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Detecting Spatial Clusters
Given a set of data streams, can 

we find regions with counts 
significantly higher than 

expected?

Goal: Method with high 
detection power that is 

computationally efficient

Problem: Regions may be highly 
irregular in shape. 2N different 

subsets.
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Detecting Spatial Clusters
Spatial Scan Statistic (Kulldorff, 1997):

Searches over circular regions 

High detection power for
affected regions of corresponding shape

Low detection power for 
irregular clusters
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Detecting Irregular Spatial Clusters
Fast Subset Scan (Neill, 2011):

Finds most anomalous subset over 
entire region (or constrained 

subregions) efficiently and exactly

Can we impose spatial constraints 
without losing detection power for 

subtle and irregular patterns?
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Detecting Irregular Spatial Clusters
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Expectation-Based Scan Statistics
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Poisson Example:

Large subset, moderate risk Small pattern, high risk

VS.



For a data set D, score function F(S) satisfies the 
Additive Linear Subset Scanning (ALTSS) property if 
for all ,

and where λi depends only on observed count ci,
expected count bi, and fixed relative risk q

Adding Element-Specific Penalties
Penalized Fast Subset Scan (Speakman et al., 2015):
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S ⊆ D



Adding Element-Specific Penalties
Penalized Fast Subset Scan (Speakman et al., 2015):
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Element-specific terms can be added to score function while 
maintaining additive property

Easy to interpret: Δi terms are the prior log-odds of data point si
being in the true affected subset.

Easy to maximize: For fixed relative risk q, only include points 
with positive overall contribution. Optimal subset can be found by 
considering O(N) values of q.

Adding Element-Specific Penalties
Penalized Fast Subset Scan (Speakman et al., 2015):
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Support Vector Machine

Classification algorithm that finds the separating hyperplane which 
maximizes the margin between positive and negative data points
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Image Source: Wikipedia



Support Vector Machine
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where: 
• weight vector w and bias term b define a hyperplane
• ξi terms allow for approximation in case data are not linearly separable
• is a transformation to high-dimensional feature space allowing for 

non-linear decision boundaries
• is a measure of distance from point xi to the hyperplane



Intuition: Find anomalous subset with large margin 
between affected and unaffected points

Result: Irregular but spatially coherent regions

Support Vector Subset Scan (SVSS)
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SVSS Objective Function

Let xi be the spatial coordinates of point si, let 
indicate presence/absence of point i in S, and let 
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SVSS Objective Function

Equivalently,

14



SVSS Objective Function

Equivalently,

Problem: Objective is not convex. We optimize with 
alternate minimization and multiple random restarts.
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SVSS Objective Function

Equivalently,
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PFSS Problem

Element-specific penalties = Distance to SVM hyperplane



SVSS Objective Function

Equivalently,
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SVM Problem

Binary data labels = Included/Not included in subset



SVSS Algorithm
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SVSS Algorithm
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PFSS

SVM



SVSS Algorithm
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Computing Penalties
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How to fit into PFSS framework?
Needed: Element-specific penalties for included sites



Computing Penalties
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EQUIVALENT:



Improvement Over Iterations
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Expectation = 100 for all sites

Affected points
~ Poisson(120)

Unaffected points
~ Poisson(100)



Improvement Over Iterations
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Improvement Over Iterations
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Improvement Over Iterations
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Ranking Disconnected Regions

How can we rank the connected regions of the best subset?
Solution: Maximize penalized log-likelihood ratio over connected 

components of SVM decision boundary
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Tuning model parameters
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Goal: Find parameter combination that generates best subset 
with high log-likelihood ratio (LLR) and some minimum level 
of geometric compactness

VS.



Tuning model parameters

Tuning procedure:
1. Define measure of geometric compactness K (Duzcmal et al., 2006):

2. Maximize LLR of best subset over parameter settings with top SVM 
component meeting minimum compactness threshold
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where

VS.



Detecting Letter-Shaped Regions
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All points: bi = 100



Detecting Letter-Shaped Regions
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Best connected
SVM region



Detecting Letter-Shaped Regions
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2nd Best connected
SVM region



Detecting Letter-Shaped Regions
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3rd Best connected
SVM region



Detecting Letter-Shaped Regions
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4th Best connected
SVM region



Evaluation Framework
• 2000 observations generated from Poisson distribution

• Generated random, irregular-shaped regions 
of varying length with elevated counts 
– Unaffected points: ci ~ Poisson(100)
– Affected points: ci ~ Poisson(115)
– bi = 100 for all points

• Compared precision and recall of top pattern at each length against:
– Fast subset Scan (Neill, 2011)
– Circular scan statistic (Kulldorff, 1997)
– Upper level set scan statistic (Patil and Taillie, 2007)
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Detecting Pothole Hotspots
Data: 
• Pothole reports at city block level 

from City of Pittsburgh 311 system

Timeframe: 
• Expected counts estimated from 

2008-2011 control period
• Actual counts generated from 2012-

2013

Can we identify roads or
neighborhoods in need of 
maintenance?
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Top 5 Pothole Hotspots

Rank # of 
Points

Relative 
Risk 

(MLE)
1* 17 3.2
2 15 3.0
3 17 2.8
4 12 3.9
5 15 2.3
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*Pattern shown to right



Conclusion
Support Vector Subset Scan (SVSS) is a new method for detecting 

localized and irregularly shaped patterns which are spatially separated 
from non-anomalous data.

In simulated experiments, SVSS showed high precision and recall on the 
task of detecting irregularly shaped patterns relative to competing 

methods.

We demonstrated the real-world utility of SVSS by applying it to pothole 
hotspot detection in Pittsburgh roadways.
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Thank you

djfitzpa@cmu.edu
neill@cs.cmu.edu
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