Support Vector Subset Scan
for Spatial Pattern Detection

Dylan Fitzpatrick, Yun Ni, and Daniel B. Neill
Event and Pattern Detection Laboratory

Carnegie Mellon University

This work was partially supported by
NSF grant 11S-0953330




Detecting Spatial Clusters
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Detecting Spatial Clusters

Spatial Scan Statistic (Kulldorff, 1997): .~ ao?® ‘*g_' - t' ot
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Searches over circular regions

High detection power for
affected regions of corresponding shape

Low detection power for
irregular clusters




Detecting Irregular Spatial Clusters

. Park o W 1380 w -
° i 87 N® -

Fast Subset Scan (Neill, 2011): . s !% t' o .
i ¥ P e S S
@ Loe % el
..."‘I ..;.;. ?a_ [ 'I%

] .541-5 4 Lfg .enlre-ﬂw'-‘a El
. 2 P =

Finds most anomalous subset over | PifCshil fj y S P8 s
. . . < : Fibhe@\@ &

entire region (or constrained " P~ f/l

subregions) efficiently and exactly . N

Can we impose spatial constraints
without losing detection power for

subtle and irregular patterns? i:};l"

3o A °°
* el
s e aage®, _of

I




Detecting Irregular Spatial Clusters
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Expectation-Based Scan Statistics

Poisson Example:  H : ¢; ~ Poisson(b;)

Hi : ¢; ~ Poisson(qgb;),q > 1

P(Data|H1(S))
F(S) = 1
(5) ST 8 P(Data|Hy)

o o o o
© o0 © o090
.'.o.::ﬁ.ﬁ ..‘.0.: :0'0
.: o.. o.o VS, ® 06 g 00
.o..‘.o ..0‘.. ‘.‘0
® ®

Large subset, moderate risk Small pattern, high risk




Adding Element-Specific Penalties

Penalized Fast Subset Scan (Speakman et al., 2015):

For a data set D, score function F(S) satisfies the
Additive Linear Subset Scanning (ALTSS) property if
forall Sc D,

F(S) = max F(S|q) where F(S|q) = Z Ai

qg>1
s; €S

and where A; depends only on observed count ¢;
expected count b, and fixed relative risk g




Adding Element-Specific Penalties

Penalized Fast Subset Scan (Speakman et al., 2015):

Distribution Ai(q)
Poisson xi(logq) + wi(l — q)
. iz _ a2 1—g°
Gaussian mz?;-(q 1) + p, 22 )

exponential xzi( — l) =+ Nii,(— log q)

binomial(po) x;log(qg1—- _po ) + log( 11 qﬁjoo)




Adding Element-Specific Penalties

Penalized Fast Subset Scan (Speakman et al., 2015):

Element-specific terms can be added to score function while
maintaining additive property

Fpenalized(s) — max ()\1 + Az)

Easy to interpret: A, terms are the prior log-odds of data point s,
being in the true affected subset.

Easy to maximize: For fixed relative risk g, only include points
with positive overall contribution. Optimal subset can be found by
considering O(N) values of g.



Support Vector Machine

Image Source: Wikipedia

Classification algorithm that finds the separating hyperplane which
maximizes the margin between positive and negative data points
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Support Vector Machine
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yi(w-o(x;)—b)>1—-¢&,Vi=1,...N

where:
e weight vector w and bias term b define a hyperplane
e §.terms allow for approximation in case data are not linearly separable

e ¢ is atransformation to high-dimensional feature space allowing for
non-linear decision boundaries

* w - ¢(x;) — b isameasure of distance from point x; to the hyperplane
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Support Vector Subset Scan (SVSS)

Intuition: Find anomalous subset with large margin
between affected and unaffected points

Result: Irregular but spatially coherent regions
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SVSS Objective Function

Let x; be the spatial coordinates of points; let a; € {0, 1}
indicate presence/absence of pointiin§, and let y; = 2a; — 1

N
.1 9
min Sf[wl|”+ Co Y & —CiF(a)

s i=1
a; €{0,1},Vi=1,...,.N
&>0,Vi=1,...,N
(2a; — 1) (W-o(x;) —b) >1-&,Vi=1,..,N
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SVSS Objective Function

Equivalently,

N
|
min §||W||2 +Co ) &i(ai) — C1F ()

8, i=1
;< {0, 1}3\?/3 =1, ,N
&) =max(0,1 — (20 — 1)(W - (%) — b))
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SVSS Objective Function

Equivalently,

N
1 2
in — E (o) — C1F
%1n?b2||w|| —I—Cgi 15(@’) CiF(a)

;< {0, 1}3\?/3 =1, ,N
&) =max(0,1 — (20 — 1)(W - (%) — b))

Problem: Objective is not convex. We optimize with
alternate minimization and multiple random restarts.
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SVSS Objective Function

Equivalently,

! N
i, 1wl +[co >t - ch(a»]
la; € {0,1},Vi =1, ...,N|
&) =max(0,1 — (20 — 1)(W - (%) — b))

PFSS Problem

[ Element-specific penalties = Distance to SVM hyperplane ]
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SVSS Objective Function

Equivalently,

a v

1 — 2 - .
Juin S{|w][* 4+ Co ) &ifau)
\ 1=1 y,

o, € {0, 1},,\7/’3 =1,....N

— ClF(Ct)

i) = max(0, 1 — (205 — 1)(W - $(x;) — b))

SVM Problem

{ Binary data labels = Included/Not included in subset ]
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SVSS Algorithm

Algorithm 1 Support Vector Subset Scan
procedure SVES(e, box, Oy, O = Cotnts ¢, expectations b, and coordinates x
i) +—0vi=1,...N
while The optimal sub=et 12 changing do

- L ] a 5. - . .
Mk Flee) — O/ 30, Lil o) = Fix w b and optimize over o
Jl:l.mt-.,.,-.'.h'l.'l.' “+Car p Sl = Fix oo and optimize over w i

end while

rFeturn o
end procediare
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SVSS Algorithm

Algorithm 1 Support Vector Subset Scan

procedure SVES(e, box, Oy, O = Cotnts ¢, expectations b, and coordinates x
i) +—0vi=1,...N
while The optimal sub=et 12 changing do P FSS
maKy Floe) — O/ E:\_-I Eilexi ) = Fix w boand optimize over o

i , o o
Jl:l.mt-.,.,-.'.h'l.'l.' s+ .,'.E__l.'f..l_ri._l

end while

rFeturn o
end procediare
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SVSS Algorithm

Algorithm 2 Support Vector Subset Sean (random restarts)
procedure SVES(e, box, T - Ca. O ) B Counts e, expectations b, and coordinates x
T _Sr0re 44— %0
forf =1ta 1., . do Ty Fandom restarts
il ) +— Uniform|[—Cy, Oy %=1, .. N
while The optimal sulb=et 18 changing do

- L 1 1 e —_ . .
maxe Flo) — CofC 30, Eilo) = Fix w. b and optimize over e
TLiThg, w B i wl|* + E-—I Eilir; ) = Fix o, and optitkze over w, i

ernd while
1 i - - .
ECTHE 4— ﬂ w|" + La E:_| £l ) — L Fex)

If sevwre < min_seare then
TR _SCTFE — AOOTE
Xy — O
end 1F
end for

return o,
end procedure
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Computing Penalties

argrcilax Fla) — . Z ACH,

Eilay) = max(0,1 —w - ¢(x;) +b), vy, =2a; —1=+41)
WO ) =
0,14+ w-o(xi) = b), vi=2a;—1=-1)

How to fit into PFSS framework?
Needed: Element-specific penalties for included sites
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Computing Penalties

EQUIVALENT:

argmax F(a) — — Za A

A; =max(0,1 —w - ¢(x;) + b) —max(0,1 +w - ¢(x;) — b)
(w-o(xi) —b+1, w-g(xi)—b>1
=9 2(w-o(x;) =b), w-o(x;)—be(-1,1)
(W o(xi) —b—1, w-o(x;) —b< -1
=[w-o(x;) —b>—1](w- o(x;) — b+ 1)+

W o(xi) — b <1f(W-d(xi) —b—1)
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Improvement Over lterations
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Improvement Over lterations
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Improvement Over lterations
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Improvement Over lterations




Ranking Disconnected Regions

How can we rank the connected regions of the best subset?

Solution: Maximize penalized log-likelihood ratio over connected
components of SVM decision boundary
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Tuning model parameters

m @
= c
g .

. 2]
g = a
.= 2
.

. |

Goal: Find parameter combination that generates best subset

with high log-likelihood ratio (LLR) and some minimum level
of geometric compactness
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Tuning model parameters

e
Z ¥ ey River B
%

Tuning procedure:

1. Define measure of geometric compactness K (Duzcmal et al., 2006):
47TA(2:) A(z) = Area of z,
K(Z) = 7/ 2 where ,
H(z) H(z) = Perimeter of convex hull of z
2.

Maximize LLR of best subset over parameter settings with top SVM
component meeting minimum compactness threshold
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Detecting Letter-Shaped Regions
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Detecting Letter-Shaped Regions

Best connected
SVM region

L=

Penalties
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Detecting Letter-Shaped Regions
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Detecting Letter-Shaped Regions

3rd Best connected
SVM region
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Detecting Letter-Shaped Regions

4th Best connected
SVM region

Penalties
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Evaluation Framework

e 2000 observations generated from Poisson distribution

e Generated random, irregular-shaped regions

of varying length with elevated counts
— Unaffected points: ¢; ~ Poisson(100)
— Affected points: ¢; ~ Poisson(115)
— b;= 100 for all points

e Compared precision and recall of top pattern at each length against:
— Fast subset Scan (Neill, 2011)
— Circular scan statistic (Kulldorff, 1997)
— Upper level set scan statistic (Patil and Taillie, 2007)
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Detecting Pothole Hotspots

Data:

Timeframe:

Pothole reports at city block level
from City of Pittsburgh 311 system

Expected counts estimated from
2008-2011 control period

Actual counts generated from 2012-
2013

Can we identify roads or

neighborhoods in need of
maintenance?

38



Top 5 Pothole Hotspots

# of Relative
Rank Points Risk
(MLE)

1* 17 3.2

2 15 3.0

3 17 2.8

4 12 3.9

5 15 2.3

*Pattern shown to right




Conclusion

Support Vector Subset Scan (SVSS) is a new method for detecting
localized and irregularly shaped patterns which are spatially separated
from non-anomalous data.

In simulated experiments, SVSS showed high precision and recall on the
task of detecting irregularly shaped patterns relative to competing
methods.

We demonstrated the real-world utility of SVSS by applying it to pothole
hotspot detection in Pittsburgh roadways.
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