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Word Sense Induction

Abstract

This paper presents and evaluates a novel system for fully automatic
word sense induction: identifying and disambiguating between the senses
of an ambiguous word such as “bank” or “plant”, without being given any
prior information about these senses. The system uses statistical tech-
niques to find a set of words which are relevant for disambiguating a
target word, to discover the senses of the target word, and to cluster the
relevant words according to these induced senses; the word clusters can
then be used probabilistically for disambiguating occurrences of the target
word in context. An iterative technique is used, in which words are as-
signed to clusters based on their weighted frequency of co-occurrence with
words already in those clusters; the initial “seed words” for each cluster
are found by measuring how well potential seeds partition the data set.
The performance of the system was evaluated on a number of test words
according to two criteria, “accuracy” and “conditional entropy”, and it was
demonstrated to successfully induce useful sense distinctions for the ma-

jority of target words.

Key words: word sense induction; word sense disambiguation; semantic

clustering; computational linguistics.
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1 Introduction

This paper presents a novel system for word sense induction: identifying and
disambiguating between the different senses of a word. For example, the noun
“plant” might be thought of as having two distinct senses: ‘industrial plant’ and
‘flora’. The standard word sense disambiguation task is to differentiate between
the predefined senses of a target word: given some sentence such as “The plant
produces electricity for the town,” we must identify whether this corresponds to
the ‘industrial’ or ‘flora’ sense of “plant”. However, we focus here on a harder
task: discovering the different senses of a word without being given any prior
information about these senses. Our system, given only an unlabeled corpus of
data, will “guess” the different senses of a word using statistical techniques, then
given an occurrence of the word in context, assign it to one of these induced
senses. For example, given the word “bank”, our system might identify two
senses corresponding to ‘river’ and ‘money’, then assign the occurrence “We de-
posited the checks at the bank,” to the ‘money’ sense. The system was designed,
implemented, and evaluated on a number of ambiguous words; we discuss our

theory, methods, and results in detail below.

2 Background

Since the early 1990s, various researchers have investigated statistical techniques
for word sense disambiguation in context. Some of these methods, such as the
Bayesian classification approach of Gale et al (1992) and the information the-
oretical approach of Brown et al (1991), rely on a large corpus of word-sense-
labeled training examples. We focus here on unsupervised methods for word
sense disambiguation, which do not require large amounts of hand-labeled data:

these include the work of Schiitze (1992, 1997, 1998), Yarowsky (1995), Karov
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& Edelman (1998), and Sparck Jones (1986). For each of these systems, we
consider the same question: “To what extent can this system be used for fully
automatic word sense induction?” To answer this question, we must precisely
define what we mean by word sense induction as opposed to word sense disam-
biguation, and also as opposed to topic clustering. First, word sense induction
assumes that no prior information is given about the different senses of a word:
thus the induced senses are inferred from the clustering of words or contexts in
an unlabeled corpus. This is distinct from word sense disambiguation, in which
information about each sense of a word is given, and the contexts are matched
to these senses based on this information. Second, word sense induction must
form a different set of senses for each word: this is distinct from topic clustering,
which forms a single grouping of contexts into clusters, then uses these clusters

to define the senses of any given target word.

Schiitze (1992) uses the most straightforward approach to the unsupervised word
sense disambiguation problem: he treats words as vectors in high-dimensional
space and clusters together words which are “close” in that space. To do so, he
defines the similarity between two words as their number of co-occurrences in the
corpus, and uses standard clustering algorithms on the word-by-word similarity
matrix (after first reducing the dimensionality by Singular Value Decomposi-
tion). Similarly, Schiitze (1997) constructs a word-by-word similarity matrix,
but uses this to cluster “context vectors” where the context vector is a weighted
average of the word vectors occurring in that context. In both cases, the clusters
are global in nature: a single clustering of words or contexts is formed, and tar-
get words in test sentences are assigned to the sense of the closest cluster. As a
result of this global perspective, there are only two options when using this clas-
sification to disambiguate test sentences. The first approach, taken in Schiitze

(1992), is to manually predefine the senses of the word to be disambiguated,
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and to hand-label each cluster with one of the predefined senses. The second
approach, taken in Schiitze (1997), is to assume that each cluster corresponds
to a word sense of any given target word, implying that every word has the
same number and distribution of word senses. The first approach corresponds
to word sense disambiguation, and the second approach to topic clustering; in
neither case does the system perform what we consider to be word sense induc-
tion. Schiitze (1998) also uses the WORD SPACE system from Schiitze (1997),
but tests several “local selection” methods in which words that co-occur with
the target word with high frequency (or high dependency as measured by the
x? test) are selected as descriptive features. However, once the words are se-
lected, they are clustered without any consideration of the target word to be
disambiguated, and thus this method falls somewhere between topic clustering
and word sense induction. While it can be used for word sense induction, it
induces word senses based on a clustering algorithm which does not sufficiently

take into account the particular word we are trying to disambiguate.

Yarowsky (1995) and Karov & Edelman (1998) both use “bootstrapping” algo-
rithms: they generalize from a small amount of labeled data, with information
about the different senses of the word to be disambiguated, to classify examples
from a larger, unlabeled corpus. Yarowsky iteratively applies two rules in order
to assign contexts to senses: “one sense per collocation” (assuming that nearby
words provide consistent information about the sense of a target word), and
“one sense per discourse” (assuming that occurrences of a word from the same
source document will have the same sense). To do this, however, he starts off by
manually sense-labeling a small proportion of the corpus: these labeled exam-
ples are the necessary “seeds” for his bootstrapping algorithm. Thus Yarowsky’s
algorithm depends on prior knowledge of the different senses of a word, as well

as information about these senses in the form of labeled examples: it is there-
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fore a word sense disambiguation algorithm and cannot be easily adapted for
word sense induction. Similarly, Karov & Edelman assume that the distinct
senses of each word are known in advance, each with a given definition in a
machine-readable dictionary; these definitions are used to create a “feedback
set” of corpus data for each sense. Then a clustering technique is used to aug-
ment the feedback set with examples from the training set, and new words are
assigned to the sense of the most similar cluster. As in Yarowsky’s algorithm,
the prior knowledge of the senses of a word, as well as information about these
senses (their dictionary definitions), are a necessary part of the algorithm, and
this word sense disambiguation algorithm would be difficult or impossible to use

for word sense induction.

We also briefly discuss Sparck Jones (1986): this is a revised version of her 1964
Ph.D. thesis, which anticipated many of the techniques and issues found in the
past decade of word sense disambiguation research. Sparck Jones manually cre-
ates “rows” consisting of all and only those words that are interchangeable in a
given context, then clusters these rows by similarity into semantically related
groups. These groups can be “flattened” to give a list of words belonging to
each group; we can then treat the different groups to which a word belongs as
representing the different senses of the word. From these groups, word sense
disambiguation is performed by “group intersection” given the set of groups con-
taining the target word and the sets of groups for the other words in a context
containing the target word, possible word senses are those defined by the set of
groups formed by pairwise intersections of target word and each context word.
While Sparck Jones’ use of clustering for automatic semantic classification can
be thought of as a sense induction technique, several difficulties prevent this
work from being directly applicable for current word sense induction research.

The disambiguation procedure is not probabilistically based, and gives no ev-
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idence for disambiguating between multiple senses remaining after the group
intersection procedure. More importantly, the creation of rows by manual “re-
placement” is very different than the current approach of automatically extract-
ing co-occurrence information from a corpus; this was made necessary by the
lack of existing corpus data at the time, and as a result, the technique does not

translate easily into a “fully automatic” system for word sense induction.

3 The SIGIL algorithm: overview

In the following sections, we present SIGIL, an algorithm for “Sense Induction
by Greedy Iterative Labeling”. SIGIL is a fully automatic word sense induction
system in the strictest sense: it determines the clusters of word contexts that
correspond to the different senses of a word, without using any prior information
about the senses. The only inputs to the algorithm are an unlabeled corpus of
data (from which it extracts word co-occurrence information), the word W to be
disambiguated, and the number of sense clusters k to be formed. The algorithm
then proceeds by picking a relevant subset of the words (those words which have
high probability of co-occurrence with W, and hence are likely to be useful in
disambiguating W). Next, the algorithm selects a group of k seed words, one
seed per sense, that best partition this subset (we explain this in detail below).
Then the rest of the relevant words are iteratively assigned to senses based on
their co-occurrences with words already assigned to those senses: we assume
that if word wyeq, co-occurs frequently with words corresponding to a given
sense of W, then w,,, is also likely to correspond to that sense of W. Cluster-
ing is performed in an iterative greedy fashion: at each stage of the algorithm,
we assign the words which correspond most strongly to each cluster, and we
repeat this until all words have been assigned. We approximate the probability

P(W = S;|w;) for each relevant word w;: this is the probability that, given that
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we see word w;, word W will appear in its context and be assigned to sense S;.
We use these probabilities to disambiguate test sentences in which the word W
appears in some context, by considering the sense probabilities for each relevant

word in that context, and selecting the sense with the highest total probability.

The SIGIL clustering algorithm is optimized over the “local neighborhood” of
the word W to be disambiguated: only words with high probabilities of co-
occurrence with W are considered relevant, and each is weighted by its proba-
bility P(W | w;) throughout the algorithm. Thus the algorithm does not form a
single set of global clusters (as opposed to topic clustering systems) but instead
a substantially different set of clusters for each word W. It is hoped that, by
clustering in this locally optimal manner, our system will be more likely to pro-
duce sense clusters that correspond well with the linguistically relevant senses

of W.

4 The SIGIL algorithm: theoretical foundations

Assume that we are given a word W with senses S; through S,. Given an
occurrence of W in some context C, our goal is to compute a probability distri-
bution P(W = S; | W, C') over the possible senses of W. To do so, we consider
the probabilities P(W = S; | W, w;) for each word w; occurring in context C.
One possibility would be to assume that the words’ co-occurrence probabilities
are independent, and to use a naive Bayes approximation as found in Gale et
al (1992) or Manning & Schiitze (1999). However, we make the opposite as-
sumption: based on Yarowsky’s “one sense per collocation” rule, it is likely that
the probabilities P(W = S; | W, w;) are strongly dependent, and the probability
for any word w; is a good predictor of the probabilities of the words occurring

frequently with w;. Thus we obtain a smoothed probability estimate by taking
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a weighted average over the per-word conditional probabilities:

(W =85 | W,w;)
(W, w;)

P = 5, | w,c) LW )L

This approach raises two fundamental questions: what weighting function f(W, w;)
to use, and how to compute the probabilities P(W = S; | W,w;). We choose
the function f(W,w;) = P(W |w;), since words which have a higher probability
of co-occurrence with W are likely to be better disambiguators of W. Since
fW,w))PW = S | Wow;) = P(W [ w) P(W = S; | W,w;) = P(W = S |w;),

the above equation simplifies to:

YL P(W =8| w)
Z1 (W [ w;)

P(W =S; | W,C) =

We also note that a maximum likelihood estimate of P(W | w;) can be easily

obtained from the corpus:

TL(W, wi)

PO = s

where n(W, w;) is the number of co-occurrences of W and w; in the corpus, and

n(w;) is the number of occurrences of w; in the corpus.

We compute the probabilities P(W = S;|w;) using an iterative, “bootstrapping”
process: assume we are given P(W = S, | w;) for some set of words {w;}, and
want to compute P(W = S} | wyey) for some word wye,,. Then we make the

following approximation, where the sums are taken over all words with known

P(W = Sj | wi):

n(W = Sjawnew) ~ Ei n(W = Sj7 wivwnew)

P =9; new) = ~
w S Wy wnew) (W, Wnew) Zz (W, wi, Wnew)
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By making this assumption, we take advantage of transitivity of co-occurrence
information: if wpe, occurs with w; corresponding to sense S; of W, wpey
is also likely to correspond to sense S; of W. Next, we know that n(W =
S, Wi, Wnew) = (W, Wi, Wnew)P(W = S; | W,w;, Wnew). Since we do not yet
know the effects of whey, on the sense distribution of W, we approximate P(W =
S| W, w;, Wneyw) & P(W = S;|W,w;). Substituting this into the equation above,

we obtain:

Zi n(W7 wiawnew)P(W = Sj | W, wi)
Zi n(Wa Wy, wnew)

P(W =8, | W, wnew) =

Next, since we are only given the number of co-occurrences of word pairs, not
word triplets, we approximate: n(W, w;, Wnew) = n(W;, Wyew ) P(W Wi, Whew) =
N(W;, Wnew) P(W | w;). The dependence of P(W) on wpe, can be ignored here
since it is independent of w;. Substituting this into the previous equation, we

obtain:

> (Wi Whew ) PW | wi) P(W = S; | W, w;)

P(W:S] |W7wnew) = Zin(wiywnew)P(Wlwi)

_ Ei (Wi, Wnew ) P(W = Sj |wz)
Ein(wiawnew)P(W | wi)

Finally, we calculate P(W = Sj|wneq) by multiplying this equation by P(W|wpeq):

Ei (Wi, Wrew) P(W = S; | w;)
22 (Wi Wnew ) P(W | w;)

P(W = 5; | wnew) = P(W | Wnew)

Thus we have written P(W = S; | Wnew) in terms of the given probabilities
P(W = S; | w;), the co-occurrence statistics n(w;, Wnew), and the conditional
probabilities P(W | w;) and P(W | wpew). The co-occurrence statistics can
be obtained directly from the corpus, and the conditional probabilities can be

calculated simply as above. Thus given probabilities P(W = S; | w;) for some
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words w;, we can apply this method iteratively to calculate probabilities for the
rest of the corpus. But how do we find the initial probabilities? We start with
one seed s; for each sense S; of W, and assume that the seed always corresponds
to that sense: P(W = S;|W,s;) = 1,s0 P(W = Sj|s;) = P(W|s;). We choose
the seed words which best partition the data: those which assign the highest
percentage of relevant words “strongly” (with probability greater than 1 — € for
some constant €) to one of the classes. Of course, since it would be inefficient
to run the algorithm on each combination of seeds to find the best partition, we
choose the seeds using a greedy algorithm, and approximate the end partition

by its first iteration; we describe this procedure in detail below.

5 The SIGIL algorithm: details

The SIGIL algorithm consists of five steps:

1. Preprocessing the corpus to extract co-occurrence information.

Do

. Forming the similarity matrix.

3. Choosing a seed word for each sense.

e~

. Iterating the algorithm, producing a soft assignment of words to senses.

ot

. Using this assignment to disambiguate target words in test sentences.

We now describe each of these steps in detail.

5.1 Preprocessing the BNC corpus

Our first task is to preprocess the written portion of the BNC corpus, in order
to find the number of co-occurrences of each pair of words (w;,w;) in a fixed-

size window. The BNC corpus (Leech, 1992) ! was chosen for this experiment

1'We used a version of the BNC preprocessed by John Carroll, with SGML replaced by a
convenient markup style.
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because it is a large and representative sample of English usage: it contains
numerous examples of polysemous words in context, and running the experi-
ments on a smaller corpus may have resulted in problems of data sparsity. We
used a part-of-speech tagged version of the BNC, and considered a word and
its part-of-speech together: for example, “bank NN1” (common noun), “bank
NPQ” (proper noun), and “bank VVI” (verb form) were considered three sep-
arate words. Similarly, the singular (“bank NN1”) and plural (“banks NN27)
are treated separately. It should be noted that part-of-speech tagging resolves
some potential ambiguities, for example “console NN1” (the noun form, meaning
‘small table’ or ‘control panel’) versus “console VVI” (the verb form, meaning
‘allay sorrow or grief’). Nevertheless, distinctions such as those between the
two (or more) noun senses of “console” will not be resolved by part of speech

tagging, and these are the cases on which we test.

We process the BNC corpus 4M words at a time: the first 3.75M words of
each block are used for training and the last 0.25M words are set aside to be
used for evaluation. Twenty 4M word blocks are processed, giving a total of
75M words of training data and 5M words of test data. Co-occurrence informa-
tion is extracted from the training set: we consider each of the 204743 tokens
with five or more occurrences in the BNC, with the exception of a 100-word
stoplist (the most frequently occurring 100 words are ignored). Thus a 204643
x 204643 co-occurrence matrix A is formed, with A[i, j] containing the number
of co-occurrences of w; and w; in a 15-word window. A sparse matrix represen-
tation is used for computational efficiency; we also ignore co-occurrences that
occur only once in a 4M word block, in order to reduce the time and space

necessary for computation.
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5.2 Forming the similarity matrix

Next, we form a similarity matrix B from the co-occurrence matrix A. This
must be done separately for each word W to be disambiguated: we extract the
submatrix of A consisting of the words which are most relevant for disambiguat-
ing W. As discussed above, we assume that the best disambiguators of W are
those words with the highest probability of co-occurrence with W: the words
w; with the maximum values of P(W |w;) = n(W, w;)/n(w;). However, we also
exclude very rare words; if a word has n(W,w;) < 5, it is ignored. Of the words
with n(W,w;) > 5, we select the 1500 words with the highest P(W | w;). Thus
we form a 1500 x 1500 similarity matrix from these words; the matrix may be
smaller if there are less than 1500 words with n(W,w;) > 5. We then define
the elements of the similarity matrix: B[i,j] = n(w;,w;) for ¢ # j. Also, we
store the probabilities of co-occurrence with W on the diagonal of the matrix:
Bli,i] = n(W, w;) /n(w;).

This approach is significantly different from the approaches of Schiitze (1992,
1997). Schiitze forms a single word-by-word similarity matrix and uses this for
all of his disambiguation tasks, while we use a different similarity matrix for
each word W to be disambiguated. Schiitze uses Singular Value Decomposi-
tion to reduce the dimensionality of the data, extracting the features which are
globally important, while we extract a submatrix containing the words which
are “locally important”, i.e. relevant to the specific word we are trying to dis-
ambiguate. As a result, Schiitze’s methods can be thought of as producing an
“optimal global partition”: the clusters formed do not necessarily correspond
closely to the senses of any given word. Schiitze (1992) ignores this problem
by focusing on word sense disambiguation rather than word sense induction,
assigning a sense of the target word W manually to each cluster. The WORD

SPACE system of Schiitze (1997) clusters context vectors (i.e. sentences rather
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than words) and assigns a sentence to the closest cluster. These topic clusters
are assumed to discriminate between the senses of any given target word. While
there is clearly some correlation between topics and word senses, it is likely that
more accurate word sense induction requires a substantially different set of clus-
ters for each target word whose senses we are trying to induce. Thus Schiitze’s

technique is unlikely to be optimal for the word sense induction task.

Our system, on the other hand, focuses directly on the word W to be disam-
biguated, producing clusters which optimally partition the local neighborhood
of W. The disadvantage of this approach is that it requires a new similarity
matrix and a new run of the clustering algorithm for each word whose senses
we are trying to induce. The advantage, of course, is that we can produce a
partition which is directly relevant to the specific senses of W, with no manual

labeling of clusters necessary.

We also experimented briefly with extracting only the contexts of W from the
corpus: ignoring all occurrences of words except those which occur within a
fixed-size window of W. In this approach, we consider only co-occurrences
which occur near W, and hence, those which are very likely to be useful in dis-
ambiguating W. This approach, however, results in problems of data sparsity:
by examining only the contexts of W, we ignore the information present in the
other 99% (or more) of the corpus. The co-occurrence of two words in any con-
text does suggest that they are more likely to co-occur in a context containing
W, even if this co-occurrence has not been observed in the training data. Thus
we choose a local neighborhood approach which is a compromise between the
global and context approaches: we consider only the subset of words which are
most relevant in disambiguating W, but count the number of co-occurrences of

these words throughout the entire corpus. This has the advantage of extract-
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ing data which is directly relevant for disambiguating W (as opposed to the
global approach) without suffering the problems of data sparsity inherent in the

context approach.

5.3 Choosing seeds

Once the similarity matrix B has been computed for a word W, our next step is
to choose a set of “seed words”, words corresponding with very high probability
to the senses of W. One option is to choose these words manually using our
linguistic knowledge of the senses of W: we pick words whose occurrence in the
context of W make it clear which sense is being used. For example, one good
choice of seeds for the two primary senses of “bank NN1” might be “account
NN1” and “river NN1”. If we choose seeds manually, however, we are using the

system only for word sense disambiguation.

We consider here the more interesting case in which the system is used for
word sense induction: in this case, we must automatically choose a seed word
for each sense, without any knowledge or manual input of the “linguistically
relevant” sense distinctions. To choose seeds, we first define the seed potential
of a set of seed words; then, given the number of senses k, we will perform an

greedy iterative search to find the set of k seed words with highest seed potential.

The seed potential is a measure of how strongly the set of seeds separates the
relevant words into distinct clusters. One option would be to run the SIGIL al-
gorithm to completion given each set of seeds, and compare the results obtained,
but this is computationally inefficient. Instead, we examine the initial partition
of the words given the seeds: given the set of 1500 words {w;}, we compute

the probabilities P(W = S; | W, w;) for each word w; and sense S;. Each seed
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s; is assigned to its own class with probability 1: P(W = S; | W,s;) =1, and
P(W =S, |W,s;) =0 for i # j. Then we apply the equation derived above to
find P(W = S; | W, w;) for all other words w;:

_q N pn(sk,w) P(W = S| sx)
POW =85 | Wow) = S e ) PO [ 2]

Given P(W = S; | W, s;) = 1, this becomes:

. N n(sj,w)P(W | s))
P(W =5; | W,wi) = >k sk, wi ) P(W | sk)

n(s;,w;)n(s;,W)
n(s;

= n(sg,wi)n(sg,W
Zh‘ ( n()sk() :

Applying this equation, we calculate P(W = S; | W, w;) for each sense S; and
each word w;. We then consider the resulting soft assignment of words to senses,
and make a hard assignment based on this: if word w; is assigned to some sense
S; with probability greater than 1 — e (we use € = .05 for this experiment),
we make a hard assignment of w; to sense S;. Otherwise, we assume that the
sense of w; is unknown. We can then consider the number of words assigned to
each sense N(S;) as a measure of how well the seeds partition the data: a good
partition will place a large number of words into each sense class, and leave a
smaller number unassigned. Thus we measure the seed potential SP of a set of

seeds as the harmonic mean of the quantities N(S;):

m

SP = -—m 1
Zj:l N(IS])

A harmonic mean is used in order to prevent massive skewing of the numbers
of words assigned to each sense, as would occur if an arithmetic mean was used.

This measure helps to insure that a large number of words are assigned to each
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sense, rather than to only a small subset of the senses. Now, given this measure
for the seed potential, we are faced with the question of how to select the k
seeds with highest seed potential. We cannot test all C'(1500,k) = k!(%oooik)!
combinations of seeds, and thus we use a greedy iterative selection method. First
we find the two seeds with the highest seed potential; these are selected from the
first 250 words, the words with the highest values of P(W | w;). This requires
comparing C(250,2) = 31125 potential seed pairs, which can be performed
relatively quickly. Having selected the two seeds with the highest seed potential,
we select the rest of the seeds (if k¥ > 2) using a greedy approach. To select the
jth seed (2 < j < k), we choose the seed which maximizes the seed potential

when added to the previously chosen seeds:

8] = argmax SP(s1...8j—1,Wk)

This requires comparing less than 1500 potential seeds each time a new seed is
added, and is thus computationally efficient. The disadvantage of the greedy
approach is that we are likely to choose a set of seeds with a high, but not
optimal, seed potential. Nevertheless, this method is highly successful for many
words; for example, the algorithm chooses “electricity” and “leaves” as the first
two seeds for “plant”, corresponding strongly to the ‘industrial plant’ and ‘flora’

senses of the word.

One significant objection to this method, which must be carefully considered, is
that it requires us to specify the number of seeds k as an input to the system.
Does this mean, then, that the system is not “fully automatic”’ since it requires
us to have prior knowledge of how many senses a target word has? If we were
to choose the number of test senses for a given word by setting it equal to the

number of answer senses, then this objection would be perfectly valid. However,
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we do not choose k in this way: instead, we test the system for a set of values
of k which is predetermined and independent of the target word. Of course, the
system is not required to assign occurrences of the target word to all k senses:
thus k is simply a predefined limit on the maximum “flexibility” we allow our
system in creating its distinction of senses. Moreover, our “conditional entropy”
measure of word sense induction performance (as defined and discussed below)
ensures that the system is never penalized for splitting a single answer sense
into multiple test senses; it would be unreasonable to penalize the system for
making more fine-grained sense distinctions than the reference standard. As
a result, we must enforce a limit on the number of test senses: otherwise, the
system could achieve “perfect” performance by treating each occurrence of the
target word as a separate sense. Thus the specification of k does not provide
any information about the target word, but instead is a necessary limit on the
system’s distinction of senses: it does not prohibit us from considering SIGIL a

system for “fully automatic word sense induction”.

5.4 TIterating the algorithm

Having selected one seed word for each sense using the method discussed in
the previous section, we are now ready to apply the SIGIL algorithm. Our
main result, derived above, computes the likelihoods P(W = S; | wnew) of the
senses of W given a word wye, given that we already know the likelihoods

P(W =S, | w;) for some set of words {w;}. This equation is the following:

P(W = Sj | wnew) = P(W | ’wnew)P(W = Sj | W7’wnew)

Zin(wiawnew)P(W = Sj | ’U]i)

= P(W | wnew) Zi ’I”L(U]i,wnew)P(W | wi)
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Recall that the values of n(w;, Wnew), P(W | Wnew), and P(W | w;) are given
in our similarity matrix B, and thus this equation is simple to compute. A
simple, AddN smoothing method is used to deal with infrequently occurring
words: N = 0.1 is added to all counts n(w;, wney ), and thus issues of skewed

probability estimates resulting from data sparsity are reduced.

The above equation is the basis of our algorithm, but we still must consider
how to apply it to our set of words. Initially, we are only given P(W = S; | w;)
for the set of k seeds, one seed per sense. If we calculate the probabilities for the
rest of the words based only on co-occurrences with these seeds, we are not using
a significant proportion of the co-occurrence information present in the corpus.
However, if we calculate the probabilities for each word based on co-occurrences
with every word in the corpus, the resulting probability distributions are ex-
cessively smoothed and distinctions between individual words are blurred. As
a compromise between these two extremes, we use a greedy iterative clustering
algorithm: on each iteration of the algorithm, we choose the word correspond-
ing most strongly to each sense and add those words to the list of seeds. The
probabilities for the words in the list of seeds are assumed to be known: they
are not recomputed in succeeding iterations, and they are used to compute the

probabilities of other words. The algorithm proceeds as follows:

a) Start with one seed s; for each class S;. Define P(W = S,|s;) = P(W|s;)
for ¢ = j, and 0 otherwise. Mark all seeds as assigned to groups. This means
that their probabilities are fixed and will not be changed; also, they will be used

in the computation of probabilities for other words.

b) For each unmarked word wye,, and each sense S;, compute the probabil-

ity P(W = S; | W, wney) given the equation above, where the sums are taken
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over all marked words w;.

¢) For each sense S;, choose the word wpe,, corresponding most strongly to
that sense, that is, the word with the highest probability P(W = S; | W, wnew).
Mark this word as assigned to groups. Then for each sense Sk, compute
P(W = Si | Wnew) = P(W | Wpew)P(W = Sy | W, wnew). These probabilities

will be used in computing the probabilities of other words in future iterations.

d) Repeat steps b and c until all words have been marked. For each word w;
and each sense S, record the probability P(W = S; | w;). These probabilities

will be used in the disambiguation of test sentences as discussed below.

This algorithm, by iteratively choosing the words that correspond most strongly
to the senses, maximizes our chance of assigning words to the correct cluster.
Decisions are made about those words which have a high probability of be-
longing to the given cluster; other decisions are delayed until we have sufficient
information to assign the word with high probability. Of course, some words
do not correspond strongly to any given cluster: for example, ambiguous words
such as “banks” (if we are trying to disambiguate “bank”) or common but less
relevant words such as “you”. This is why we use a soft probability assignment
of words to classes: except for the initially chosen seeds (which we assume to
correspond totally to a single sense), every word is likely to have some non-
zero probability corresponding to each sense. Also, the use of the probabilities
P(W = S, |w;), rather than P(W = S; | W, w;) places a higher weight on words
with which W is likely to co-occur, and hence emphasizes those words most
likely to disambiguate W. For example, if we are disambiguating “bank NN1”
with seeds “securities NN2” and “river NN1”, we might have the following assign-

ments of words to senses. Each entry is given in the format w;: P(W = S; |w;)
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P(W = Sy | w;), with probabilities multiplied by 10* for greater readability:

securities NN2: 489 0 (seed word for sense 1)

borrowers NN2: 452 4 (relevant, corresponds very strongly to sense 1)
holiday NN1: 322 119 (relevant, corresponds less strongly to sense 1)
river NN1: 0 610 (seed word for sense 2)

canal NN1: 21 443 (relevant, corresponds strongly to sense 2)
approached VVD: 45 68 (relevant, but fairly ambiguous)

behind PRP: 5 26 (corresponds to sense 2, but not particularly relevant)

Other words that are not sufficiently relevant, such as “you PNP” would not
be included in the file. If we did include these words, they would have small
and approximately equal probabilities, and have very little effect on the system.
Thus the use of soft probability assignments, combined with probabilistic rele-
vance weighting, emphasizes words which are both relevant and unambiguous,
and hence most useful for disambiguation. We also note that the iterated greedy
algorithm, by choosing one word corresponding most strongly to each sense on
each iteration, helps to maintain a balance between the senses and reduces the

chance of excessively skewed sense assignments.

Finally, we note the similarity of this method to the bootstrapping methods
of Yarowsky (1995) and Karov & Edelman (1998), as well as several significant
differences. As Yarowsky states, “if one begins with a small set of examples
representative of two senses of a word, one can incrementally augment these
seed examples” using information from the corpus. As in Yarowsky’s algorithm,
we iteratively add examples which correspond strongly to one of the senses,
repeating this step until all examples are classified. However, while Yarowsky’s
“examples”’ are entire contexts, and they are assigned totally to a single sense,
we make soft assignments of individual words to senses, and then disambiguate
a context by combining estimates based on each word in the context. This is
probably a less accurate method of disambiguation, but allows for the possibility

of fully automatic word sense induction, which would be difficult or impossible
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under Yarowsky’s framework. Yarowsky’s system relies on a manual identifica-
tion of the senses of a word, as well as an initial manual assignment of 2-15%
of the data to senses. Only then can the system use bootstrapping methods to
assign the other 85-98% of the data to senses in unsupervised fashion. Simi-
larly, Karov & Edelman’s system assumes that the distinct senses of the word
are known in advance, and uses the definitions of each sense (obtained from
a machine-readable dictionary) to assign contexts to senses. Our system as-
sumes that no prior information is known about the senses of the word to be
disambiguated, and no other information is available except an unlabeled cor-
pus. While the word sense disambiguation systems of Yarowsky and Karov &
Edelman are allowed to bootstrap based on known information about the senses
of a word, our system for word sense induction must bootstrap based only on

our best (statistically motivated) guess as to what those senses might be.

5.5 Disambiguating test sentences

Once we have obtained the probabilities P(W = S; |w;) for each sense S; of W,
and each word w;, we can use this information to disambiguate any occurrence
of W in a given test sentence. As derived above in the Theoretical foundations
section, we can calculate the probability that an occurrence of W in context
C (containing words wy ...wy,) corresponds to sense S; using the following
equation:

PW=S8;|W,C)= Elil"i(g(;f;[;vl)

Since our goal is to calculate the most likely sense of W, and the denominator
is independent of the senses of W, we can ignore it in our calculations. Thus

we assign each context of W to the sense:

S = arngaxZP(W =5 |wi)

7 i=1
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In other words, for each sense, we add together the likelihoods that each word
in that sentence corresponds to that sense. We then choose the sense with the
highest total likelihood. For example, given the assignments of words to senses
in the previous section, the sentence “We approached the canal bank” would be

disambiguated in the following manner:

we 0 0
approached 45 68
the 0 0

canal 21 443
bank (ignored)

The total of probabilities for sense 1 (seed “securities”) is 66 x 104, and the
total of probabilities for sense 2 (seed “river”) is 511 x 10~%. Thus this sentence

would be assigned to sense 2.

6 Evaluation of word sense induction

In order to objectively measure the performance of a word sense induction sys-
tem, we must deal with a number of fundamental issues which complicate the
evaluation process. The first, and perhaps the easiest, issue to resolve is which
words to choose for disambiguation. If a purely random set of words is cho-
sen for disambiguation, it is possible that many of the words may have only
one sense, or senses so closely related that they are difficult or impossible to
distinguish. On the other hand, if a small set of “interesting” words is chosen
arbitrarily, and the system is successful in inducing the senses of these words,
we must question how well the system can be applied to words outside this set.
As discussed below, we compromise by choosing a large random set of words
and a separate, small arbitrary set of words, then eliminating words which do

not meet a predefined set of criteria for evaluation.
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The second, and most fundamental, problem is the essential arbitrariness in-
herent in defining the different senses of a word. There is no single, correct
distinction of senses: each dictionary, thesaurus, or word sense disambiguation
researcher is likely to define the senses in a different way. Linguists may define
senses based on etymological or grammatical distinctions, and automatic sense
induction may define senses based on usage in context; how can we judge one set
of sense distinctions as “right” and another as “wrong”? Do we expect a system
to separate fine sense distinctions (for example, “house” as ‘building where peo-
ple live’ versus “house” as ‘building and the people living there’) or broad sense
distinctions (for example, “house” as ‘home’ versus “house” as ‘legislature’)? As
discussed in the following section, we choose to focus on broad sense distinc-
tions, since these are both more likely to have high inter-annotator agreement,
and to be more important in terms of the value of a word sense disambiguation
system. But even focusing on broad senses, we still have difficult issues to deal
with: deciding which fine senses are closely related and should be grouped into
the same broad sense. This process is by necessity an arbitrary one, and we

must take this into account when evaluating word sense induction performance.

This problem is closely related to a third issue, the necessary distinction between
word sense disambiguation and word sense induction. In word sense disambigua-
tion tasks, we assume a priori that some correct distinction of senses exists, and
that the test sentences can be grouped accurately with respect to these senses.
However, since there is no single “correct” sense distribution, we choose some
standard such as SENSEVAL, and measure performance of the system based on
well it compares to this standard. This is a reasonable method of evaluation for
the standard word sense disambiguation task, in which the different senses of a
word (and some essential information about each sense) are given to the system.

For word sense induction, however, the situation is quite different: the system
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is given no prior sense information, but instead finds sense clusters based on the
training data, then assigns each test sentence to one of these induced clusters.
There is no way we can say absolutely that this sense distinction is “better” or
“worse” than the sense distinction as defined by our dictionary or other standard.
Nevertheless, we need some quantitative basis of comparison, so we are forced
to choose a standard, group the test sentences based on this standard, and then
compare the two groupings. We cannot expect these groupings to be identical:
the system may distinguish between senses that the standard does not, or group
together two senses which the standard deems separate. Despite this, we would
expect the groupings produced by a successful word sense induction system to
correspond strongly with those suggested by our standard; if the system groups
senses in a way that is uncorrelated with our linguistic intuitions, it is unlikely
to be of much practical use. Also, we would expect the system to separate very
distinct senses such as the ‘financial’ and ‘riverbank’ senses of “bank”, assuming
both senses occur with sufficient frequency in the corpus, so in these cases we
can assume that this is the sense distinction created by the system, and measure

disambiguation performance with respect to this sense distinction.

These issues are treated in greater detail in the following sections, in which

we present our methods and measures of evaluation.

6.1 Selection of test words and senses

In order to select a set of test words for our system, we first considered a number
of criteria that this set should meet, and then designed a systematic selection
method allowing us to choose a test set meeting these criteria. Our first con-
sideration is the number of occurrences of the word in the corpus and in the

test data. Clearly, if there are too few occurrences in the test data, we cannot
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reliably evaluate the system’s performance, and if there are too few occurrences
in the training data, we cannot expect the system to disambiguate the word.
Moreover, if we are less likely to see the word in practice, it is in some sense
less important to reliably disambiguate the word, and it is also probable that
less frequently occurring words have less distinct senses. Of the words that do
occur a sufficient number of times, we would like to choose words with a wide
range of frequencies. Our second consideration is the part of speech of the word
to be disambiguated. We consider only nouns, verbs, and adjectives, since these
classes are more likely to have distinct senses and hence to be “interesting” for
evaluation. Among these classes, we want a high proportion of nouns (since
they occur most frequently in the corpus, and also tend to have the clearest
sense distinctions), but also want some words corresponding to the other two

parts of speech.

Our third and most important consideration is the senses of the word. A test
word must have at least two senses, and these must be sufficiently distinct so
that accurate manual sense disambiguation can be performed. Additionally,
these senses must each occur a sufficient number of times in the test data.
Otherwise, we cannot accurately evaluate the performance of the system on dis-
ambiguating these senses, and in fact, it can be argued that the system may
be finding sense distinctions which are more pertinent to the corpus than the
ones we have chosen. The essential arbitrariness of the division of senses, as
discussed above, suggests that we should focus on the broad sense distinctions
rather than extremely fine distinctions between senses. There are actually sev-
eral reasons for focusing on broad senses: not only are different sources likely to
disagree significantly on what the fine senses of the word are, but even given a
single set of senses, different labelers are likely to disagree significantly on which

words belong to which sense. Furthermore, when we consider that word sense
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disambiguation is likely to be used for applications such as machine translation
or natural language understanding, it is clear that it is more important for the
system to be able to make broad distinctions than to choose between closely

related senses.

By applying these criteria, the following systematic procedure was created and

followed:

1) Consider all words with at least 1000 occurrences in the BNC corpus [7629

words].

2) Remove all parts of speech but nouns (NN), verbs (VV), and adjectives
(AJ). [5491 words left].

3) Select a subset of the words randomly. To do this, we order the words
in descending order of frequency. Then select every 5th word from the first 500
words, every 10th word from the next 1000 words, and every 20th word there-
after. Since by Zipf’s Law there will be a large tail of less frequently occurring
words, this method compensates by picking a greater proportion of the more
frequently occurring words, thus creating a good mix of more and less frequent
words. We also choose an additional 20 words arbitrarily: these are homonyms
or other words with potentially interesting broad sense distinctions. [399 + 20

words left].

4) If the same word occurs two or more times in closely related forms (tenses
of a verb, or singular and plural numbers of a noun) eliminate one of the two
forms UNLESS the two forms are likely to have significant differences in the

broad senses (ex. “ages” has a sense meaning ‘a long time’, where “age” is not
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typically used in this fashion). [382 + 20 words left].

4) Consider the senses of each word as given by WordNet (Fellbaum, 1998).
For plural nouns or verb forms, consider the senses of the singular noun or base
form of the verb respectively. Eliminate words with only one WordNet sense [43
words| or too many (15 or more) WordNet senses [33 words|. [310 + 16 words
left].

5) For each of the remaining words, manually group the WordNet senses
into “broad” senses. This process of grouping related meanings together, while
keeping unrelated senses separate, is to some extent arbitrary and will differ
from person to person. Nevertheless, it is a necessary part of the evaluation
process, and as discussed above, these broad sense distinctions are likely to be
more universal and less arbitrary than finer sense distinctions. We eliminate
words with only one broad sense [64 words] or more than five broad senses [2

words]. [244 + 16 words left].

6) For each of the remaining words, we attempt to manually disambiguate the
first 100 occurrences in the data with respect to the broad WordNet groupings,
given their context (12 words before W, 12 words after W). If the senses
are not sufficiently distinct for manual disambiguation with high accuracy, we
eliminate the word [124 words|. If there are an insufficient number (less than
five) occurrences of non-primary senses in the test data, we eliminate the word
[59 words]. Also, if there are less than 50 occurrences in the test data, we
eliminate the word [8 words]. This leaves us with 56 “systematically selected”

words, plus 13 “arbitrarily selected” words, for a total of 69 test words.
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6.2 Evaluation procedure

For each of the 69 words selected using the method detailed in the previous
section, we evaluate the performance of the SIGIL system on our 5M words
of test data from the BNC corpus. We extract all examples of the test (i.e.
target) word from the test corpus: each test example consists of the word, the
previous 12 words of context, and the next 12 words of context. For example,

one occurrence of “bank” in the corpus might appear as:

is like asking an englishman how much money he has in the
bank . ~ there has been a move by the norwegian government to

Each word’s part of speech is also given. For each example, we assign an
answer sense by hand, according to one of the broad senses of the word as de-
fined manually in the previous section. Answer senses are stored in a file, so
the manual sense labeling of examples is only performed once. We then run the
SIGIL algorithm four times with different numbers of test senses k: we consider
results for k = 2, 3, 5, and 10. Each run of the SIGIL algorithm produces a
probabilistic assignment of all relevant words to the & senses. We then use each
assignment to disambiguate all of the occurrences of the target word in the test
data, assigning each to a test sense. For each of the four runs of SIGIL, we then
produce a confusion matrix containing the numbers of words corresponding to

each test and answer sense.

For example, the word “children NN2” was assigned two answer senses, cor-
responding to the senses ‘young people’ and ‘offspring’. The SIGIL algorithm
was run with three test senses: the seeds “schools NN2”, “families NN2”, and
“baby NN1” were automatically selected for the senses. Comparing the labeling
of test sentences produced by SIGIL to the manual labeling of test sentences,

we obtain the following confusion matrix:
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Al A2
T1 | 320 | 39
T2 | 63 | 62
T3 | 6 10

This confusion matrix may be interpreted as follows: 359 examples were as-
signed by SIGIL to test sense 1; of these, 320 correspond to the first answer
sense (‘young people’), and 39 correspond to the second answer sense (‘off-
spring’). Of the 125 examples assigned by SIGIL to test sense 2, 63 correspond
to ‘young people’ and 62 correspond to ‘offspring’. Of the 16 examples assigned
by SIGIL to test sense 3, 6 correspond to ‘young people’ and 10 correspond to
‘offspring’. Thus the first test class corresponds strongly to ‘young people’, the
third test class corresponds less strongly to ‘offspring’, and the second test class

contains a mix of the two answer senses.

Our next step is, given a confusion matrix, to calculate a useful quantitative
measure of the system’s performance. In the next two sections, we consider two
such measures: “accuracy” and “conditional entropy”. Though accuracy is typi-
cally used as a performance measure for word sense disambiguation systems, we
argue that this is an inadequate measure of performance for word sense induc-
tion. Thus we present a second criterion, conditional entropy, which is a more
useful measure when comparing the manually and automatically produced sense

distributions.

6.3 Evaluation criterion 1: Accuracy

The most common measure of the performance of a word sense disambiguation
system is accuracy, which is essentially the proportion of “correct” answers re-

turned by the system with respect to the standard (i.e. our reference answers).
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This measure, of course, assumes that the standard is the “correct” distribution
of senses, and any sense assignments which do not conform to the standard are
“incorrect”. This assumption may be reasonable in the context of word sense
disambiguation, when senses are predefined and the system is expected to clas-
sify sentences according to these senses, but in most cases it is not reasonable in
the context of word sense induction. As argued above, a system which combines
two related senses that the standard considers distinct, or distinguishes between
two senses that the standard considers a single sense, is no more or less correct

than the standard itself.

Nevertheless, we can define an accuracy measure based on a confusion table
in one of two ways; we call these the one-to-one and dynamic matching ac-
curacy measures. The one-to-one measure assumes that the numbers of test
classes and answer classes are equal, and that each test class corresponds to
exactly one answer class. Then the number of correct answers is computed for
an optimal one-to-one assignment of test classes to answer classes. For example,

consider the following confusion matrix:

Al A2
T1 | 10 | 350
T2 | 50 | 70

In this case, we assume that test sense 1 corresponds to answer sense 2, and
test sense 2 corresponds to answer sense 1. This would result in an accuracy of
(350 + 50) /(10 + 350 + 50 4+ 70) = .833. It should be noted that the minimum
value of the one-to-one accuracy is 1/m, where m is the number of answer senses

(or test senses).

The dynamic matching measure, on the other hand, assigns each test sense
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to the answer sense which is most common given that test sense. For the con-
fusion table above, both test senses would be assigned to answer sense 2, giving
an accuracy of (350 + 70)/(10 + 350 + 50 + 70) = .875. In contrast with the
one-to-one accuracy, the dynamic matching accuracy can be used in cases where
there are different numbers of test and answer senses. For example, for the con-
fusion table for “children” given in the previous section, we would assign test
senses 1 and 2 to answer sense 1, and test sense 3 to answer sense 3, giving an
accuracy of (320 + 63 + 10)/(320 + 39 + 63 + 62 + 6 + 10) = .786. Note that
the minimum value of the dynamic matching accuracy is the proportion of the
most frequent sense, which is (320 +63+6)/(320+39+63+62+6+10) = .778

in the “children” example.

However, neither of these two accuracy measures are reasonable with respect
to word sense induction. To evaluate word sense induction, we want a measure
of the amount of overlap between the sense distributions created by the system
and the reference standard, not a simple measure of accuracy of the system with
respect to the standard. To illustrate this distinction, imagine two word sense

induction systems, with results given in the following two confusion tables:

Al A2 A1 A2

T1 | 400 | 50 || 350 | O

T2 | 0 0 50 | 50

In this case, we have 450 test sentences, 400 corresponding to answer sense 1
and 50 corresponding to answer sense 2. The first system assigns all of the
sentences to the same test sense: its accuracy is 400/450 = .889, but it has
accomplished nothing with respect to word sense induction, failing even to cre-
ate a sense distinction. The second system assigns 350 of the sentences to test

sense 1, and all of these correspond to answer sense 1. It assigns 100 sen-
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tences to test sense 2, 50 corresponding to each of the two answer senses. The
accuracy of this system is no better than the first: assigning test sense 1 to an-
swer sense 1, and test sense 2 to either answer sense, we obtain an accuracy of
(3504 50)/(350+ 50+ 50) = .889. In terms of word sense disambiguation, this is
a reasonable measure; if our goal is to distinguish the two given answer senses,
we do no better on average than always choosing the more frequent sense. How-
ever, for word sense induction, the second system is clearly superior to the first:
the first system does not distinguish between senses at all, while the second
system has a clear sense distinction in which test sense 1 corresponds to a large
subset (7/8 of the examples) of answer sense 1, while test sense 2 corresponds to
answer sense 2 and the remainder (1/8) of answer sense 1. We need a measure

that reflects these distinctions, and the accuracy measure clearly fails to do this.

Nevertheless, the accuracy measure may be useful for evaluating a small subset
of cases, namely those cases in which the test word has a small number of clearly
distinct senses, each of which occurs frequently in the corpus. In these cases, we
would expect a “useful” word sense induction system to arrive at approximately
the same sense distinctions as the standard, and hence we can evaluate the
disambiguation performance of the system with respect to the standard using
the accuracy measure. This measure rests on the assumption that the broad
sense distribution is universal enough to be considered a standard for correct-
ness, but this is only true for some words. Few people would disagree that the
two primary senses of “bank” correspond (at least approximately) to ‘financial
institution’ and ‘slope’, and for most sentences there would be a high amount
of agreement on which sense the sentence corresponded to. This would not nec-
essarily be true of a word such as “high™ for example, do we separate literal
and metaphorical meanings of high as ‘measures of elevation’? Or are these

part of the sense meaning ‘greater than normal in degree or intensity’? What
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about uses such as “high school”, “high on drugs”, or “high pitched”? Thus the
accuracy measure should only be applied to word sense induction systems when

considering very broad and (in some sense) “universal” sense distinctions.

6.4 Evaluation criterion 2: Conditional Entropy

For the more general case where there is uncertainty about the true distribution
of answer senses, it makes sense to treat the word sense induction problem dif-
ferently from word sense disambiguation, and thus to apply a different measure
of performance. We have no choice but to measure performance with respect
to some reference assignment of sentences to senses, but we must keep in mind
that this assignment is somewhat arbitrary and hence our evaluation results
are by necessity approximate. Furthermore, it makes more sense to apply a
measure that compares the test and answer sense distributions based on the
degree of relatedness between the two distributions. To evaluate the system in
this way, we apply several concepts from information theory. The entropy of a
probability distribution P(S;) over word senses is the amount of “mixing” of the
senses: a distribution that is heavily skewed toward one sense has low entropy,
and a distribution that has approximately the same number of each sense has

high entropy. The entropy of the answer distribution is defined as:

H(i) = =) P(i)log, P(i)

where ¢ varies over the answer classes. Thus we can simply compute the entropy
of the answer senses, independent of the sense assignments made by the SIGIL
system. To evaluate the system’s performance, we use the confusion table to
compute the conditional entropy of the answer distribution, given the test dis-
tribution. This can be thought of as a measure of how mixed the answer senses

are for each test sense: a test sense corresponding only to one answer sense has
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no entropy, while a test sense which corresponds equally to two or more answer
senses has high entropy. Then the total conditional entropy is a combination of
the entropies for each test sense, weighted by the number of examples assigned

to that sense. The conditional entropy is defined as:
H(i|j) =~ P(i,j)logy P(i| )
i g

where ¢ varies over the answer classes and j varies over the test classes. The
entropy H (i) and the conditional entropy H(i | j) are related by H(i | j) =
H(i) — I(4;j), where I(i; ) is the mutual information of 4 and j. Since mutual
information is non-negative, we know H(i | j) < H(i), with equality holding
if the variables are independent (that is, knowing the test distribution j gives
no information about the answer distribution ¢), and H(i | j) <« H(i) if the
variables are strongly dependent (that is, knowing the test distribution j gives
a great deal of information about the answer distribution 7). For each test word,
we measure the percent decrease in entropy:

H() — H(i|J)

iZ0) (100%)

This is also equivalent to the percentage of information that knowing the test

distribution gives with respect to the answer distribution:

~

(33 7)
I(3;14)

(100%)

We now give several examples in order to clarify the operation of this measure.
Assume that a word W has two answer classes, with 100 examples assigned
to class 1 and 200 examples assigned to class 2. The entropy of this answer
distribution is H(i) = .918. Then imagine four different runs of the SIGIL

system, with the following confusion tables:
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A1 A2 A1 A2 A1 A2 A1 A2

T1| O | 200 || 100 | 200 || 78 | 148 || 80 | 30

T2 | 100 | O 0 0 22 | 52 20 | 170

In the first run of the system, the 200 examples assigned to test class 1 all
correspond to answer class 2, and the 100 examples assigned to test class 2
all correspond to answer class 1. The conditional entropy H(i | j) = 0, and
thus a 100% reduction in entropy has been achieved: the system has performed
perfectly. In the second run of the system, all examples are assigned to the same
test class. The conditional entropy H(i|j) = .918, the same as the entropy H (i):
no reduction in entropy has been achieved by the system. In the third run of
the system, both test classes have approximately the same distribution of senses
as the answer senses, hence very little reduction in entropy is achieved. In this
case, H(i|j) = .917, a 0.2% reduction in entropy; this entropy reduction is small
enough that the test and answer distributions are essentially independent. In
the fourth run of the system, the majority of answer sense 1 has been assigned to
test sense 1, and the majority of answer sense 2 has been assigned to test sense
2. In this case, H(i | j) = .617, a significant (32.8%) reduction in entropy; this
suggests that the test distribution is strongly related to the answer distribution,
and hence a “good” distribution with respect to our linguistically motivated

standard.

7 Results

Two sets of results are examined: the primary evaluation of 69 test words by
the author, and the secondary evaluation of 12 test words by an independent
annotator (the author’s supervisor, Prof. K. Sparck Jones). The main purpose

of performing two evaluations in this manner is to examine the effects of a)
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the choice of words, and b) the choice and labeling of senses, on the measured
performance of the SIGIL system. In the primary evaluation, test words and
senses were chosen using the systematic procedure described above; we discuss
the choice of test words and senses in the secondary evaluation, and compare

these results with the primary evaluation, below.

7.1 Primary evaluation

We first present and examine the experimental results for our 69 test words.
Due to limitations of space, we present here only the 42 words with 3000+
occurrences in the BNC; results for the other 27 words may be found in the
Appendix. First, we list the answer senses given for each word, and compare
these to the first five “seed words” selected by the SIGIL system, taking the seed
words as descriptive labels for the induced senses. We also give the number of
occurrences of each word in the entire BNC corpus (the number of occurrences
in the training data is approximately 75% of this), and the number of occur-
rences of each answer sense in the test data. We note that if a word occurs more
than 500 times in the test data, only the first 500 occurrences are considered for
evaluation. Also, we do not list the part of speech for each word, but recall that
these parts of speech are known and used by the system. For each test sense,
we note which (if any) answer sense the seed word corresponds more strongly

to. [see Table 1].

As we can see from these results, the quality of the seeds varies significantly de-
pending on the test word. In some cases, the first two seeds correspond strongly
to different answer senses (ex. “securities” and “river” for “bank”, “electricity”
and “leaves” for “plant”); this correspondence is especially common in words

with multiple distinct, common senses, and tends to result in good performance
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word (occurs)

answer senses (occurs)

test seeds

children (42778)

young people (389), offspring (111)

schools [1], familics [2],
food [1]

baby, language [1],

ond (36938)

extremity (175), conclusion (315), goal (10)

west [1], 1993 [2], 1987 [2], hole [1], points
1]

state (31022)

nation/district (313), condition (182), say
(5)

states, sccrotary [1], model [2], court [1],
countries [1]

long (21882)

time/duration (282), distance/height (218)

arm [2], term [1], church, using, minutes [1]

age (20489)

time of oxistence (311), historic period

(189)

18 [1], mortality [1], culturc [2], retirement
[1], scemed

view (19414)

E ng/appearance (145), belief/perspective
(355)

statements [2], sea [1], image [1], soviet [2],
clements [2]

scnse (19228)

awarcnoss/percoption (216), meaning (174),
judgment (110)

fundamental [2], fecling 1], speech, security
[1], identity [1]

white (17524)

color (408), Caucasian (88), misc (4)

wore [1], tail, set, fruit [1], species

course (17287)

classes (364), route of travel (47), food (44),
cries of action(s) (40), certainty (15)

content [1], golf [2], February [4], due [4],
certificate [1]

single (15686)

individual /undivided  (473),
(24), misc (3)

unmarried

user [1], bed, 100, cells [1], relatively

stage (16099)

part of sequence (293), theater (207)

Star [2], ovaluation [1], movements, 50, pa-
tient

foot (13220)

12 in (247), body part (253)

stairs [2], metres [1], use, shoes [2], village

property (12076)

Tiomestead /possession (215), attribute (40),
prop (2)

residontial [1], posscssion [1], latest, plain-
tiff [1], mortgage [1]

floor (10557)

bottom surface (414), level (71), misc (15)

boside, rooms [2], itsclf, off [1], walls [1]

mouth (8838)

body opening  (430),
(44)

cave/bottle/stream

wet, hers [1], knowledge, Corbett, tongue

11]

argument (7708)

assertion (284), dispute (70)

theoretical [1], judge, face, accept, crime

rule (7654)

principle/law (175), oxcrcise of power (52),
misc (1)

cmpire [2], plaintift [1], given [1], excoption
[1], *m

board (7252)

committee (99), wood (201), food (27), misc
(5)

wind [2], licence [1], socicty [1], boards, di-
rectors [1]

plant (6989)

industrial plant (89), flora (148)

cloctricity [1], Ieaves [2], "ve, cell, Corp [1]

chair (6771)

scat (347), organizational position (14)

placed, leaned [1], shook [1], Mark, chairs

dcal (6648)

agrecment (110), large amount (123), misc

1)

palace, telecommunications [1], recording
[1], negotiations [1], sign [1]

notice (4682)

announcement (110), paying attention (53)

completion, creditor [1], dates, constable,
landlord

wood (4643)

material (165), group of trecs (25)

clean [1], timber, production [1], iron [1],
path [2]

second (4500)

short time (44), 2nd (182)

Queen [2], repeat, &formula [1], legs, server

master (4425)

oxport (60), controller/director (133), orig-
inal (10)

J., servant [2], volume, got, taxing

address (4361)

location (144), speech/communication (30)

memory [1], send [1], instruction,
phone [1]

1991,

movements (4311)

change position/location
groups (68), misc (3)

177,

political

shoulder [1], Latin [2], variables, passagec
[1], attack

sum (3714)

monecy (62), whole (14), addition (17), sum-
mary (7), misc (3)

n [3], lump [1], damages [1], monthly [1],
bound

fall (3517)

autumn (12), decline/death (38), literal fall
(81), metaphorical fall (36), misc (2)

chest, dollar [4], mortality [2], consistent,

space-time

sed (3033)

employed (67), previously owned (18), ac-
customed (74)

Tettor, commonly [1], prices [2], got [3], an-
imal

ages (3000)

Time in oxistence (70), epochs (50) , long
time (26)

Toll, mortality [1], middlc [2], 60, tosts

country (29292)

nation (368), rural arca (132)

democracy [1], park [2], gas, born, southern

bank (13338)

Anancial institution (300), slopc (80), row
of objects (9)

securities [1], river [2], quickly, v., cheque
111

ball (6115)

game (179), sphere (72), dance (38), ball of
foot (3)

wet [2], penalties [1], models, balls, Pak-
istan

table (18611)

sot of data (178), furniturc/mcals (322)

shows [1], sat [2], big [2], increasc, Kitchen
121

record (11651)

phonograph (72), best ever (100), informa-
tion (167), past results (77)

won [2], file [3], expect, album[1], papers

application (9414)

e (101), roquest admission (120), com-
puter program (33)

Judge, interface [3], centre [2], licence [2],
principles [1]

school (32880)

cducational institution (473), school of

thought (26), fish (1)

College [1], curriculum [1], mother, council,
community

Tost (12465)

remainder (450), relaxation/sleep (46), sup-
port (4)

sit [2], billion, mental, sent, island

will (5990)

volition (156), disposition of property (24),
future tense (82), goodwill (12)

father [1], legitimate [2], testator [2], graph-
ics, mentioned

band (6438)

association of people (23), music (226),
stripe (44), binding/clothing/jewelry (25)

om [3], Smiths [2], listening [2], supported,
debut [2]

Teft (8137)

Toft side (363), not taken/not used (27), pol-
itics (58)

Teoft [3], hemisphere [1], patient, finger [1],
leading

Table 1: Answer senses and SIGIL test senses
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for all trials. For other words, the first two seeds are poor discriminators, but
other seeds are better (ex. “age”). This tends to result in good performance for
the trials which include the discriminating seeds. For another group of words,
one seed will correspond strongly to a sense, where the others are fairly neu-
tral: this can result in good performance or not depending on whether the other
senses get assigned to this seed or the others. Finally, in some cases none of
the seeds correspond strongly to senses, or (as is common when the distribution
of answer senses is skewed) seeds correspond strongly to the same sense. This
may result in poor performance, but since the clustering is dependent on the
probabilistic assignment of all words to senses, we cannot necessarily predict
performance based only on the seed words. In some cases, seeds that we would
think to be good separators result in poor performance, because the seeds differ

significantly in frequency and as a result the test distribution is skewed.

Even though we have argued that accuracy is not a reasonable measure for
word sense induction performance (except in rare cases), we present accuracy
results for comparison purposes. We measure the accuracy of the SIGIL system
on those 27 words with two commonly occurring senses (for our purposes, a
sense must occur at least 50 times in the test data to be common). We use the
one-to-one accuracy measure, assuming two test senses and two answer senses;
rare senses are ignored when using this accuracy measure. For each word, the
accuracy obtained by the SIGIL system is compared to the baseline accuracy
(percentage of occurrence of the most frequent sense). Note that since we are
assuming that the two test senses correspond to different answer senses, it is pos-
sible for the system to perform worse than the baseline. As we discuss above,
this does not necessarily mean that the system has performed “badly”, only
that its division of the word into two senses is significantly different than our

manually assigned sense distinction. However, we would expect above-baseline
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word baseline accuracy
children 778 742
end .643 .b84
state 632 679
long .b64 .634
age 622 .598
view .710 .810
white .823 750
stage .586 114
feet .506 792
floor .854 .658
argument .802 .523
rule 771 780
board 670 570
plant 624 .827
deal .528 .790
notice 675 .748
master .689 725
movements 722 .669
used 525 .766
ages .583 .625
country .736 .800
bank .789 .926
ball 713 794
table .644 .906
application .614 .646
will .655 .563
left .862 .658

Table 2: Performance of SIGIL system (accuracy)

performance for words such as “bank” and “plant”, where there is a clear division

of senses, and both senses are common in training and test data. [see Table 2].

When evaluated using the one-to-one accuracy measure, the SIGIL system
performed better than the baseline for 17 of the 27 words evaluated, with a
mean accuracy of .714 as compared to the mean baseline of .679. We note that
time constraints prevent us from doing tests of statistical significance; nor is it
immediately clear which tests should be performed. For words with two clearly

distinct and common senses, such as “bank” and “plant”, the system outper-
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formed the baseline by a large amount; this suggests that the system was able
to induce a sense distribution very close to our answer distribution. For other
words, with less clear sense distributions, the system did not perform as well
according to the accuracy measure: this is not surprising, of course, since the
system has no reason to choose the same distribution of senses that we choose.
We note that the system of Schiitze (1998) was tested with a significantly easier
group of (ten) words, all of which had very clear broad sense distinctions, and
averaged .759 as compared to a mean baseline of .649 (we consider only his 2-
group clustering experiments, on real as opposed to nonsense words). Our only
overlap with Schiitze’s test set was the word “plant”, on which SIGIL scored .827
and Schiitze’s system averaged .624. Of course, one example using a significantly
different data set is not sufficient to judge the relative performance of the two
systems: nevertheless, the accuracy results do suggest that our system achieves
results at least comparable to Schiitze’s. More experimentation, using identical
or at least similar test sets, is necessary to achieve a definite conclusion. Of
course, neither system performs as well as supervised or semi-supervised word
sense disambiguation systems, which routinely achieve above 90% accuracy. But
when the system is given the word senses in advance, classifying occurrences ac-

cording to these senses is a much easier task.

As we discuss above, accuracy is not a reasonable performance measure for word
sense induction systems. Instead, we proposed “conditional entropy”, which mea-
sures the amount of information that the test distribution provides about the
answer distribution. If a system can significantly reduce entropy for many of the
test words, this demonstrates that it creates sense distinctions which are very
close to those suggested by our linguistic intuitions. We now give the conditional
entropy results (conditional entropy, and reduction from baseline entropy) from

each run of the SIGIL system (2, 3, 5, and 10 test senses) for each of the 42
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words we consider. [see Table 3.

As can be seen from these results, the SIGIL system reduced entropy by
an average of 14.1% over all trials. Since the conditional entropy of the an-
swer distribution (given the test distribution) was significantly lower than the
baseline entropy of the answer distribution for the majority of the trials (using
the somewhat informal significance test discussed below), this suggests that the
SIGIL system often produces sense distributions which correspond strongly to
those suggested by our linguistic intuitions. The reduction in entropy varied sig-
nificantly depending on the difficulty of the test word: the best performance was
for words with clear broad sense distributions such as “table” (55% reduction in
entropy) and “bank” (44% reduction in entropy). For words that are difficult
to discriminate based on context, the reduction in entropy was significantly less
(only 2% for “age”). Performance tended to increase with the number of test
senses: averages were 12.1% for 2 test senses, 13.0% for 3 test senses, 13.1% for
5 test senses, and 18.1% for 10 test senses. This increase is not surprising, since
an algorithm could assign one word to each of the first k — 1 test senses and the

remainder to the final sense, resulting in an expected reduction in entropy of:

%(mo%)
where k is the number of test senses and N is the number of test examples. Of
course, our algorithm did not do this, considering each example independently,
and as a result some test senses have no examples assigned to them. Never-
theless, we consider this our baseline for conditional entropy reduction, and
consider any reduction greater than this “significant”. Based on this criterion,
all entries correspond to significant reductions in entropy, with the exception of

those marked with asterisks in Table 3.
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word baseline 2 seeds 3 seeds 5 seeds 10 seeds
children .764 .642 (16.0%) .637 (16.7%) .630 (17.6%) 621 (18.7%)
end 1.063 964 (9.3%) .952 (10.4%) 921 (13.3%) .900 (15.3%)
state 1.020 974 (4.6%) | 1.016 (0.4%)* | .957 (6.2%) 982 (3.7%)
long .988 933 (5.6%) 906 (8.3%) 951 (3.7%) .878 (11.2%)
age .957 956 (0.1%)* 946 (1.1%) 914 (4.5%) .934 (2.4%)
view .869 .699 (19.6%) .693 (20.2%) 743 (14.5%) .810 (6.8%)
sense 1.534 1.522 (0.7%) 1.486 (3.1%) 1.451 (5.4%) 1.446 (5.7%)
white .744 .743 (0.2%)* .735 (1.2%) .680 (8.6%) .667 (10.3%)
course 1.425 1.219 (14.5%) | 1.153 (19.1%) | 1.199 (15.9%) | 1.138 (20.1%)
single .330 .293 (11.2%) .300 (9.2%) 317 (4.0%) .206 (37.7%)
stage .979 .856 (12.6%) .851 (13.0%) .875 (10.6%) .816 (16.6%)
feet 1.000 721 (27.9%) .663 (33.7%) .634 (36.6%) .693 (30.7%)
property .688 .680 (1.0%) .647 (5.9%) .658 (4.2%) .579 (15.9%)
floor 77 7745 (4.1%) 711 (85%) | 667 (14.1%) | .610 (21.5%)
mouth 446 420 (5.8%) .382 (14.3%) 440 (1.2%) .389 (12.6%)
argument 717 .684 (4.6%) 675 (5.9%) 687 (4.2%) .683 (4.8%)
rule .814 .742 (8.8%) .700 (14.0%) .683 (16.0%) .681 (16.3%)
board 1.344 | 1.180 (12.2%) | 1.142 (15.1%) | 1.124 (16.4%) | .978 (27.3%)
plant .955 .598 (37.4%) .560 (41.3%) .663 (30.5%) .687 (28.1%)
chair 237 156 (34.2%) | .152 (36.0%) | .215 (9.3%) | .133 (43.8%)
deal 1.034 728 (29.6%) .937 (9.4%) .804 (22.3%) .817 (21.0%)
notice .910 .805 (11.6%) .837 (8.0%) .895 (1.6%)x* 773 (15.0%)
wood .562 .562 (0.0%)* .546 (2.7%) .541 (3.6%) .518 (7.7%)
second 711 699 (1.7%) 702 (1.3%) .669 (6.0%) .612 (13.9%)
master 1.133 1.079 (4.8%) 1.105 (2.5%) 1.073 (5.3%) 936 (17.4%)
address .663 661 (0.4%)* .658 (0.7%)x* .640 (3.5%) .587 (11.5%)
movements .936 724 (22.7%) | .662 (29.3%) | .717 (23.4%) | .798 (14.7%)
sum 1.673 | 1.510 (9.7%) | 1.461 (12.7%) | 1.452 (13.2%) | 1.350 (19.3%)
fall 1.815 1.763 (2.8%) 1.759 (3.1%) | 1.572 (13.4%) | 1.523 (16.0%)
used 1.395 | 1.151 (17.4%) | 1.226 (12.1%) | 1.173 (15.9%) | 1.001 (28.2%)
ages 1.481 | 1.208 (18.4%) | 1.433 (3.3%) | 1.378 (7.0%) | 1.324 (10.6%)
country .833 .660 (20.8%) .658 (20.9%) .639 (23.3%) .658 (21.0%)
bank .884 .523 (40.8%) .509 (42.4%) 494 (44.1%) 467 (47.2%)
ball 1.378 | 1.251 (9.2%) | 1.317 (4.4%) | 1.247 (9.5%) | 1.210 (12.2%)
table .939 .435 (53.7%) 426 (54.7%) 415 (55.9%) 423 (54.9%)
record 1.911 | 1.826 (4.5%) | 1.810 (5.3%) | 1.702 (10.9%) | 1.573 (17.7%)
application 1.325 1.181 (10.9%) | 1.158 (12.6%) | 1.082 (18.4%) | 1.148 (13.3%)
school 315 307 (2.6%) .275 (12.8%) .256 (18.8%) .259 (18.0%)
rest 509 495 (2.9%) A78 (6.1%) A87 (4.4%) 497 (2.3%)
will 1.480 | 1.462 (1.8%) | 1.456 (2.2%) | 1.437 (3.5%) | 1.408 (5.4%)
band 1.307 | 1.177 (10.0%) | 1.195 (8.6%) | 1.235 (5.5%) | 1.126 (13.8%)
left 872 842 (3.4%) | .746 (14.5%) | .851 (2.5%) | .600 (31.2%)

Table 3: Performance of SIGIL system (conditional entropy)
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It is important to note that performance for a given test word often varied
significantly with the number of test senses k. Though performance increased
on average with increasing k, different test words displayed very different per-
formance trends with respect to k. For example, the system achieved over 30%
reductions in entropy for “chair” with 2, 3, and 10 test senses, but only a 9%
reduction with 5 test senses. Why do these significant variations in performance
occur? This is because the clusters formed by the SIGIL algorithm are strongly
dependent on the initial choice of seeds; since the algorithm is iterated, any ini-
tial differences in the assignment of words to clusters may propagate through,
and have a significant effect on, subsequent iterations. Moreover, the most rele-
vant seed words, i.e. those seeds s; with the highest values of P(W |s;), exert the
strongest influence on the clustering, and also tend to form the largest clusters.
This is usually a positive effect, since more relevant words tend to be better
disambiguators of W; however, in some cases the system may choose a strongly
relevant but ambiguous word. This can cause the formation of a large cluster
which does not correspond well to any single answer sense, and hence result in
poor system performance. For “chair”, the fifth seed word was “chairs”, and this
strongly relevant but ambiguous word caused the drop in performance from 3
to 5 test senses. For 10 test senses, this effect was still present, but the choice
of the seventh seed word (“professor”) enabled excellent discrimination between
the two senses despite this. Thus it is clear that the main factor in performance
is our choice of seeds: we want to choose seeds which are both relevant and good
discriminators. Ideally, we would want the system to choose one seed for each
answer sense, where the seed is both relevant and corresponds strongly to that
answer sense: if the system was able to achieve this, we would expect the sys-
tem’s performance to peak when the number of test senses was set equal to the

number of answer senses. But in practice (since the system chooses a mix of dis-
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criminating and non-discriminating, relevant and non-relevant seeds) we see no
such correspondence: performance increases when good (relevant and discrimi-
nating) seeds are added, decreases when bad (relevant and non-discriminating)
seeds are added, and remains approximately constant when non-relevant seeds
are added. However, if a good seed is added, but corresponds to the same an-
swer sense as another good seed, the examples of that class tend to be split
among the two. Since the system is not penalized for making more fine-grained
sense distinctions than our reference answers, this does not necessarily cause a
decrease in performance. However, if that answer sense has already been dis-
criminated well by the first seed, the addition of the second seed is unlikely to

result in a significant increase in performance.

We note that the SIGIL system can often achieve good (though not perfect)
performance with a single good seed, even when the other seeds are poor: at-
tracting examples of one answer sense to one seed will cause the other seeds
to have higher proportions of the other answer senses. For example, for “no-
tice” with 2 test senses, the first seed (“completion”) was rather ambiguous, but
the second seed (“creditor”) corresponded strongly to the ‘announcement’ sense
of “notice”, and thus attracted a high proportion of that answer sense (97 of
110 examples). The other answer sense, ‘paying attention’, was split evenly
between the two (25 and 28 examples respectively). As a result, the first seed
had a high proportion of the second answer sense (25/38), and the second seed
had a high proportion of the first answer sense (97/125): this gives the system
75% accuracy and a 12% reduction in entropy. A single good seed can result
in high performance even when there are a large number of answer senses: this
will occur if the seed corresponds strongly to the most frequently occurring an-
swer sense, and other answer senses are relatively rare. Perfect performance, of

course, can only be achieved when the number of test senses is greater than or
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equal to the number of answer senses occurring in the test data.

Since the performance of the system varies significantly depending on the ini-
tial seeds, it would be worthwhile to investigate the seed selection process in
much greater detail. As discussed above, the greedy method of choosing seeds
is efficient but not necessarily optimal, and the “seed potential” is a very simple
approximation of how well potential seeds will discriminate between senses of
the target word. A more complex measure might attempt to avoid choosing rel-
evant but non-discriminating seeds, and to avoid choosing multiple seeds which
correspond strongly to the same sense: this may require a careful comparison
of the partitions formed by a number of potential sets of seeds. For instance,
an ambiguous word such as “chairs” (if inducing senses for “chair”) would rarely
be assigned with high probability to any test sense; thus we could infer that
“chairs” should not be chosen as a seed. Ideally, we would aim for a seed selec-
tion process such that performance never decreases significantly when increasing
the number of test senses k: we would expect performance either to rise sharply
(if the newly added seeds enable us to discriminate a new answer sense) or re-
main relatively constant otherwise. As a first step toward this, we could add a
few simple rules that prevent us from choosing seeds which are very likely to be

ambiguous, such as the plural if the target word is a singular noun.

We also briefly investigated the robustness of the conditional entropy criterion
to mistakes in the assignment of the test sentences to answer senses. For each
of the test words, we measured the expected change in performance resulting
from mislabeling of a single answer (assuming that a sentence is chosen at ran-
dom, and assigned randomly to one of the other answer senses). Two important
points were noted: first, mislabeling tends to increase the baseline entropy of

the answer distribution and the conditional entropy of the answer distribution
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given the test distribution. The conditional entropy is increased proportionately
more, and as a result, the performance of the system (as measured by reduction
in entropy) decreases. This suggests that (since some errors in test sentence
labeling are to be expected) the performance numbers are an underestimation
of the true performance of the system. However, we also determined that the
expected change in performance due to a single error was small: less than 0.2%
for most words and up to 0.8% for words such as “plant” (which had a relatively
small number of examples, and a highly accurate labeling by the system). Thus
we can neglect the effects of these errors on system performance, while keeping

in mind that they tend to slightly underestimate our performance results.

7.2 Secondary evaluation

For the secondary evaluation, the independent annotator selected a set of 12

test words, including six words from the primary evaluation (“course”, “stage”,

“property”, “wood”, “master”, “will”) and six words not examined in the primary

M 7
1”, “pen”,

evaluation (“fringe”, “letter”, “mark”, “mode power”). Answer senses
were taken from the entries of the Cambridge International Dictionary of En-
glish (CIDE) 2, and the first 300 occurrences of the test word in the test data
(or all occurrences of the test word, if there were less than 300) were manually
labeled with answer senses by the independent annotator. The performance of
the SIGIL system was then examined using these reference answers: as in the
primary evaluation, the system was run with 2, 3, 5, and 10 test senses, and

the conditional entropy (and reduction from baseline entropy) was measured for

each trial. For each word, the number of answer senses AS is given. [see Table 4].

We first note that, for two of the words, two different sense distinctions are

2 Answer senses were based on the “guide words” in boxes in each CIDE entry; further infor-
mation about this labeling has been provided by the independent annotator in the Appendix.
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word (AS)  baseline 2 seeds 3 seeds 5 seeds 10 seeds
course (6) | 2.076 | 1.795 (13.5%) | 1.759 (15.3%) | 1.767 (14.9%) | 1.670 (19.5%)
stage (3) 1.027 | .874 (14.9%) | .884 (13.9%) | .887 (13.7%) | .836 (18.6%)
property (3) 745 .742 (0.4%) 712 (4.4%) 718 (3.6%) .628 (15.8%)
property (4) | 1.579 | 1.568 (0.7%) | 1.524 (3.5%) | 1.426 (9.7%) | 1.317 (16.6%)
wood (2) 654 653 (0.1%) | 629 (3.8%) | 622 (4.9%) | .583 (10.9%)
master (4) 1966 901 (6.8%) | 910 (4.9%) | .879 (9.0%) | .773 (20.0%)
will (3) 1.302 | 1.278 (1.8%) | 1.274 (2.2%) | 1.259 (3.3%) | 1.230 (5.5%)
fringe (4) 933 898 (3.7%) | .784 (16.0%) | .800 (14.2%) | .785 (15.8%)
fringe (5) 1.346 | 1.300 (3.4%) | 1.183 (12.1%) | 1.153 (14.3%) | 1.128 (16.2%)
Tetter (2) 177 171 (3.3%) | 167 (5.8%) | 173 (2.2%) | .168 (5.4%)
mark (7) 2.466 | 2.276 (7.7%) | 2.265 (8.2%) | 2.181 (11.6%) | 1.828 (25.9%)
model (4) | 1.466 | 1.442 (1.6%) | 1.379 (5.9%) | 1.407 (4.0%) | 1.370 (6.5%)
pen (3) 305 | 263 (13.7%) | .247 (19.1%) | .207 (32.0%) | .285 (6.5%)
power (8) 1.005 | 1.653 (13.2%) | 1.730 (9.2%) | 1.796 (5.7%) | 1.700 (10.8%)

Table 4: Performance of SIGIL system (conditional entropy)

considered: the second sense distinction is more fine-grained, separating two
senses that were considered as the same sense in the first sense distinction. For
“fringe”, the ‘edge’ sense was separated into ‘peripheral activity’ and ‘physical
edge’. For “property”, a sense exclusively referring to ‘real property’ was sepa-
rated out from the more general sense of ‘things owned’. Increasing the number
of answer senses increased the conditional entropy scores significantly, but since
the baseline entropy was also increased significantly, the percentage reduction
in entropy remained approximately the same. The only major difference was
for “property” with five test senses: the reduction in entropy was 9.7% for four
answer senses but only 3.6% for three answer senses. This resulted because the
seed word for the fifth test sense, “mortgage”, allowed accurate discrimination

between the ‘real property’ and ‘things owned (general)’ senses of “property”.
Of the 12 words examined in the secondary evaluation, we first consider the

six words which were also examined in the primary evaluation (down to “will”

in Table 4). There are three potential sources of discrepancy between sense
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distinctions created by different annotators, any of which could have resulted
in significant performance differences between the primary and secondary eval-
uations. First, if two annotators define very different sets of senses for a word,
their results are likely to differ significantly. Second, if the annotators evaluate
different sets of test sentences, the resulting distributions of answer senses could
be significantly different. Third, even given similar sense definitions and the
same set of test sentences, some differences are likely to result from borderline

cases on which the annotators disagree, or errors by either annotator.

Despite these factors, the performance of the system was very similar on primary
and secondary evaluations. Accuracy scores for “stage”, “will”, and “master” in
the secondary evaluation were .751, .567, and .731 respectively. These were very
close to their scores of .714, .563, and .725 in the primary evaluation, with a
mean absolute difference of .016. Similarly, for any given trial (word and num-
ber of test senses) the percentage reduction in entropy was about the same for

primary and secondary evaluations, with a mean absolute difference of 1.6%,

and a maximum difference of 3.8%. 2

Why were the performance results so similar for the two evaluations? We an-
swer this by considering the three potential sources of discrepancy above: sense
definition, test examples, and sense labeling. Despite the use of substantially
different procedures for sense definition, the independent annotator’s sense def-
initions were very similar to those created by the author. Though in some cases
one definition separated senses that the other left combined, these were mostly
rare senses (less than a dozen occurrences) and thus had only minor effects on

performance. The exception was the four answer sense labeling of “property”

3Since the word “property” had two different sense distinctions in the secondary evaluation,
we consider the performance to be the average of the two for this computation.

Page 49 of 55



Word Sense Induction

in the secondary evaluation: ‘real property’ and ‘things owned (general)’ were
both common (over 90 occurrences), but the primary evaluation (like the three
answer sense labeling of “property” in the secondary evaluation) did not distin-
guish between the two. Both primary and secondary evaluation used the same
set of test examples; however, for the two words with over 300 occurrences in the
test data (“stage” and “course”) the primary evaluation used some test sentences
that the secondary evaluation did not. There were, of course, some differences in
labeling of individual sentences; however, time constraints prevent us from pre-
cisely measuring the inter-annotator agreement. Despite the differences in sense
labeling, and in some cases, differences in sense definitions or test examples, the
performance of the SIGIL system did not vary significantly between primary
and secondary evaluations: this demonstrates that SIGIL’s performance is ro-

bust to minor variations in the labeling of the reference answers.

Lastly, we consider the performance on the six new words which were not in-
cluded in the primary evaluation. As in the primary evaluation, performance
(measured by average reduction in entropy) varied significantly from word to
word, ranging from 4.2% for “letter”, to 17.8% for “pen”; average entropy reduc-
tion was 9.5% for these six words. Performance on individual words displayed
differing trends (and in some cases, significant variation) with respect to the
number of test senses k; this was also observed in the primary evaluation, and
discussed in detail above. The SIGIL system was successful in reducing entropy
for these six words, as well as those words tested in the primary evaluation:
this confirms that the performance of the system did not result simply from
idiosyncrasies in the author’s selection of words. Thus, by testing the SIGIL
system on a range of test words selected and sense-labeled by an independent
annotator, we have demonstrated that SIGIL achieves high performance on a

representative sample of test words, not only those chosen and labeled by the
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author.

8 Conclusions

We have presented and evaluated the SIGIL system for fully automatic word
sense induction. This system was successful in discovering and disambiguating
between different senses of a semantically ambiguous word such as “bank” or
“plant”. Unlike nearly all previous approaches to the word sense disambigua-
tion task, it uses no prior information about the senses of an ambiguous word;
instead it uses a novel probabilistic clustering algorithm (optimized over the
“local neighborhood” of the word to be disambiguated) to induce these sense

distinctions from an unlabeled corpus.

The performance of the system was evaluated on a number of test words ac-
cording to two criteria, accuracy and conditional entropy; the issues surround-
ing evaluation of word sense induction systems are discussed in detail, and it is
argued that word sense induction performance (as opposed to word sense dis-
ambiguation performance) is more accurately measured by conditional entropy
than accuracy. Nevertheless, the system performed well according to both mea-
sures, achieving above-baseline accuracy for 63% of the test words * despite
being given no information about the senses it was expected to disambiguate
between. It also achieved significant reductions in entropy for 96% of the test
words, and thus was demonstrated to successfully induce useful sense distinc-
tions. Though accurate comparison of results to other systems is difficult, our
preliminary results suggest that performance is at least comparable to, and pos-
sibly significantly better than, the only other system which can be considered

“fully automatic word sense induction” (Schiitze, 1998). A more precise study

4The accuracy and conditional entropy results here are given for the primary evaluation.
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comparing the performance of this system with Schiitze’s would provide invalu-
able insights into both word sense induction systems. We should note that
nearly all prior word sense disambiguation systems have relied on some given
word sense information; they are, of course, able to achieve significantly better
performance on this substantially easier task. In some situations, however, this
sense information may not be available: this may be true when analyzing non-
English or technical domain-specific corpora, or when a system encounters any
previously unseen and potentially ambiguous term. Sense induction may also
be useful for automatic construction of lexical resources such as dictionaries and

thesauri, as discussed in Sparck Jones (1986).

In addition to being one of the only existing systems for fully automatic word
sense induction, this system offers several other important innovations. First,
the clustering method does not form global clusters independent of the target
word to be disambiguated, but instead weights all word co-occurrence frequen-
cies based also on co-occurrences with the target word; this “locally optimal”
approach is designed to produce clusters which are more closely related to the
senses of a given word, rather than topic clusters of the global context. Sec-
ond, we make significantly different assumptions than the standard probabilistic
models: in particular, the assumption of strong dependence (rather than inde-
pendence) of disambiguating words in context, resulting in a weighted averaging
(rather than multiplying) of component probabilities. Third, the use of “seed
words” provides convenient, automatic labels for the induced senses of a word:
while the seed does not completely define a sense, it gives a strong indication
as to that sense, and allows a simple comparison between induced senses and
our linguistically motivated standard. Finally, our use of conditional entropy
as a measure of word sense induction performance is an improvement over the

standard accuracy measure.
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Several possible extensions to the SIGIL system should be considered for further
investigation. First, as discussed in the Results section above, the performance
is strongly dependent on the initial choice of seed words: thus, an in-depth ex-
amination of the seed selection procedure may suggest algorithms which result
in higher and more consistent performance. Second, the SIGIL system is similar
to connectionist models of lexical ambiguity resolution (ex. Small et al, 1988)
in several respects. It computes likelihoods in parallel, using combinations of
thresholded, weighted probability distributions; thus it bears some resemblance
to a multi-layer neural network (using a combination of perceptrons and soft-
max cells). There are, however, substantial differences: SIGIL is an algorithmic
rather than a completely parallel approach (adding words to clusters in an in-
cremental, greedy fashion) and thus cannot be mapped directly to a standard
multi-layer network. Nevertheless, the resemblance to connectionist models does
suggest the interesting possibility of using feedback to train connection weights
by gradient descent, thus improving on the unsupervised disambiguation per-
formance with supervised training. Third, the poor performance of the SIGIL
system on some test words suggests difficulties with the standard “bag of words”
approach (i.e. treating a context based only on the words it contains, ignoring
word order). Humans clearly take advantage of grammatical and other word
order distinctions, enabling them to differentiate between sentences such as “the
house in the wood” (suggesting the ‘forest’ sense of “wood”) and “the wood in
the house” (suggesting the ‘material’ sense of “wood”). Thus the SIGIL system
may be improved by expanding the notion of context to include word order and
other distinctions outside the standard bag of words approach. It is possible
that decision list criteria, as used in Yarowsky (1995), may allow more accurate
word sense induction and disambiguation; however, it is not immediately clear

how these approaches can be combined with our model. Finally, the seed se-
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lection stage of the SIGIL algorithm could be used as an initial step for other
word similarity-based clustering algorithms, such as Schiitze (1992) or Karov
& Edelman (1998), removing the dependence of these algorithms on the prior
knowledge of word sense information. This could potentially result in a syn-
thesis which outperforms either individual system while retaining the essential

nature of “fully automatic word sense induction”.
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