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Abstract
Assume a uniform, multidimensional grid of bivariate data, where each
cell of the grid has a count ci and a baseline bi. Our goal is to find
spatial regions (d-dimensional rectangles) where the ci are significantly
higher than expected given bi. We focus on two applications: detection of
clusters of disease cases from epidemiological data (emergency depart-
ment visits, over-the-counter drug sales), and discovery of regions of in-
creased brain activity corresponding to given cognitive tasks (from fMRI
data). Each of these problems can be solved using a spatial scan statistic
(Kulldorff, 1997), where we compute the maximum of a likelihood ratio
statistic over all spatial regions, and find the significance of this region
by randomization. However, computing the scan statistic for all spatial
regions is generally computationally infeasible, so we introduce a novel
fast spatial scan algorithm, generalizing the 2D scan algorithm of (Neill
and Moore, 2004) to arbitrary dimensions. Our new multidimensional
multiresolution algorithm allows us to find spatial clusters up to 1400x
faster than the naive spatial scan, without any loss of accuracy.

1 Introduction
One of the core goals of modern statistical inference and data mining is to discover patterns
and relationships in data. In many applications, however, it is important not only to discover
patterns, but to distinguish those patterns that are significant from those that are likely to
have occurred by chance. This is particularly important in epidemiological applications,
where a rise in the number of disease cases in a region may or may not be indicative
of an emerging epidemic. In order to decide whether further investigation is necessary,
epidemiologists must know not only the location of a possible outbreak, but also some
measure of the likelihood that an outbreak is occurring in that region. Similarly, when
investigating brain imaging data, we want to not only find regions of increased activity, but
determine whether these increases are significant or due to chance fluctuations.

More generally, we are interested in spatial data mining problems where the goal is detec-
tion of overdensities: spatial regions with high counts relative to some underlying baseline.
In the epidemiological datasets, the count is some quantity (e.g. number of disease cases,
or units of cough medication sold) in a given area, where the baseline is the expected value
of that quantity based on historical data. In the brain imaging datasets, our count is the
total fMRI activation in a given set of voxels under the experimental condition, while our
baseline is the total activation in that set of voxels under the null or control condition.



We consider the case in which data has been aggregated to a uniform, d-dimensional grid.
For the fMRI data, we have three spatial dimensions; for the epidemiological data, we have
two spatial dimensions but also use several other quantities (time, patients’ age and gender)
as “pseudo-spatial” dimensions; this is discussed in more detail below.

In the general case, let G be a d-dimensional grid of cells, with size N1 � N2 ��������� Nd.
Each cell si

�
G (where i is a d-dimensional vector) is associated with a count ci and a

baseline bi. Our goal is to search over all d-dimensional rectangular regions S � G, and
find regions where the total count C � S 	�
 ∑S ci is higher than expected, given the baseline
B � S 	�
 ∑S bi. In addition to discovering these high-density regions, we must also perform
statistical testing to determine whether these regions are significant. As is necessary in
the scan statistics framework, we focus on finding the single, most significant region; the
method can be iterated (removing each significant cluster once it is found) to find multiple
significant regions.

1.1 Likelihood ratio statistics
Our basic model assumes that counts ci are generated by an inhomogeneous Poisson pro-
cess with mean qbi, where q (the underlying ratio of count to baseline) may vary spatially.
We wish to detect hyper-rectangular regions S such that q is significantly higher inside S
than outside S. To do so, for a given region S, we assume that q 
 qin uniformly for cells
si
�

S, and q 
 qout uniformly for cells si
�

G � S. We then test the null hypothesis H0 � S 	 :
qin 
 � 1 � ε 	 qout against the alternative hypothesis H1 � S 	 : qin � � 1 � ε 	 qout . If ε 
 0, this is
equivalent to the classical spatial scan statistic [1-2]: we are testing for regions where qin is
greater than qout . However, in many real-world applications (including the epidemiological
and fMRI datasets discussed later) we expect some fluctuation in the underlying baseline;
thus, we do not want to detect all deviations from baseline, but only those where the amount
of deviation is greater than some threshold. For example, a 10% increase in disease cases
in some region may not be interesting to epidemiologists, even if the underlying population
is large enough to conclude that this is a “real” (statistically significant) increase in q. By
increasing ε, we can focus the scan statistic on regions with larger ratios of count to base-
line. For example, we can use the scan statistic with ε 
 0 � 25 to test for regions where qin
is more than 25% higher than qout . Following Kulldorff [1], our spatial scan statistic is the
maximum, over all regions S, of the ratio of the likelihoods under the alternative and null
hypotheses. Taking logs for convenience, we have:

Dε � S 	�
 log
supqin ��� 1 � ε � qout ∏si � S P � ci � Po � qinbi 	�	 ∏si � G � S P � ci � Po � qoutbi 	�	
supqin ��� 1 � ε � qout ∏si � S P � ci � Po � qinbi 	�	 ∏si � G � S P � ci � Po � qoutbi 	�	


�� sgn 	 � C � S 	 log
C � S 	� 1 � ε 	 B � S 	 ��� Ctot � C � S 	�	 log

Ctot � C � S 	
Btot � B � S 	 � Ctot log

Ctot

Btot � εB � S 	��
where C � S 	 and B � S 	 are the count and baseline of the region S under consideration, Ctot

and Btot are the total count and baseline of the entire grid G, and sgn = +1 if C � S �
B � S � � � 1 �

ε 	 Ctot � C � S �
Btot � B � S � and -1 otherwise. Then the scan statistic Dε �max is equal to the maximum Dε � S 	

over all spatial regions (d-dimensional rectangles) under consideration. We note that our
statistical and computational methods are not limited to the Poisson model given here; any
model of null and alternative hypotheses such that the resulting statistic D � S 	 satisfies the
conditions given in [4] can be used for the fast spatial scan.

1.2 Randomization testing
Once we have found the highest scoring region S  !
 argmaxS D � S 	 of grid G, we must still
determine the statistical significance of this region. Since the exact distribution of the test
statistic Dmax is only known in special cases, in general we must find the region’s p-value by
randomization. To do so, we run a large number R of random replications, where a replica



has the same underlying baselines bi as G, but counts are randomly drawn from the null
hypothesis H0 � S  	 . More precisely, we pick ci � Po � qbi 	 , where q 
 qin 
 � 1 � ε 	 Ctot

Btot � εB � S � �
for si

�
S  , and q 
 qout 
 Ctot

Btot � εB � S � � for si
�

G � S  . The number of replicas G
�

with

Dmax � G � 	 �
Dmax � G 	 , divided by the total number of replications R, gives us the p-value

for our most significant region S  . If this p-value is less than α (where α is the false positive
rate, typically chosen to be 0.05 or 0.1), we can conclude that the discovered region is
statistically significant at level α.

1.3 The naive spatial scan
The simplest method of finding Dmax is to compute D � S 	 for all rectangular regions of sizes
k1 � k2 � ����� � kd, where 1 
 k j 
 N j. Since there are a total of ∏d

j � 1 � N j � k j � 1 	 regions

of each size, there are a total of O � ∏d
j � 1 N2

j 	 regions to examine. We can compute D � S 	
for any region S in constant time, by first finding the count C � S 	 and baseline B � S 	 , then
computing D.1 This allows us to compute Dmax of a grid G in O � ∏d

j � 1 N2
j 	 time. However,

significance testing by randomization also requires us to find Dmax for each replica G
�
,

and compare this to Dmax � G 	 ; thus the total complexity is multiplied by the number of
replications R. When the size of the grid is large, as is the case for the epidemiological and
fMRI datasets we are considering, this naive approach is computationally infeasible.

Instead, we apply our “overlap-multiresolution partitioning” algorithm [3-4], generalizing
this method from two-dimensional to d-dimensional datasets. This reduces the complexity
to O � ∏d

j � 1 N j logN j 	 in cases where the most significant region S  has a sufficiently high ra-
tio of count to baseline, and (as we show in Section 3) typically results in tens to thousands
of times speedup over the naive approach. We note that this fast spatial scan algorithm is
exact (always finds the correct value of Dmax and the corresponding region S  ); the speedup
results from the observation that we do not need to search a given set of regions if we can
prove that none of them have score � Dmax. Thus we use a top-down, branch-and-bound
approach: we maintain the current maximum score of the regions we have searched so far,
calculate upper bounds on the scores of subregions contained in a given region, and prune
regions whose upper bounds are less than the current value of Dmax. When searching a
replica grid, we care only whether Dmax of the replica grid is greater than Dmax � G 	 . Thus
we can use Dmax of the original grid for pruning on the replicas, and can stop searching a
replica if we find a region with score � Dmax � G 	 .
2 Overlap-multiresolution partitioning
As in [4], we use a multiresolution search method which relies on an overlap-kd tree data
structure. The overlap-kd tree, like kd-trees [5] and quadtrees [6], is a hierarchical, space-
partitioning data structure. The root node of the tree represents the entire space under
consideration (i.e. the entire grid G), and each other node represents a subregion of the
grid. Each non-leaf node of a d-dimensional overlap-kd tree has 2d children, an “upper”
and a “lower” child in each dimension. For example, in three dimensions, a node has six
children: upper and lower children in the x, y, and z dimensions. The overlap-kd tree is
different from the standard kd-tree and quadtree in that adjacent regions overlap: rather
than splitting the region in half along each dimension, instead each child contains more
than half the area of the parent region. For example, a 64 � 64 � 64 grid will have six
children: two of size 48 � 64 � 64, two of size 64 � 48 � 64, and two of size 64 � 64 � 48.

1An old trick makes it possible to compute the count and baseline of any rectangular region in
time constant in N: we first form a d-dimensional array of the cumulative counts, then compute
each region’s count by adding/subtracting at most 2d cumulative counts. Note that because of the
exponential dependence on d, these techniques suffer from the “curse of dimensionality”: neither the
naive spatial scan, nor the fast spatial scan discussed below, are appropriate for very high dimensional
datasets.



In general, let region S have size k1 � k2 � ����� � kd . Then the two children of S in dimension
j (for j 
 1 ����� d) have size k1 � ����� � k j � 1 � f jk j � k j � 1 � ������� kd, where 1

2 � f j � 1. This
partitioning (for the two-dimensional case, where f1 
 f2 
 3

4 ) is illustrated in Figure 1.
Note that there is a region SC common to all of these children; we call this region the center
of S. When we partition region S in this manner, it can be proved that any subregion of S
either a) is contained entirely in (at least) one of S1 ����� S2d , or b) contains the center region
SC. Figure 1 illustrates each of these possibilities, for the simple case of d 
 2.

S

S_3
S_4 S_C

S_1 S_2

Figure 1: Overlap-multires partitioning
of region S (for d � 2). Any subregion
of S either a) is contained in some Si,
i � 1 ����� 4, or b) contains SC .

Now we can search all subregions of S by recursively searching S1 ����� S2d , then searching
all of the regions contained in S which contain the center SC. There may be a large number
of such “outer regions,” but since we know that each such region contains the center, we
can place very tight bounds on the score of these regions, often allowing us to prune most
or all of them. Thus the basic outline of our search procedure (ignoring pruning, for the
moment) is:
overlap-search(S)
{
call base-case-search(S)
define child regions S_1..S_2d, center S_C as above
call overlap-search(S_i) for i=1..2d
for all S’ such that S’ is contained in S and contains S_C, call base-case-search(S’)

}

The fractions fi are selected based on the current sizes ki of the region being searched:
if ki 
 2m, then fi 
 3

4 , and if ki 
 3 � 2m, then fi 
 2
3 . For simplicity, we assume that

all Ni are powers of two, and thus all region sizes ki will fall into one of these two cases.
Repeating this partitioning recursively, we obtain the overlap-kd tree structure. For d 
 2,
the first two levels of the overlap-kd tree are shown in Figure 2.

Figure 2: The first two levels of the two-
dimensional overlap-kd tree. Each node
represents a gridded region (denoted by
a thick rectangle) of the entire dataset
(thin square and dots).

The overlap-kd tree has several useful properties, which we present here without proof.
First, for every rectangular region S � G, either S is a gridded region (contained in the
overlap-kd tree), or there exists a unique gridded region S

�
such that S is an outer region

of S
�

(i.e. S is contained in S
�
, and contains the center region of S

�
). This means that, if

overlap-search is called exactly once for each gridded region2, and no pruning is done, then
base-case-search will be called exactly once for every rectangular region S � G. In practice,
we will prune many regions, so base-case-search will be called at most once for every rect-
angular region, and every region will be either searched or pruned. The second nice prop-
erty of our overlap-kd tree is that the total number of gridded regions is O � ∏d

j � 1 N j logN j 	 .
This implies that, if we are able to prune (almost) all outer regions, we can find Dmax of the
grid in O � ∏d

j � 1 N j logN j 	 time rather than O � ∏d
j � 1 N2

j 	 . In fact, we may not even need to
search all gridded regions, so in many cases the search will be even faster.

2As in [4], we use “lazy expansion” to ensure that gridded regions are not multiply searched.



2.1 Score bounds and pruning
We now consider which regions can be pruned (discarded without searching) during our
multiresolution search procedure. First, given some region S, we must calculate an upper
bound on the scores D � S � 	 for regions S

���
S. More precisely, we are interested in two

upper bounds: a bound on the score of all subregions S
���

S, and a bound on the score of
the outer subregions of S (those regions contained in S and containing its center SC). If the
first bound is less than or equal to Dmax, we can prune region S completely; we do not need
to search any (gridded or outer) subregion of S. If only the second bound is less than or
equal to Dmax, we do not need to search the outer subregions of S, but we must recursively
call overlap-search on the gridded children of S. If both bounds are greater than Dmax, we
must both recursively call overlap-search and search the outer regions.

Score bounds are calculated based on various pieces of information about the subregions
of S, including: upper and lower bounds bmax, bmin on the baseline of subregions S

�
; an

upper bound dmax on the ratio C
B of S

�
; an upper bound dinc on the ratio C

B of S
� � SC; and

a lower bound dmin on the ratio C
B of S � S

�
. We also know the count C and baseline B of

region S, and the count ccenter and baseline bcenter of region SC. Let cin and bin be the count
and baseline of S

�
. To find an upper bound on D � S � 	 , we must calculate the values of cin

and bin which maximize D subject to the given constraints: cin � ccenter
bin � bcenter 
 dinc, cin

bin

 dmax,

C � cin
B � bin

�
dmin, and bmin 
 bin 
 bmax. The solution to this maximization problem is derived

in [4], and (since scores are based only on count and baseline rather than the size and shape
of the region) it applies directly to the multidimensional case. The bounds on baselines and
ratios C

B are first calculated using global values (as a fast, “first-pass” pruning technique).
For the remaining, unpruned regions, we calculate tighter bounds using the quartering
method of [4], and use these to prune more regions.

2.2 Related work
Our work builds most directly on the results of Kulldorff [1], who presents the two-
dimensional spatial scan framework and the classical (ε 
 0) likelihood ratio statistic. It
also extends [4], in which we present the two-dimensional fast spatial scan. Our major
extensions in the present work are twofold: the d-dimensional fast spatial scan, and the
generalized likelihood ratio statistics Dε. A variety of other cluster detection techniques
exist in the literature on epidemiology [1-3, 7-8], brain imaging [9-11], and machine learn-
ing [12-15]. The machine learning literature focuses on heuristic or approximate cluster-
finding techniques, which typically cannot deal with spatially varying baselines, and more
importantly, give no information about the statistical significance of the clusters found.
Our technique is exact (in that it calculates the maximum of the likelihood ratio statistic
over all hyper-rectangular spatial regions), and uses a powerful statistical test to determine
significance. Nevertheless, other methods in the literature have some advantages over the
present approach, such as applicability to high-dimensional data and fewer assumptions
on the underlying model. The fMRI literature generally tests significance on a per-voxel
basis (after applying some method of spatial smoothing); clusters must then be inferred
by grouping individually significant voxels, and (with the exception of [10]) no per-cluster
false positive rate is guaranteed. The epidemiological literature focuses on detecting signif-
icant circular, two-dimensional clusters, and thus cannot deal with multidimensional data
or elongated regions. Detection of elongated regions is extremely important in both epi-
demiology (because of the need to detect windborne or waterborne pathogens) and brain
imaging (because of the “folded sheet” structure of the brain); the present work, as well as
[4], allow detection of such clusters.

3 Results
We now describe results of our fast spatial scan algorithm on three sets of real-world data:
two sets of epidemiological data (from emergency department visits and over-the-counter



drug sales), and one set of fMRI data. Before presenting these results, we wish to em-
phasize three main points. First, the extension of scan statistics from two-dimensional to
d-dimensional datasets dramatically increases the scope of problems for which these tech-
niques can be used. In addition to datasets with more than two spatial dimensions (for
example, the fMRI data, which consists of a 3D picture of the brain), we can also examine
data with a temporal component (as in the OTC dataset), or where we wish to take demo-
graphic information into account (as in the ED dataset). Second, in all of these datasets, the
use of the broader class of likelihood ratio statistics Dε (instead of only the classical scan
statistic ε 
 0) allows us to focus our search on smaller, denser regions rather than slight
(but statistically significant) increases over a large area. Third, as our results here will
demonstrate, the fast spatial scan gains huge performance improvements over the naive
approach, making the use of the scan statistic feasible in these large, real-world datasets.

Our first test set was a database of (anonymized) Emergency Department data collected
from Western Pennsylvania hospitals in the period 1999-2002. This dataset contains a total
of 630,000 records, each representing a single ED visit and giving the latitude and longi-
tude of the patient’s home location to the nearest 1

3 mile (a sufficiently low resolution to
ensure anonymity). Additionally, a record contains information about the patient’s gender
and age decile. Thus we map records into a four-dimensional grid, consisting of two spa-
tial dimensions (longitude, latitude) and two “pseudo-spatial” dimensions (patient gender
and age decile). This has several advantages over the traditional (two-dimensional) spatial
scan. First, our test has higher power to detect syndromes which affect differing patient
demographics to different extents. For example, if a disease primarily strikes male infants,
we might find a cluster with gender = male and age decile = 0 in some spatial region, and
this cluster may not be detectable from the combined data. Second, our method accounts
correctly for multiple hypothesis testing. If we were to instead perform a separate test at
level α on each combination of gender and age decile, the overall false positive rate would
be much higher than α. We mapped the ED dataset to a 128 � 128 � 2 � 8 grid, with the
first two coordinates corresponding to longitude and latitude, the third coordinate corre-
sponding to the patient’s gender, and the fourth coordinate corresponding to the patient’s
age decile. We tested for spatial clustering of “recent” disease cases: the count of a cell was
the number of ED visits in that spatial region, for patients of that age and gender, in 2002,
and the baseline was the total number of ED visits in that spatial region, for patients of that
age and gender, over the entire temporal period 1999-2002. We used the Dε scan statistic
with values of ε ranging from 0 to 1.0. For the classical scan statistic (ε 
 0), we found a
region of size 35 � 34 � 2 � 8; thus the most significant region was spatially localized but
cut across all genders and age groups. The region had C 
 3570 and B 
 6409, as compared
to C

B 
 0 � 05 outside the region, and thus this is clearly an overdensity. This was confirmed
by the algorithm, which found the region statistically significant (p-value 0/100). With
the three other values of ε, the algorithm found almost the same region (35 � 33 � 2 � 8,
C 
 3566, B 
 6390) and again found it statistically significant (p-value 0/100). For all
values of ε, the fast scan statistic found the most significant region hundreds of times faster
than the naive spatial scan (see Table 1): while the naive approach required approximately
12 hours per replication, the fast scan searched each replica in approximately 2 minutes,
plus 100 minutes to search the original grid. Thus the fast algorithm achieved speedups of
235-325x over the naive approach for the entire run (i.e. searching the original grid and
100 replicas) on the ED dataset.

Our second test set was a nationwide database of retail sales of over-the-counter cough
and cold medication. Sales figures were reported by zip code; the data covered 5000 zip
codes across the U.S. In this case, our goal was to see if the spatial distribution of sales in
a given week (February 7-14, 2004) was significantly different than the spatial distribution
of sales during the previous week, and to identify a significant cluster of increased sales if
one exists. Since we wanted to detect clusters even if they were only present for part of the
week, we used the date (Feb. 7-14) as a third dimension. This is similar to the retrospective



Table 1: Performance of algorithm, real-world datasets
test ε sec/orig sec/rep speedup regions (orig) regions (rep)
ED 0 6140 126 x235 358M 622K

(128 � 128 � 2 � 8) 0.25 6035 100 x275 352M 339K
(7.35B regions) 0.5 5994 102 x272 348M 362K

1.0 5607 79.6 x325 334M 336K
OTC 0 4453 195 x48 302M 2.46M

(128 � 128 � 8) 0.25 429 123 x90 12.2M 1.39M
(2.45B regions) 0.5 334 51 x210 8.65M 350K

1.0 229 5.9 x1400 4.40M � 10
fMRI 0 880 384 x7 39.9M 14.0M

(64 � 64 � 16) 0.01 597 285 x9 35.2M 10.4M
(588M regions) 0.02 558 188 x14 33.1M 6.65M

0.03 547 97.3 x27 32.3M 3.93M
0.04 538 30.0 x77 31.9M 1.44M
0.05 538 13.1 x148 31.7M 310K

space-time scan statistic of [16], which also uses time as a third dimension. However,
that algorithm searches over cylinders rather than hyper-rectangles, and thus cannot detect
spatially elongated clusters. The count of a cell was taken to be the number of sales in that
spatial region on that day; to adjust for day-of-week effects, the baseline of a cell was taken
to be the number of sales in that spatial region on the day one week prior (Jan. 31-Feb. 7).
Thus we created a 128 � 128 � 8 grid, where the first two coordinates were derived from
the longitude and latitude of that zip code, and the third coordinate was temporal, based on
the date. For this dataset, the classical scan statistic (ε 
 0) found a region of size 123 �
76 from February 7-11. Unfortunately, since the ratio C

B was only 0.99 inside the region
(as compared to 0.96 outside) this region would not be interesting to an epidemiologist.
Nevertheless, the region was found to be significant (p-value 0/100) because of the large
total baseline. Thus, in this case, the classical scan statistic finds a large region of very slight
overdensity rather than a smaller, denser region, and thus is not as useful for detecting
epidemics. For ε 
 0 � 25 and ε 
 0 � 5, the scan statistic found a much more interesting
region: a 4 � 1 region on February 9 where C 
 882 and B 
 240. In this region, the
number of sales of cough medication was 3.7x its expected value; the region’s p-value was
computed to be 0/100, so this is a significant overdensity. For ε 
 1, the region found was
almost the same, consisting of three of these four cells, with C 
 825 and B 
 190. Again
the region was found to be significant (p-value 0/100). For this dataset, the naive approach
took approximately three hours per replication. The fast scan statistic took between six
seconds and four minutes per replication, plus ten minutes to search the original grid, thus
obtaining speedups of 48-1400x on the OTC dataset.

Our third and final test set was a set of fMRI data, consisting of two “snapshots” of a
subject’s brain under null and experimental conditions respectively. The experimental con-
dition was from a test [9] where the subject is given words, one at a time; he must read these
words and identify them as verbs or nouns. The null condition is the subject’s average brain
activity while fixating on a cursor, before any words are presented. Each snapshot consists
of a 64 � 64 � 16 grid of voxels, with a reading of fMRI activation for the subset of the
voxels where brain activity is occurring. In this case, the count of a cell is the fMRI activa-
tion for that voxel under the experimental condition, and the baseline is the activation for
that voxel under the null condition. For voxels with no brain activity, we have ci 
 bi 
 0.
For the fMRI dataset, the amount of change between activated and non-activated regions is
small, and thus we used values of ε ranging from 0 to 0.05.

For the classical scan statistic (ε 
 0) our algorithm found a 23 � 20 � 11 region, and again
found this region significant (p-value 0/100). However, this is another example where the



classical scan statistic finds a region which is large ( 1
4 of the entire brain) and only slightly

increased in count: C
B 
 1 � 007 inside the region and C

B 
 1 � 002 outside the region. For
ε 
 0 � 01, we find a more interesting cluster: a 5 � 10 � 1 region in the visual cortex con-
taining four non-zero voxels.3 For this region C

B 
 1 � 052, a large increase, and the region
is significant at α 
 0 � 1 (p-value 10/100) though not at α 
 0 � 05. For ε 
 0 � 02, we find
the same region, but conclude that it is not significant (p-value 32/100). For ε 
 0 � 03 and
ε 
 0 � 04, we find a 3 � 2 � 1 region with C

B 
 1 � 065, but this region is not significant (p-
values 61/100 and 89/100 respectively). Similarly, for ε 
 0 � 05, we find a single voxel with
C
B 
 1 � 075, but again it is not significant (p-value 91/100). For this dataset, the naive ap-
proach took approximately 45 minutes per replication. The fast scan statistic took between
13 seconds and six minutes per replication, thus obtaining speedups of 7-148x on the fMRI
dataset.

Thus we have demonstrated (through tests on a variety of real-world datasets) that the
fast multidimensional spatial scan statistic has significant performance advantages over the
naive approach, resulting in speedups up to 1400x without any loss of accuracy. This makes
it feasible to apply scan statistics in a variety of application domains, including the spatial
and spatio-temporal detection of disease epidemics (taking demographic information into
account), as well as the detection of regions of increased brain activity in fMRI data. We
are currently examining each of these application domains in more detail, and investigating
which statistics are most useful for each domain. The generalized likelihood ratio statistics
presented here are a first step toward this: by adjusting the parameter ε, we can “tune” the
statistic to detect smaller and denser, or larger but less dense, regions as desired, and our
statistical significance test is adjusted accordingly. We believe that the combination of fast
computational algorithms and more powerful statistical tests presented here will enable the
multidimensional spatial scan statistic to be useful in these and many other applications.
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