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In many realistic planning problems formulated as finite-state Markov decision
processes (MDPs), the state space x is factorized and represented using a set of
state variables (zg,...,z,-1). In factored models, the number of states is ex-
ponential in the number of state variables, and standard dynamic programming
solutions scale-up exponentially in the number of state variables. Much of the
recent work in the Al community has focused on factored structured represen-
tations of finite-state MDPs and their efficient solutions. Particularly popular
are approximations based on linear representations of value functions, where
the value function V(x) is expressed as a linear combination of basis functions
fi over subsets of state variables x;
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The advantage of the representation is that for a given set of basis functions,
the weights w; in the linear approximation can be calculated through linear
programming techniques. In fact, the whole problem can be rewritten as a
linear program
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This formulation allows us to tackle factored MDPs with large state spaces, and
control policies can be obtained in reasonable time.

Factored continuous-state Markov decision process (CMDP) is a variant
of factored MDPs, where the state space x is not discrete, but continuous.
Our main contribution to this field is an extension of the ALP framework to
continuous-state MDPs, which can be formulated as

minimizey: / V(z)dx



subject to: V(x) — 'y/ P(x'|x,a)V(x')dx' — R(x,a) > 0,Vx,a ,

where V(z) is assumed to be decomposable as a linear combination of basis
functions. Unfortunately, this formulation raises several issues. First, the inte-
grals may not decompose along the subsets of state variables as in the case of
finite-state MDPs. Second, the integrals may be improper and even not com-
putable. Finally, an infinite number of constraints (for all values of x and a)
needs to be satisfied.

An elegant decomposition of both integrals can be achieved when the state
space x is restricted to [0, 1]™. Tt can be shown that the linear program simplifies
to

minimize: sz/ fi(xi)dx;
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subject to: ZwiFi(x,a) — R(x,a) > 0,Vx,a ,

where
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In addition, an appropriate choice of basis functions, as is the product of factors
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together with a transition model defined by Beta densities
P(z;|xj.0,0) = Beta(x;195 4(%j.a): 97 4(%j.0))

leads to a closed form solution of both integrals. Since x is continuous there
may exist an infinite number of constraints restricting V' (x), and none of the
optimization methods that were developed for finite-state MDPs applies. The
solution to this problem is to select a finite subset of constraints and use them
to define the ALP. A variety of methods can be used to select the constraints,
e.g. one can choose the constraints randomly or using some heuristic.

To test the performance of the ALP on CMDPs, we compare the method
to two alternative approximation methods often used to solve CMDPs: the
grid-based MDP (GMDP), and least-squares fit (LS) methods. In the first
case the CMDP is converted into a finite state MDP with states corresponding
to points on the state grid. The approximation is found by solving the new
MDP. In the least-squares fit (LS), we fit the weights w of basis functions
using a finite number of state space samples. The experimental comparison
on highly factorized network architectures shows that the ALP approach easily
beats GMDP, which does not take into account any factorization of the state



space, and the results are only slightly worse in the terms of computation time
and policy quality than those obtained for LS. These results will be reported at
NIPS-03 during the main conference.

Our recent research in this field focuses on the improvement of the ALP
framework for CMDPs with heuristics aimed at both computational speed-ups
and improvements in the quality of solutions. One set of heuristics we have built
takes advantage of local effect of actions, which is a reasonable assumption when
modeling highly distributed environments. Other set of heuristics, relies on the
incremental ALP (iIALP) solver, which solves the linear program in several steps
for different sets of constraints, while taking into account the feedback from
the previous step solutions. This allowed us to achieve a several-fold speed-
ups. Finally, to generate better constraints we used Monte Carlo simulation
approaches that reflect the dynamics of the system and prefer constraints that
cover better the regions of the state space that are visited more often.



