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@ Location of an informative data stream
# of ER visits per Zip Code

# of OTC Drug sales per retailer
Other novel data sources ...

In the presence of an outbreak,
we expect counts of the affected
locations to increase.

Effective methods should have high
detection power.




Detecting Disease Clusters
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(Kulldorff, 1997)

Spatial Scan Statistic
(Circles)

Clusters locations by regions
constrained by shape

High power to detect disease clusters of
the corresponding shape

But what about irregular shaped clusters?




Detecting lrregular Disease Clusters
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(Neill, 2011)
Fast Subset Scan

Instead of clustering ALL locations
within the region together,

only the most anomalous subset of

locations within the region is used

Increases power to detect irregularly
shaped disease clusters




Detecting lrregular Disease Clusters
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(Neill, 2011)

Fast Subset Scan

Instead of clustering ALL locations
within the region together,

only the most anomalous subset of

locations within the region is used

Increases power to detect irregularly
shaped disease clusters

...but may return

spatially dispersed subsets
that do not reflect an outbreak of disease




Detection Power for
Varying Neighborhood Size
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Neighborhood size. k Simulated non-circular outbreaks injected
’

into real-world ER background data.
Fixed false positive rate of 1 per year.
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(Neill, 2011)

Fast Subset Scan

Instead of clustering ALL locations
within the region together,

only the most anomalous subset of

locations within the region is used

Increases power to detect irregularly
shaped disease clusters

...but may return

spatially dispersed subsets
that do not reflect an outbreak of disease




Detecting lrregular Disease Clusters

-

Soft Compactness Constraints




Detecting lrregular Disease Clusters

Soft Compactness Constraints

Use the distance of each location
from the center as a measure of
compactness/sparsity



Detecting lrregular Disease Clusters

Soft Compactness Constraints

Use the distance of each location
from the center as a measure of
compactness/sparsity

Reward subsets that contain
locations close to the center
and
Penalize subsets that contain
locations far from the center

Strength of
Constraint

Distance from the Center
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Detection Power for
Varying Neighborhood Size

80

7> / ==Circles
e )
2 70 w=FSS
5 PFSS
0 65
%

60

55 I I I I I I I

5 20 35 50

Neighborhood size. k Simulated non-circular outbreaks injected
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into real-world ER background data.
Fixed false positive rate of 1 per year.



. Take-Away Message

@
/|
® o The subset scanning approach
® ® substantially improves detection
® power of spatial scan statistics for
irregular region shapes.
o ©
A . L .
This increased flexibility requires
A o careful choice of neighborhood size, k.
O
® o . . .
® ® Enforcing soft proximity constraints to
e © penalize dispersed subsets addresses

O -A this concern and increases overall
L] .
Ao detection power.




Take-Away Message

Penalized Fast Subset Scanning is very general and provides a
framework for incorporating soft constraints into commonly
used expectation-based scan statistics.

In the PFSS framework, we demonstrate:

e Exactness: The most anomalous (highest scoring) subset is
guaranteed to be identified.

e Efficiency: Only O(N) subsets must be scanned in order to
identify the most anomalous penalized subset in a dataset
containing N elements (same as the un-penalized scan).

* Interpretability: Soft constraints may be viewed as the prior
log-odds for a given record to be included in the most
anomalous penalized subset.



Three Contributions

Additive Linear Time Subset Scanning (ALTSS)
property of commonly used

expectation-based scan statistics

Efficient computation of the optimal penalized
subset for functions satisfying ALTSS

One example of penalty terms:
soft proximity constraints




Expectation-based Scan Statistics

P(Data|H,(S)) H, : x, ~ Dist(x)
P(Data|H,) H,(S): x. ~ Dist(q)in S

F(S)=log



Expectation-based Scan Statistics

P(Data|H,(S)) H,:x ~Dist(x)

F(S)=maxlog
q
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Additive Linear Time Subset Scanning

F(S) = max log P(Data|H,(S))  Hy:x ~ Dist(x)
Pt P(Data|H,)  H,(S):x ~ Dist(qu)ins

Definition: For a given dataset D, the score function F(S) satisfies
the Additive Linear Time Subset scanning property if forall S € D

we have
F(S) = max F(S|q) where F(S[q) = Xs;es /i
q

and A;depends only on the observed count Xx;, expected count y;,
and the relative risk, q.



Additive Linear Time Subset Scanning

F(S) = max log P(Data|H,(S))  Hy:x ~ Dist(x)
Pt P(Data|H,)  H,(S):x ~ Dist(qu)ins

Conditioning ALTSS functions on the relative risk, g, allows the
function to be written as an additive set function over the data
elements s; contained in S.

Poisson example:

F(S) = max z x;(logq) + u;(1 —q)

S;ES




Additive Linear Time Subset Scanning

Consequence #1: Extremely easy to maximize by including
“positive” elements and excluding “negative”.

Consequence #2: Additional, element-specific, terms may
be added to the scoring function while

maintaining the additive property.
F(S) = max Py (b)) Hu(U—q@)+ 4 ]

S;{ES




Additive Linear Time Subset Scanning

Consequence #1: Extremely easy to maximize by including
“positive” elements and excluding “negative”.

Consequence #2: Additional, element-specific, terms may
be added to the scoring function while
maintaining the additive property.

“Total Contribution” y; of record s; for fixed risk, g

Fpenalized(s) = rc?>ai( 2 [x;(logq) + u;(1 —q)+ A;]
S;ES




Additive Linear Time Subset Scanning

Consequence #1: Extremely easy to maximize by including
“positive” elements and excluding “negative”.

Consequence #2: Additional, element-specific, terms may
be added to the scoring function while
maintaining the additive property.

“Total Contribution” y; of record s; for fixed risk, g

Fpenalized (S) = maXE | A+ 4 ]

q>1
S;ES




Additive Linear Time Subset Scanning

Distribution Ai(q)
Poisson rilog g+ pi(1 —
Gaussian I1ﬁ3 q__ S - (l;q;)
exponential o {1 — l} log g

binomial  x;log(q) + (n; — z;) log (

negative
binomial

T —gpdi

Mi—Hq

rilog (q) + (r; + z;) log (ﬁ%

)
)




Three Contributions

Efficient computation of the optimal
penalized subset for functions satisfying ALTSS




Penalized Fast Subset Scanning
P(Data| H,(S))

F(S)=maxlog
oo 9>1 P(Data|H,) ee
® o 0
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... but the ALTSS property requires evaluating
the function at a fixed risk.

How do we optimize over the entire rangeg>1"?




Penalized Fast Subset Scanning
P(Data| H,(S))

F(S) =maxlog
oo q>1 P(Data|H,) ee
C ) 0
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Theorem: The optimal subset S™ = arg max Fyen(S)

maximizing a penalized expectation-based scan statistic
satisfying the ALTSS property may be found be evaluating only
O(N) subsets, where N is the total number of data elements.
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Three Contributions

Efficient computation of the optimal penalized
subset for functions satisfying ALTSS

One example of penalty terms:
soft proximity constraints




Soft Proximity Constraints

Penalized Fast Subset Scanning allows additional spatial
information to be included; rewarding spatial compactness and
penalizing dispersed subsets within a local neighborhood.

2d,
I

h is the strength of
the constraint

A, e[-h..h]

A =h|1

Center location and its k-1 nearest neighbors




Soft Proximity Constraints

Penalty terms may be interpreted as prior log-odds for a location
to be included in the subset.

( )
log Pi_ | _ A,
1-pi)
The center location is e”
times more likely to be
included in the optimal
subset than the k-1

nearest neighbor.

Center location and its k-1 nearest neighbors



Soft Proximity Constraints

Penalty terms may be interpreted as prior log-odds for a location
to be included in the subset.

1
0.75 =
S\
0.25 =

0
Center Location  Djstance from Center k-1 neighbor

Prior probability of inclusion

d’]:o d‘]=1 h=2




Evaluation: Emergency Department
Data

Two years of admissions from
Allegheny County Emergency
Departments

The patient’s home zip code is
used to tally the counts at
each location

Centroids of 97 Zip Codes
were used as locations



Bayesian Aerosol Release Detector
(BARD) Hogan et al; 2007

Simulates anthrax spores released over a city

Two models drive the simulator:

Dispersion Infection
Which areas will be affected? How many infected people
inan area?
Weather data Demographic data
Gaussian plumes Increased ER visits with

respiratory complaints



Comparison of Detection Power for BARD
Simulated Attacks
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Comparison of Detection Power for BARD

Simulated Attacks
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Comparison of Detection Power for BARD

Simulated Attacks
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Average Detection Power for

Varying Proximity Constraint Strength
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Average Detection Power for

Varying Proximity Constraint Strength
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Conclusions

PFSS is very general and provides a framework for
incorporating soft constraints into commonly used
expectation-based scan statistics.

e Exact: The most anomalous (highest scoring) subset is
guaranteed to be identified.

e Efficient: Only O(N) subsets must be scanned in order to
identify the most anomalous penalized subset in a dataset
containing N elements.

* Interpretable: Soft constraints may be viewed as the prior log-
odds for a given record to be included in the most anomalous
penalized subset.



Conclusions

guarant
Efficient dbrder to
identify t a dataset

containing

odds for a given 1< a In the most anomalous
penalized subset.



Interested?

More details on our web page:
http://epdlab.heinz.cmu.edu

Or e-malil me at:
neilll@cs.cmu.edu
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