jobs B3 and B2 respectively.

VI. ANALYTICAL RESULTS FOR THE DISTRIBUTED BUFFERS SETTING

As in the centralized setting of Section IV, we continue to assume that the service-time distributions of jobs
are i.i.d. and the system operates on a first-come-first-served basis. The following theorems prove results that are
distributed counterparts of the results of Section IV.

Theorem 6 (memoryless service, no removal cost, general k). Consider a system with n servers such that any
k of them can serve a request, the service-time is i.i.d. memoryless, and there is no removal cost. The average
latency is minimized when all batches are sent to all the servers, i.e., when r = n for every batch.

Theorem 7 (heavy-everywhere service, no removal cost, k = 1, high load). Consider a system with n servers
such that any one server suffices to serve any request, the service-time is i.i.d. heavy-everywhere, and there is no
removal cost. When the system has a 100% server utilization, the average latency is minimized when each batch
is sent to all n servers, i.e., when r = n for each batch.

Theorem 8 (light-everywhere service, any removal cost, k = 1, high load). Consider a system with n servers such
that any one server suffices to serve any request, and the service-time is i.i.d. light-everywhere. When the system
has a 100% server utilization, the average latency is minimized when there is no redundancy in the requests, i.e.,
when r = k for all batches.

Theorem 9 (memoryless service, non-zero removal cost, k = 1, high load). Consider a system with n servers such
that any one suffices server to serve any request, and the service-time is i.i.d. memoryless, and removal of a job
from a server incurs a non-negligible cost. When the system has a 100% server utilization, the average latency is
minimized when there is no redundancy in the requests, i.e., when r = k for all batches.

VII. CONCLUSIONS AND OPEN PROBLEMS

The prospect of reducing latency by means of redundant requests has garnered significant attention among
practitioners in the recent past (e.g., [1]–[11]). Many recent works empirically evaluate the latency performance of
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Fig. 7: Average latency in a system where the total number of servers is n = 20 but for each request, a specific subset of
only m = 10 of these servers have the ability to serve it. The request must be handled by any k = 5 distinct servers from
this set of m = 10 servers. For each batch, these m = 10 servers is uniform from the set of n = 20 for each batch, and is
independent across batches. The service is distributed exponentially with rate 1 and there is no removal cost. One can see
that the average latency reduces with an increase in the redundancy in the requests.

redundant requests under diverse settings. The goal of our work is to analytically characterize the settings under
which redundant requests help (and when they hurt), and to design scheduling policies that employ redundant-
requesting to reduce latency. In this paper, we propose a model that captures key features of such systems, and
under this model we analytically characterize several settings wherein redundant requests help and where they
don’t. For each of these settings, we also derive the optimal redundant-requesting policy.

While we have characterized when redundant requests help for several scenarios in this paper, the characterization
for many more general settings remains open. Some questions that immediately arise are:

• What is the optimal redundant-requesting policy for service-time distributions and removal-costs not considered
in this paper ?

• We observed in the simulations (e.g., Fig. 4) that for several service-time distributions, redundant requests start
hurting when the system is loaded beyond a certain threshold. In the future, we wish to use the insights developed
in this paper to analytically characterize this threshold.

• What happens when the requests or the servers are heterogeneous, or if the service-times of different jobs of a
batch are not i.i.d. ?

• What about other metrics such as the tails of the latency, or a quantification of the amount of gains achieved
via redundant requests ?

• If we allow choosing different values of the request-degree r adaptively for different batches, what is the minimal
information about the state of the system required to make this choice? What are the optimal scheduling policies
in that case ?

• In certain settings, one may be constrained with each request having the ability to get served by only a specific
m (< n) of the n servers. It remains to investigate which of the results for m = n carry over to this setting of
m < n (see, for example, Fig 7)?
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APPENDIX A
HEAVY-EVERYWHERE AND LIGHT-EVERYWHERE DISTRIBUTIONS

In this section we derive some properties of heavy-everywhere (1) and light-everywhere (2) classes of distribu-
tions. We also provide examples of distributions that fall into these classes. We first state the results, following
which we provide the proofs.

Proposition 10. The expected value of the minimum of n random variables, each drawn independently from a
distribution that is heavy-everywhere, is no larger than 1

n times the expected value of that distribution. The expected
value of the minimum of n random variables, each drawn independently from a distribution that is light-everywhere,
is no smaller than 1

n times the expected value of that distribution.

Proposition 11. Consider a finite set of independent random variables X1, . . . , XL, each of whose (marginal)
distributions is heavy-everywhere, such that for every i, j and every a ≥ 0, b ≥ 0,

P (Xi > a) > P (Xj > a)⇒ P (Xi > b) ≥ P (Xj > b) .

Then, any mixture of X1, . . . , XL is also a heavy-everywhere distribution.

Proposition 12. The following distributions are heavy-everywhere:

1) A mixture of a finite number of independently drawn exponential distributions.

2) A Weibull distribution with scale parameter smaller than 1, i.e., with a pdf

f(x) =
k

λ

(x
λ

)k−1
e−(x/λ)

k

for any k ∈ (0, 1] and any λ > 0.

Proposition 13. The sum of a finite number of independent random variables, each of which has a (marginal)
distribution that is light-everywhere, also has a distribution that is light-everywhere.

Proposition 14. The following distributions are light-everywhere:

1) For any c > 0, the constant distribution with entire mass on c.

2) An exponential distribution that is shifted by a positive constant.

3) The uniform distribution.

4) For any pair of non-negative constants c1 and c2 with 2c1 > c2 > c1, a distribution with its support comprising
only the two constants c1 and c2.
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We now present the proofs of the aforementioned claims.

Proof of Proposition 10: Let X be a random variable with a distribution that is heavy-everywhere. Consider
any x > 0. Using the property of being heavy-everywhere, we have

P (X > nx) = P (X > nx,X > x) (3)

≥ P (X > (n− 1)x)P (X > x)

≥ P (X > (n− 2)x)P (X > x)P (X > x)
...

≥ P (X > x)n . (4)

Now consider i.i.d. random variables X1, . . . , Xn drawn from this distribution. The expected value of their minimum
is given by

E[min{X1, . . . , Xn}] =

∫
P (X1 > x, . . . ,Xn > x)dµ(x)

=

∫
P (X1 > x) · · ·P (Xn > x)dµ(x)

=

∫
P (X > x)ndµ(x)

≤
∫
P (X > nx)dµ(x)

=
1

n
E[X] . (5)

If the distribution is light-everywhere, then each of the inequalities in the entire proof above are flipped, leading
to the result

E[min{X1, . . . , Xn}] ≥
1

n
E[X] . (6)

Proof of Proposition 11: Suppose X is drawn from a mixture of L independent random variables X1, . . . , XL

for some L ≥ 1 whose (marginal) distributions satisfy the conditions stated in the proposition. In particular, suppose
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X takes value Xi with probability pi ≥ 0 (with
∑L

i=1 pi = 1). Then

P (X > a+ b) =

L∑
i=1

piP (Xi > a+ b)

≥
L∑
i=1

piP (Xi > a)P (Xi > b)

=

L∑
j=1

L∑
i=1

pipjP (Xi > a)P (Xi > b)

=

(
L∑
i=1

piP (Xi > a)

) L∑
j=1

pjP (Xj > b)


+
1

2

L∑
j=1

L∑
i=1

pipj(P (Xi > a)− P (Xj > a))(P (Xi > b)− P (Xj > b))

≥

(
L∑
i=1

piP (Xi > a)

) L∑
j=1

pjP (Xj > b)

 (7)

= P (X > a)P (x > b) , (8)

where (7) is a result of the assumption that P (Xi > a) ≥ P (Xj > a)⇒ P (Xi > b) ≥ P (Xj > b).

Proof of Proposition 12: Let X be a random variable drawn from the distribution under consideration.

1) A mixture of a finite number of independently drawn exponential distributions.
The exponential distribution trivially satisfies (1) and hence is heavy-everywhere. Furthermore, if Xi and Xj

are exponentially distributed with rates µi and µj ,

P (Xi > a) > P (Xj > a)⇒ e−µia > e−muja ⇒ −µi > −µj ⇒ P (Xi > b) ≥ P (Xj > b) .

This allows us to apply Prop. 11, giving the desired result.
2) A Weibull distribution with scale parameter smaller than 1.

The Weibull distribution has a complementary c.d.f.

P (X > x) = e−(x/λ)
k

.

For k ∈ (0, 1], and for any a, b > 0, we know that

(a+ b)k ≤ ak + bk (9)

⇒ −
(
a+ b

λ

)k
≥ −

(a
λ

)k
−
(
b

λ

)k
(10)

⇒ e−(
a+b

λ )
k

≥ e−(
a

λ)
k

e−(
b

λ)
k

(11)

⇒ P (X > a+ b) ≥ P (X > a)P (X > b) . (12)

Proof of Proposition 13: Let X1 and X2 be independent random variables whose (marginal) distributions are
light-everywhere. Let X = X1 +X2, Then,

P (X > a+ b|X > b) = P (X1 +X2 > a+ b,X2 > b|X1 +X2 > b)

+P (X1 +X2 > a+ b,X2 ≤ b|X1 +X2 > b) (13)

= P (X1 +X2 > a+ b|X2 > b,X1 +X2 > b)P (X2 > b|X1 +X2 > b)

+P (X1 +X2 > a+ b|X2 ≤ b,X1 +X2 > b)P (X2 ≤ b|X1 +X2 > b). (14)
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Now,

P (X1 +X2 > a+ b|X2 > b,X1 +X2 > b) = P (X1 +X2 > a+ b|X2 > b) (15)

= P (X2 > a+ b−X1|X2 > b) (16)

≤ P (X2 > a−X1) (17)

≤ P (X1 +X2 > a) , (18)

where the inequality (17) utilizes the light-everywhere property of the distribution of X2. Also,

P (X1 +X2 > a+ b|X2 ≤ b,X1 +X2 > b) = P (X1 > a+ b−X2|X2 ≤ b,X1 > b−X2) (19)

≤ P (X1 > a) (20)

≤ P (X1 +X2 > a) , (21)

where the inequality (20) utilizes the light-everywhere property of the distribution of X1. Putting it back together
in (14) we get

P (X>a+b|X>b) ≤ P (X1+X2 > a)P (X2>b|X1+X2>b)+P (X1+X2 > a)P (X2≤b|X1+X2>b) (22)

= P (X > a). (23)

Proof of Proposition 14: Let X be a random variable drawn from the distribution under consideration.

1) For any c > 0, the constant distribution with entire mass on c.
If a ≤ c then P (X > a) = 1. If a > c then P (X > a+ b) = 0. Thus the constant distribution satisfies (2).

2) An exponential distribution that is shifted by a positive constant.
The exponential distribution trivially satisfies (2) and is light-everywhere. A constant is also light-everywhere
as shown above. Applying Proposition 13, we get the desired result.

3) The uniform distribution.
We first show that for every M > 0. the uniform distribution on the interval [0,M ] is light-everywhere. If
a+ b ≥ M then P (X > a+ b) = 0, thus trivially satisfying (2). If a+ b < M then P (X > a) = M−a

M and
P (X > a + b|X > b) = M−a−b

M−b . Using the fact that a ≥ 0, b ≥ 0, some simple algebraic manipulations of
these expressions lead to (2). Since a constant is light-everywhere, Proposition 13 completes the result.

4) For any pair of non-negative constants c1 and c2 with 2c1 > c2 > c1, a distribution with its support comprising
only the two constants c1 and c2.
If a+b ≥ c2 then P (X > a+b) = 0. If a < c1 then P (X > a) = 1. Finally, if a ≥ c1 and a+b < c2 then the
constraint of 2c1 > c2 implies b < c1. Thus in this setting, P (X > a+ b|X > b) = P (X = c2) = P (X > a).

APPENDIX B
PROOFS

We first present a brief description of the general proof technique we follow to obtain the analytical results,
following which we provide the proofs of the individual results.

The general proof technique is depicted pictorially in Fig. 8. Consider two identical systems S1 and S2 with
different redundant-requesting policies. Suppose we wish to prove that the redundant-requesting policy of system
S2 leads to a lower latency as compared to the redundant-requesting policy of system S1. To this end we first
construct two new hypothetical systems T1 and T2. The construction is such that the performance of system T1 is
statistically identical or better than S1, and that of T2 is statistically identical or worse than S2. The two systems
T1 and T2 are also coupled in the following manner. The construction establishes a one-to-one correspondence
between the n servers of T1 and the n servers of T2. Furthermore, it also establishes a one-to-one correspondence
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Fig. 8: A pictorial depiction of the general proof technique followed in this paper.

between the service events occurring in both systems, i.e., the completion of any job in T1 is associated to the
completion of a unique job in T2 and vice versa. The same sequence of arrivals is applied to both systems.

Such a coupling facilitates an apples-to-apples comparison between the two systems. We exploit this and show
that at any point in time, system T2 is in a better state than system T1. Putting it all together, it implies that system
S2 is better than system S1.

Most interestingly, this technique allows us to handle arbitrary arrival sequences. Furthermore, it does not restrict
the results to the (asymptotic) setting when the system is in steady state, but allows the results to be applicable to
any interval of time.

We now provide proofs of the analytical results presented in the paper.

Proof of Theorem 1 (centralized, memoryless service, no removal cost, k = 1): Consider two systems, system
S1 with request-degree r1 and system S2 with request-degree r2 (> r1), both having system parameters (n, k = 1),
the same arrival process, and the same rate of service. In the proof, we shall construct two new hypothetical systems
T1 and T2 such that the statistics of T1 are identical to S1, and the statistics of T2 are identical to S2. We shall
then show that system T2 outperforms system T1, and conclude that S2 outperforms S1.

The new system T1 is defined as follows. The system T1 is also associated to parameters (n, k = 1), has
the same arrival and service processes as S1, and follows the scheduling protocol described in Algorithm 1 with
request-degree r1. However, after every service-event, we perform a specific permutation of the n servers. Since the
n servers have independent and memoryless service time distributions with identical rates, the system T1 remains
statistically identical to S1. In particular, the two systems T1 and S1 have identical distributions of the latency and
buffer occupancy. The specific permutation applied is as follows. At any point in time, consider denoting the n
servers by indices ‘1’,. . .,‘n’. Upon completion of any job at any server, the servers are permuted such that the
busy servers have the lowest indices and the idle servers have the higher indices. In a similar manner, we construct
T2 to be a system identical to S2, but again permuting the servers in T2 after every job completion such that the
busy servers have the lowest indices. Thus T2 is statistically identical to S2.

In the system under consideration, at any point in time, there are (n + 1) processes simultaneously going on:
the arrival process and the processes at the n servers. The assumption of memoryless service times allows us to
assume that a (fictitious) service process continues to execute even in an idle server, although no job is counted
as served upon completion of the process. Let us call the completion of any of these processes as an event. In this



15

proof, we assume the occurrence of any arbitrary sequence of events, and evaluate the performance of systems
T1 and T2 under this sequence of events. Since the arrivals into the system and the memoryless processes at the
servers are all independent of the state of the system, we can assume the same sequence of events to occur in the
two systems.

We begin by showing that under an identical sequence of events (the arrivals and server completions) in systems
T1 and T2, the number of batches remaining to be completely served in T2 at any point of time is no more than
number of batches remaining in T1 at that time. Without loss of generality, we shall prove this statement only at
times immediately following an event, since the systems do not change state between any two consecutive events.
With some abuse of notation, for z ∈ {0, 1, 2, . . .}, we shall use the term “time z” to denote the time immediately
following the zth event.

Assume that the two systems begin in identical states at time 0. For system Ti (i ∈ {1, 2}), let bi(z) denote
the number of batches remaining in system Ti at time z. The proof proceeds via induction on z. The induction
hypothesis is that at any time z, we have b1(z) ≥ b2(z). Since the two systems begin in identical states, b1(0) =
b2(0). Now suppose the induction hypothesis is satisfied at time (z − 1). We shall now show that it is satisfied at
time z as well.

Suppose the zth event is the arrival of a new batch. Then

b1(z) = b1(z − 1) + 1 (24)

≥ b2(z − 1) + 1 (25)

= b2(z) (26)

where (25) follows from the induction hypothesis. Thus, the hypothesis is satisfied at time z.

Now suppose the zth event is the completion of the exponential timer of one of the n servers (in both the
systems). We first consider the case b1(z − 1) ≥ b2(z − 1) + 1. Since the completion of the timer at a server
can lead to the completion of the service of at most one batch, it follows that b1(z) ≥ b2(z) in this case. Now
consider the case b1(z− 1) = b2(z− 1). Since k = 1, the number of servers occupied in system Ti (i ∈ {1, 2}) at
time (z− 1) is equal to min{ribi(z− 1), n}. Furthermore, from the construction of systems T1 and T2 described
above (recall the permutation of servers), it must be that the first min{ribi(z−1), n} servers are occupied at time
(z − 1) in system Ti. Thus, since r1 < r2 and b1(z − 1) = b2(z − 1), the set of servers occupied at time (z − 1)

in T1 is a subset of the servers occupied in T2. Now, since k = 1, an event at a server triggers the completion of
service of a batch if and only if that server was not idle. Thus, if this event leads to the completion of service of
a batch in T1, it also leads to the completion of service of a batch in system T2. It follows that b1(z) ≥ b2(z).
We have thus shown that at any point in time, the number of batches remaining in system T2 is no more than that
under system T1.

The arguments above show that the distribution of the number of batches remaining in T1 dominates that
in T2: with B1 and B2 denoting the number of batches in the system T1 and T2 respectively under steady state,
P (B1 > x) ≥ P (B2 > x) for all x ≥ 0. Since the average latency is proportional to the average system occupancy,
it follows that the latency faced by a batch on an average in system T2 is no more than that in T1. These properties
carry over to S1 and S2 since the statistics of S1 and S2 are identical to those of T1 and T2 respectively.

From arguments identical to the above, it follows that having a request degree of n for each batch minimizes
the average latency as compared to any other redundant requesting policy, including ones where a different request
degree may be chosen (adaptively) for different batches.

Finally, we show that if T1 employs a fixed request-degree r < n for all batches, and T2 employs r = n for all
batches, then the average latency under T2 is strictly smaller. At any given time, there is a non-zero probability of
the occurrence of a sequence of service-events that empty system T1 (which also results in T2 getting emptied).
Now, upon arrival of a batch, this new batch is served in r < n servers of T1 and in all n servers of T2, and hence
there is a strictly positive probability that the batch completes service in T2 before it completes service in T1 and
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also before a new batch arrives. This event results in b2(·) < b1(·), and since this event occurs with a non-zero
probability, we can draw the desired conclusion.

Proof of Theorem 2 (centralized, memoryless service, no removal cost, general k): Consider two systems,
system S1 with an arbitrary redundant-requesting policy and system S2 with request-degree n, both having system
parameters (n, k), the same arrival process, and the same rate of service. In the proof, we shall construct two new
systems T1 and T2 such that the statistics of T1 are identical to S1, and the statistics of T2 are identical to S2. We
shall then show that system T2 outperforms system T1, and conclude that S2 outperforms S1.

In either system, at any point in time, there are (n+1) processes simultaneously going on: the arrival process and
the processes at the n servers. The assumption of memoryless service times allows us to assume that a (fictitious)
service process continues to execute even in an idle server, although no job is counted as served upon completion
of the process. Let us term the completion of any of these (n+1) timers as the an event. In this proof, we assume
the occurrence of any arbitrary sequence of events, and evaluate the performance of systems T1 and T2 under
this sequence of events. Since the arrivals into the system and the memoryless processes at the servers are all
independent of the state of the system, we can assume the same sequence of events to occur in the two systems.

We shall now show that under an identical sequence of events (arrivals and server completions) in T1 and T2,
the number of batches remaining in system T1 is at least as much as that in T2 at any given time. Without loss
of generality, we shall prove this statement only at times immediately following an event, since the states of the
systems do not change in between any two events. Abusing some notation, for z ∈ {0, 1, 2, . . .}, we shall use the
term “time z” to denote the time immediately following the zth event.

Assume that the two systems begin in the same state at time z = 0. For system Ti (i ∈ {1, 2}), let bi(z) denote
the number of batches remaining in system Ti at time z. The proof proceeds via induction on the time z. The
induction hypothesis is that at any time z:

(a) b1(z) ≥ b2(z), and
(b) for any z′ > z, if there are no arrivals between time z and z′ (including at time z′), then b1(z′) ≥ b2(z′).

The hypotheses are clearly true at z = 0, when the two systems are in the same state. Now, let us consider them
to be true for time z (≥ 0). Suppose the next event occurs at time (z + 1). We need to show that the hypotheses
are true even after this event at time (z + 1).

First suppose the event was the completion of an exponential-timer at one of the n servers. Then there has been
no arrival between times z and (z + 1). This allows us to apply hypothesis (b) at time z with z′ = z + 1, which
implies the satisfaction of both the hypotheses at time (z + 1).

Now suppose the event at time (z + 1) is the arrival of a new batch. Then, hypothesis (a) is satisfied at time
(z + 1) since b1(z + 1) = b1(z) + 1 ≥ b2(z) + 1 = b2(z + 1). We now show that hypothesis (b) is also satisfied.
Consider any sequence of server-events, and any time z′ > z + 1 such that there were no further arrivals between
times (z + 1) and z′.

Let a1(z′) and a2(z′) be the number of batches remaining in the two systems at time z′ if the new batch had
not arrived but the sequence of server-events was the same as before. From hypothesis (b) at time z, we know
that a1(z′) ≥ a2(z

′). Also note that the scheduling protocol described in Algorithm 1 gives priority to the batch
that had arrived earliest, and as a consequence, a server serves a job from the new batch only when it cannot serve
any other batch. It follows that under any sequence of server-events, for i ∈ {1, 2}, bi(z′) = ai(z

′) + 1 if k jobs
of the new batch have not completed service in Ti, else bi(z′) = ai(z

′). When b1(z′) = a1(z
′) + 1, it follows that

b1(z
′) = a1(z

′) + 1 ≥ a2(z
′) + 1 ≥ b2(z

′). It thus remains to show that b1(z′) = a1(z
′) ⇒ b2(z

′) ≤ b1(z
′). The

condition b1(z′) = a1(z
′) implies that k jobs of the new batch have completed service in system T1 at or before

time z′. Let z1, . . . , zk (z1 < . . . < zk ≤ z′) be the events when the k jobs of the new batch are served in system
T1. Then, at these times, the corresponding servers must have been idle in system T1 if the new batch had not
arrived.

Consider another sequence of events that is identical to that discussed above, but excludes the server-events
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that happened at times z1, . . . , zk, and also excludes the arrival at time (z + 1). Let ci(z′) denote the number of
batches remaining in this situation at time z′. From the arguments above, we get c1(z′) = a1(z

′). From the second
hypothesis, we also have c2(z′) ≤ c1(z′). Thus we already have c2(z′) ≤ c1(z′) = a1(z

′) = b1(z
′), and hence for

our goal of showing b2(z′) ≤ b1(z′), it now suffices to show that b2(z′) ≤ c2(z′).

If b2(z′) = 0 then we automatically have b2(z′) ≤ b1(z
′) and there is nothing left to show. Thus, we consider

the case b2(z′) > 0, i.e., system T2 is non-empty at time z′. We shall now see how to count the number of batches
in any system at time z′, under the condition that there were no arrivals between time (z + 1) and z′. Consider
(n + 1) counters: one counter each for the n servers and one ‘global’ counter. At time (z + 1), let the value of
the counter of any server be equal to the number of jobs that this server has finished serving from the batches
that are still remaining in the system. Let the value of the global counter be 0 at this time. Now, whenever a
server-event occurs, add 1 to the counter associated to that server, irrespective of whether the server had a job or
not. Whenever the counters of any k servers become greater than zero, add 1 to the global counter, and subtract 1
from the counters of these k servers. One can see that in this process, the value of the global counter at any time
gives the number of batches that have finished service since the time we started counting. With this in mind, we
shall compare the sequence of events that includes the events at z1, . . . , zk to that which excludes these events.
Since the events z1, . . . , zk must correspond to events at k distinct servers, the service-events at z1, . . . , zk cause
the global counter of system T2 to increase by one. Since T2 also had one additional arrival as compared to the
system of c2(·), it must be that b2(z′) = c2(z

′). Putting the pieces together, we get that the number of batches
served in T2 at any time is at least as much as that served in T1 at any time.

Since the average latency is proportional to the average system occupancy, it follows that the latency faced by
a batch on an average in system T2 is smaller than that in T1. These properties carry over to S1 and S2 since the
statistics of S1 and S2 are identical to those of T1 and T2 respectively.

Finally, we show that if T1 employs a fixed request-degree r < n for all batches, and T2 employs r = n for all
batches, then the average latency under T2 is strictly smaller. At any given time, there is a non-zero probability of
the occurrence of a sequence of service-events that empty system T1 (which also results in T2 getting emptied).
Now, upon arrival of a batch, this new batch is served in r < n servers of T1 and in all n servers of T2, and hence
there is a strictly positive probability that the batch completes service in T2 before it completes service in T1 and
also before a new batch arrives. This event results in b2(·) < b1(·), and since this event occurs with a non-zero
probability, we can draw the desired conclusion. Thus, the distribution of the system occupancy in T2 is strictly
dominated by that of T1.

Proof of Theorem 3 (centralized, heavy-everywhere service, no removal cost, k = 1, high load): Consider
two systems, system S1 with some arbitrary redundant-requesting policy, and system S2 with request-degree n for
all batches. We shall now construct two new hypothetical systems T1 and T2 such that T1 is statistically identical
to S1 and T2 is worse than S2, and show that the performance of T1 is worse than that of T2.

The two new systems T1 and T2 are constructed as follows. Both systems have the same parameters n and
k = 1, and retain the redundant-requesting policies of S1 and S2 respectively. The service-time distribution in T1
is identical to that in S1. On the other hand, we shall make the service time distribution of T2 worse than that of
S2 in the manner described below.

Let us fix some arbitrary one-to-one correspondence between the n servers of system T1 and the n servers of
system T2. Consider any point in time when a server in system T2 is just beginning the service of a job. Let X
denote the random variable corresponding to this service time. Let PH denote the law associated to the heavy-
everywhere service-time distribution under consideration. Since the systems operate at 100% server utilization, the
corresponding server in T1 is not idle at this point in time and is serving some job. When this server in system
T2 begins service, suppose the job in the corresponding server of system T1 began to be serviced t > 0 units of
time ago. Then we modify the distribution of X and let it follow the law

P (X > x) = PH(X > x+ t|X > t) ∀x ≥ 0 .
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Since the distribution PH is heavy-everywhere (1), the service under system T2 is no better than that under S2.
As a result of the construction above, whenever a job begins to be processed in system T2, it has a service-time
distribution that is identical to the distribution of the service-time of the job in the corresponding server in T1.
We couple the servers even further by assuming whenever a server in T2 begins a new job, the time taken for
this job to be completed is identical to that taken for the job in the corresponding server in T1 (unless, of course,
some other job of the batch completes service first and this job is removed). We also feed an identical sequence
of arrivals to the two systems T1 and T2. This completes the construction of the two systems T1 and T2.

Note that the aforementioned coupling of service-times between corresponding servers of systems T1 and T2
only takes place when the server in T2 begins a job. The case when a server of T1 begins serving a new job
when the corresponding server of T2 is already serving a job is not accounted for. The induction hypothesis below
handles such situations.

We start at any point in time when the two systems are in an identical state, and show that the average latency
faced by the batches in T2 from then on is no larger than that faced by batches in T1. We shall now show the
following two properties via an induction on time:

a) At any point in time, the number of batches in system T2 is no more than the number of batches in system
T1.

b) At any point in time, if a server in system T1 begins service of a job, the corresponding server in T2 also
begins service of some job.

Part (b) of the hypothesis ensures that the service times of the jobs in corresponding servers of systems T1 and
T2 are always identical (via the construction above).

As mentioned previously, let us start at any point in time when the two systems are in an identical state. Since
the systems are in an identical state, both hypotheses hold true at this time. Without loss of generality, we shall
now consider only the times immediately following an event in either system, where an event is defined as an
arrival of a batch or the completion of processing by a server. First consider any time that immediately follows an
arrival. By our induction hypothesis, just before the arrival, the number of batches in T2 was no more than that
in T1. The arrival only increases the number of batches in both systems by 1, and hence induction hypothesis (a)
still stands. Under a 100% server utilization, an arrival does not trigger the beginning of a service in either system.
Thus, hypothesis (b) continues to hold. Let us now consider an event where a server completes processing a job.
Due to hypothesis (b), the service times at corresponding servers in the two systems were coupled. As a result,
the next service completes at the same time in corresponding servers of both systems. This reduces the number
of batches in both systems by one, thus continuing to satisfy hypothesis (a). Furthermore, since we have assumed
a 100% utilization of the servers, there is at least one batch waiting in the buffer in both the systems. In system
T2, since we had k = 1, r = n and no removal cost, at any given time each of the n servers in system T2 will be
serving jobs of the same batch. Thus jobs in all the servers of T2 are removed from the system, and are replaced
by (new) jobs of the next batch. As a result, upon any service-event, each of the servers in T2 begin serving new
jobs, thus satisfying hypothesis (b). Due to the specific construction of the two systems, the service times of these
new jobs in the servers of T2 are identical to those of jobs in corresponding servers of T1.

This completes the proof of the induction hypothesis, and in particular that the number of batches in T2 at any
time is no more than the number of batches in system T1. The fact that the average latency is proportional to the
average number of batches in the system implies that the average latency in system T1 is no smaller than in T2.
Finally, the constructions of the two systems T1 and T2 ensured that system T2 is worse than S2, and system T1
is statistically identical to S1, thus leading to the desired result.

Finally, suppose system T1 employs a fixed request-degree r < n for all batches. Further suppose that the heavy-
everywhere distribution is such that (1) holds with a strict inequality for a set of events that have a probability
bounded away from zero. Under this setting, the aforementioned construction is such that system T2 is worse than
system S2 by a non-trivial amount, and as a result, the average latency in system S2 is strictly smaller than that
of S1.
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Proof of Theorem 4 (centralized, light-everywhere service, any removal cost, k = 1, high load): Consider two
systems, system S1 with some arbitrary redundant-requesting policy, and system S2 with request-degree r = k = 1

for all batches. We shall now construct two new hypothetical systems T1 and T2 such that T1 is statistically identical
to S1 and T2 is worse than S2, and show that the performance of T1 is worse than that of T2.

The two new systems T1 and T2 are constructed as follows. Both systems have the same parameters n and
k = 1, and retain the redundant-requesting policies of S1 and S2 respectively. The service-time distribution in T2
is identical to that in S2. On the other hand, we shall make the service time distribution of T1 better than that of
S1 in the manner described below.

Let us fix some arbitrary one-to-one correspondence between the n servers of system T1 and the n servers of
system T2. Consider any point in time when a server in system T1 is just beginning the service of a job. Let X
denote the random variable corresponding to this service time. Let PL denote the law associated to the heavy-
everywhere service-time distribution under consideration. Since the systems operate at 100% server utilization, the
corresponding server in T2 is not idle at this point in time and is serving some job. When this server in system T2
begins service, suppose the job in the corresponding server of system T1 began to be served t > 0 units of time
ago. Then we modify the distribution of X and let it follow the law

P (X > x) = PL(X > x+ t|X > t) ∀x ≥ 0 .

Since the distribution PL is light-everywhere (2), the service under system T1 is no better than that under S1.
As a result of the construction above, whenever a job begins to be processed in system T1, it has a service-time
distribution that is identical to the distribution of the service-time of the job in the corresponding server in T2.
We couple the servers even further by assuming whenever a server in T1 begins a new job, the time taken for
this job to be completed is identical to that taken for the job in the corresponding server in T2 (unless, of course,
some other job of the batch completes service first and this job is removed). We also feed an identical sequence
of arrivals to the two systems T1 and T2. This completes the construction of the two systems T1 and T2.

Note that the aforementioned coupling of service-times between corresponding servers of systems T1 and T2
only takes place when the server in T1 begins a job. The case when a server of T2 begins serving a new job
when the corresponding server of T1 is already serving a job is not accounted for. The induction hypothesis below
handles such situations.

We start at any point in time when the two systems are in an identical state, and show that the average latency
faced by the batches in T2 from then on is no more than that faced by batches in T1. We shall now show the
following two properties via an induction on time:

a) At any point in time, the number of batches in system T2 is no more than the number of batches in system
T1.

b) At any point in time, if a server in system T2 begins service of a job, the corresponding server in T1 also
begins service of some job.

Part (b) of the hypothesis ensures that the service times of the jobs in corresponding servers of systems T1 and
T2 are always identical (via the construction above).

As mentioned previously, let us start at any point in time when the two systems are in an identical state. Since
the systems are in an identical state, both hypotheses hold true at this time. Without loss of generality, we shall
now consider only the times immediately following an event in either system, where an event is defined as an
arrival of a batch or the completion of processing at server. First consider any time that immediately follows an
arrival. By our induction hypothesis, just before the arrival, the number of batches in T2 was no more than that
in T1. The arrival only increases the number of batches in both systems by 1, and hence induction hypothesis (a)
still stands. Under a 100% server utilization, an arrival does not trigger the beginning of a service in either system.
Thus, hypothesis (b) continues to hold. Let us now consider an event where a server completes processing a job.
Due to hypothesis (b), the service times at corresponding servers in the two systems were coupled. As a result,
the next service completes at the same time in corresponding servers of both systems. This reduces the number of
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batches in both systems by one, thus continuing to satisfy hypothesis (a). Furthermore, since we have assumed a
100% utilization of the servers, there is at least one batch waiting in the buffer in both the systems. In system T2,
since we had k = 1 and r = k = 1, only this server begins serving a new job, while all remaining (n− 1) servers
continue processing the jobs they already have. Now, the corresponding server in T1 also had a server-event and
begins serving a new job at this moment. Thus this satisfies hypothesis (b). Due to the specific construction of the
two systems, the service times of these new jobs in the servers of T2 are identical to those of jobs in corresponding
servers of T1.

This completes the proof of the induction hypothesis, and in particular that the number of batches in T2 at any
time is no more than the number of batches in system T1. The fact that the average latency is proportional to the
average number of batches in the system implies that the average latency in system T1 is no smaller than in T2.
Finally, the constructions of the two systems T1 and T2 ensured that system T2 is worse than S2, and system T1
is statistically identical to S1, thus leading to the desired result.

Finally, suppose system T1 employs a fixed request-degree r < n for all batches. Further suppose that the light-
everywhere distribution is such that (2) holds with a strict inequality for a set of events that have a probability
bounded away from zero. Under this setting, the aforementioned construction is such that system T1 is better than
system S1 by a non-trivial amount, and as a result, the average latency in system S2 is strictly smaller than that
of S1.

Proof of Theorem 5 (centralized, memoryless service, non-zero removal cost, k = 1, high load): The proof
is identical to that of Theorem 4. The system T2 is constructed to be ‘better’ than system S2 by assuming zero
removal costs in T2.

Proof of Theorem 6 (distributed, memoryless service, no removal cost, general k): In order to get to the
desired results, we shall first compare a system with distributed buffers to an analogous system that has a central
buffer. The scheduling policy in either setting needs to make two kinds of decisions: the number of redundant
requests for each batch, and the precise set of servers to which these requests are assigned. Firstly, observe that
under the redundant requesting policy of r = n for all batches, the choice of the r (= n) servers to which the
jobs are assigned does not require any decision to be made. The centralized and the distributed systems thus are
identical in this case and hence have the same average latency. Secondly, we know from the results of Section IV
that under all the arrival and service time distributions considered here, the choice of r = n for all batches is
optimal under a centralized scheme. Thirdly, for any fixed redundant requesting policy, the average latency under
the centralized scheme will be no more than the average latency under the distributed scheme. This is because the
first-come first-served policy as described in Algorithm 1 minimizes average latency, and moreover, the policy of
the system with a centralized buffer has more information (about the system) as compared to the one operating
under distributed buffers. It thus follows that even in the case of distributed buffers, the average latency is minimized
when the request-degree for each batch is n.

Proof of Theorem 7 (distributed, heavy-everywhere service, no removal cost, k = 1, high load): Identical to
the proof of Theorem 3.

Proof of Theorem 8 (distributed, light-everywhere service, any removal cost, k = 1, high load): Identical to
the proof of Theorem 4.

Proof of Theorem 9 (distributed, memoryless service, non-zero removal cost, k = 1, high load): Identical to
the proof of Theorem 5.


