Planning in Cost-Paired
Markov Decision Process Games

H. Brendan McMahan, Geoffrey J. Gordon
October 24, 2003

Abstract

We describe applications and theoretical results for a new class of two-player planning games. In
these games, each player plans in a separate Markov Decision Process (MDP), but the costs associated
with a policy in one of the MDPs depend on the policy selected by the other player. These cost-
paired MDPs represent an interesting and computationally tractable subset of adversarial planning
problems. To solve them, we extend the Double Oracle Algorithm of [3].

1 Introduction

Consider a mobile sensor platform that must decide on an observation strategy (represented as a policy
in an MDP). Tts rewards depend on its own policy as well as on the motion of the entity which it is trying
to observe. Suppose that the output from the sensor cannot be processed in real time due to latency,
insufficient on-board computation, or the need for human expert analysis; suppose also that the entity
being observed is aware that it may be observed, but cannot detect when observations happen.

One natural instance of this problem is scientific data collection from a satellite or planetary rover. We
want to maximize the amount of time which the sensor spends observing a particular natural phenomenon.
Communication delays prevent the sensor from altering its actions based on the collected data. Nature
is oblivious to the sensor’s actions, but we treat her as an adversary in order to compute a robust plan.

Our model captures an interesting subset of adversarial planning problems, but it is nonetheless com-
putationally tractable: we can solve problems in this model in polynomial time using linear programming.
The linear programming solution, however, can still be impractical for large models. So, we focus on
an alternative solution method, the Double Oracle Algorithm, which can take advantage of existing fast
planners for MDPs by using them as best-response oracles.

The Double Oracle Algorithm, first introduced in [3], is extended here in several important ways.
First, we show that the algorithm applies to the more general problem outlined above. Second, we show
that by using approximate oracles in place of exact oracles we can construct an Approximate Double
Oracle Algorithm that converges to an approximate minimax equilibrium for the game. This expands
the range of planning techniques that can be applied. Finally, we justify the use of such algorithms by
showing that the game at hand has an exact minimax solution with small support. A small-support
solution is a mixture of a small number of deterministic plans, and therefore we can hope to find such
a solution with only a small number of calls to our oracles. In particular, even though the MDP has
exponentially many possible deterministic policies, we can get an exact minimax solution by randomizing
among only a linear-size subset; we will need even fewer to get an approximate minimax solution.

1.1 Problem Model

Let X = (8%, A%, P*, p*) and Y = (8¥, AY,P¥,u¥) be MDPs. For each MDP, S is a finite set of states,
A is a finite set of actions, P : (S x A) — A(S) is a transition function, and p is a distribution over start
states. (A(S) is the set of probability distributions over S.) Each MDP would normally have a vector
of state-action costs, but we leave the costs unspecified until later in this subsection. (Costs in X will
depend on the policy in Y, and vice versa.) Let m = |S¥|-|A*| and n = |S¥| - |A¥|. Let II}, (IIX) be
the set of deterministic (stochastic) policies for X, and define II}, and II},, analogously for Y. We rule
out policies with infinite visitation frequencies; we can do so either by introducing a discount factor (in

which case all discounted frequencies will be finite); or by assuming positive edge costs for X, negative
costs for Y, and no “orphan” states (in which case the agents will never choose nonterminating policies).

A policy (stochastic or deterministic) can be represented as a function from states to A(A), or
equivalently as a vector of state-action visitation frequencies. To simplify notation we will write x or y
for a policy, and view it as either a function or a vector of frequencies when needed. For example, given
a cost vector ¢ (length m) on state-action pairs in X, we can write x - ¢ for the dot product of the costs
with the visitation frequencies, giving the value of policy x under cost vector ¢ in MDP X.

Every stochastic policy, when represented as visitation frequencies, can be decomposed as a convex
combination of deterministic policies; and, every convex combination of deterministic policies corresponds
to some stochastic policy. In particular, for any z € II};, we can write Z = Zle pix; for some set
{z1,...,2,} CII¥ and probability distribution p. A detailed proof can be found in [4, Sec. 6.9].

The cost vector for X will be a linear function of Y’s policy, and vice versa. Because we are interested
in zero-sum games, Y’s cost will be the negative of X’s. In particular, write

V(z,y)=x-&F+2-Gy+y-c.

for the cost to X. Here ¢* and ¢ are fixed cost vectors for X and Y, while the matrix G governs the
interaction between the two players. Player one tries to minimize V', and player two tries to maximize
it. So, our goal is to find

min max V(z,y) (1)

X Y
zellly, yellip

1.2 Equivalent problems

Equation (1) can be represented either as a linear program or as a matrix game in which each deterministic
policy for X and Y becomes a pure strategy. The LP representation demonstrates that we can solve (1)
in polynomial time, while the matrix representation will be useful in describing our Double Oracle
Algorithm.

To show that Equation (1) is equivalent to a matrix game, we define a payoff matrix M which has
one row corresponding to each deterministic policy for X and one column for each deterministic policy
for Y. The entry of M corresponding to policies = and y is M, , = V(z,y).

Theorem 1 There is a one-to-one mapping between minimazx equilibria in M and solutions to (1).

The above theorem (proved in the appendix) implies that solving the game M is equivalent to solving
the optimization problem (1).

Because a cost-paired MDP is a multiagent planning problem, and because it is equivalent to an
exponentially large matrix game, one might suspect that it is computationally intractable. However, this
is not the case; we conclude this section by noting that cost-paired MDPs can be solved in polynomial
time via linear programming. The technique is an extension of an idea described in [2]. Our experience
in [3] suggests, however, that translating a cost-paired MDP to an LP will not be a practical solution
algorithm. So, in the next section we will describe our Double Oracle Algorithm.

2 Algorithms and Analysis

We now show how to solve the game M using the Double Oracle algorithm first introduced in [3].
Pseudocode for the algorithm is given in Listing 1. The algorithm relies on a best response oracle R
which provides a best response pure strategy for the row player against a mixed strategy ¢ of the column
player, and an analogous oracle C for the column player. The subroutine solve_game finds minimax
solutions to a matrix game M.

Convergence and correctness of the double oracle algorithm were first proved in [3]. We extend
that result to the case where R and C are only approximate best response oracles, and show that the
corresponding Approximate Double Oracle Algorithm will converge to a good approximation of the game.

Theorem 2 IfR returns a pure policy x such that V(z,5) < V(z*,7)+e€ for all z* € II] and similarly C
returns a pure policy y such that V(z,y) > V(Z,y*) —¢€ for all y* € 11}, then the Double Oracle Algorithm
converges to a pair of mized strategies that form a 2e-approrimate minimazx equilibrium.

Theorem 3 The matriz game M has an exact minimaz solution (p,q), where p has positive probability
on at most m + 1 pure strategies and q has positive probability on at most n + 1 pure strategies.

2

R® — {zo} // any pure policy for X

C° — {yo} // any pure policy for YV’
Mo, — V(xo,0) // M is a 1x1 matrix
t<—0
while ((t = 0) OR (R* # R*~') OR (C* # C*™1))
t—t+1
(p,q) « solve_game(M) // p, q¢ are minimax strategies for M
- IRl . = cr
T >0 Pii Y= Zj:l q;Y;
z — R(Y) y — C(2)

RAHY — RtU{z} O —C'U{y})))

M; ; « V(z;,y;) for all new pairs i, j /] M is a |R™1| x |CTL] matrix
end
return (Z, §)

Figure 1: Double-Oracle Algorithm

3 Discussion

We have introduced cost-paired MDPs as a tractable model for solving a useful class of multiagent
planning problems. In the future we hope to conduct experiments which demonstrate the practical
application of cost-paired MDPs and which confirm the efficiency of our Double Oracle Algorithm. We
also believe that we can strengthen our theoretical claims; for example, it is possible to terminate the
algorithm before convergence and still provide performance guarantees.

The experiments in [3] correspond to a special case of cost-paired MDPs, in which the Y player
has a single state and n actions. So, these experiments provide initial evidence that our Double Oracle
Algorithm is faster than the direct linear programming approach. And, they demonstrate the practical
application of cost-paired MDPs to a surveillance problem.

Acknowledgements

The authors wish to thank Jeff Schneider and Chuck Rosenberg for useful discussions. This work was
supported in part by AFRL contract F30602-01-C-0219, DARPA’s MICA program. The opinions and
conclusions are the authors’ and do not reflect those of the US government or its agencies.

References

[1] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali. Linear Programming and Network Flows. John Wiley
& sons, 1990.

[2] Daphne Koller, Nimrod Megiddo, and Bernhard von Stengel. Fast algorithms for finding randomized
strategies in game trees. In Proceedings of the 26th Annual ACM Symposium on the Theory of
Computing, pages 750-759, 1994.

[3] H. Brendan McMahan, Geoffrey J. Gordon, and Avrim Blum. Planning in the presence of cost
functions controlled by an adversary. In Proceedings of the Twentieth International Conference on
Machine Learning, 2003.

[4] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley
Interscience, 1994.

A Proofs
A.1 Proof of Theorem 1

A mixed strategy for X is a distribution over rows of M. Suppose p defines such a distribution, with
Zle p; = 1. Then z = Zle p;x; are the visitation frequencies of the corresponding mixed policy in
X’s MDP, where each z; is a pure policy. The cost of x; against a pure strategy y; in our cost-paired
MDP is V(z;,y;), which is the same as the cost in M, namely x; - My;.

The cost in M of p against y; is Zle piM;; = Zle piV (x4, y;). But, since V (-, y) is linear, that cost
is just V(Z,y;). So, the cost of a mixed strategy for X in M is the same as the cost of the corresponding
mixed policy in X’s MDP; a similar argument holds for Y’s costs. That means that deviations from a
mixed strategy in M are penalized exactly the same way as deviations in our cost-paired MDP.

A.2 Proof of Theorem 2

Suppose that after completing some iteration ¢ the Approximate Double Oracle Algorithm returns. Let
7 and ¢ be stochastic policies corresponding to the minimax equilibrium for the | R?| x |C?| matrix game
M solved on iteration t. Since the algorithm returned, it must be that 2 = R(y) was already in Rf, and
y = C(Z) was already in C*.

Let V! = V(Z,y). Suppose x* and y* are the actual best responses, x* = argminwenﬁ V(z,y) and
y* = argmax, cy, V(Z,y). Because we are optimizing over a larger set, V(z*,y) < V; and V(z,y*) > V;.
And, by our assumption about the accuracy of our oracles, V(z,5) < V(z*,3) + € and V(Z,y) >
V(z,y*) —e.

Since x is a row in Rf, we have V(z,%) > V?*, and similarly V(z,y) < V*. Combining all the above
inequalities yields

Vi—e<V(z,g) —e<V(z*,9) < V' <V(z,y") <V(T,y) +e< V' +e

Letting V* be the value of the game M, we know that V(z*,7) < V* < V(Z,y*), and so we conclude
[Vt —V*| <e.

Now, we wish to show that player one can do almost as well as playing the minimax optimal strategy
to M by playing z. For all y' € II};, we have V(z,y') < V(z,y*) < V' + e Since V! < V* + ¢, we
have V(Z,y’) < V* + 2¢, and so by playing Z, player one does almost as well as playing an optimal
strategy. A symmetric argument shows the corresponding bound for the second player, and so (Z,§) is
a 2e—approximate minimax equilibrium.

A.3 Proof of Theorem 3

IT}, p is a polytope in R™, with extreme points and directions corresponding to pure policies in IT}.
(See, for example, equation (2) in [3]). A mixed strategy for the row player in M corresponds to a
stochastic policy Z € II%; 5. As a consequence of the representation theorem (one version can be found
in [1, Corollary 2.1]), Z can be represented as a convex combination of at most m + 1 extreme points and
directions of IT%; . In fact, since we have ruled out policies with infinite visitation frequencies (which
correspond to extreme rays), T is a convex combination of at most m + 1 extreme points. Since these
extreme points are deterministic policies, any stochastic policy can be written as a convex combination
of at most m + 1 deterministic policies. In particular, this holds for the minimax optimal policy T*.

