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Detecting Disease Clusters

Location of an informative data stream
- # of ER visits per Zip Code
- # of OTC Drug sales per retailer
- Other novel data sources ...

In the presence of an outbreak,
we expect counts of the affected 

locations to increase.

Effective methods should have high 
detection power.



Detecting Disease Clusters

Spatial Scan Statistic
(Circles)  

(Kulldorff, 1997)

Clusters locations by regions  
constrained by shape

High power to detect disease clusters of 
the corresponding shape

But what about irregular shaped clusters?

Most
Anomalous

Circular 
Region



Detecting Irregular Disease Clusters

Fast Subset Scan
(Neill, 2011)

Instead of clustering ALL locations 
within the region together,

only the most anomalous subset of 
locations within the region is used

Increases power to detect irregularly 
shaped disease clusters
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Instead of clustering ALL locations 
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...but may return
spatially dispersed subsets

that do not reflect an outbreak of disease



Detection Power for 
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Simulated non-circular outbreaks injected 
into real-world ER background data. 

Fixed false positive rate of 1 per year.
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Detecting Irregular Disease Clusters

Soft Compactness Constraints

Use the distance of each location 
from the center as a measure of 

compactness/sparsity

Distance from the Center

Strength of
Constraint

Reward subsets that contain 
locations close to the center

and
Penalize subsets that contain 
locations far from the center

Reward subsets that contain 
locations close to the center

and
Penalize subsets that contain 
locations far from the center



Detecting Irregular Disease Clusters

...but may return
spatially dispersed subsets

that do not reflect an outbreak of disease.

This particular subset would be less likely 
returned as the optimal one when 
compactness constraints are used.

The penalties associated with the 
distance between the locations and 
center of the circle would decrease 

the “score” of the subset

Soft Compactness Constraints



Detecting Irregular Disease Clusters

...but may return
spatially dispersed subsets

that do not reflect an outbreak of disease.

This particular subset would be less likely 
returned as the optimal one when 
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distance between the locations and 
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the “score” of the subset

Soft Compactness Constraints

...while increasing the score of 
compact clusters
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Take-Away Message
The subset scanning approach 

substantially improves detection 
power of spatial scan statistics for 

irregular region shapes.

This increased flexibility requires 
careful choice of neighborhood size, k.

Enforcing soft proximity constraints to 
penalize dispersed subsets addresses 

this concern and increases overall 
detection power.   



Take-Away Message
Penalized Fast Subset Scanning is very general and provides a 
framework for incorporating soft constraints into commonly 

used expectation-based scan statistics.

In the PFSS framework, we demonstrate:
• Exactness:  The most anomalous (highest scoring) subset is 

guaranteed to be identified.
• Efficiency:  Only O(N) subsets must be scanned in order to 

identify the most anomalous penalized subset in a dataset 
containing N elements (same as the un-penalized scan).

• Interpretability: Soft constraints may be viewed as the prior 
log-odds for a given record to be included in the most 
anomalous penalized subset.



Three Contributions

Additive Linear Time Subset Scanning (ALTSS) 
property of commonly used 

expectation-based scan statistics

Efficient computation of the optimal penalized 
subset for functions satisfying ALTSS

One example of penalty terms:
soft proximity constraints



Expectation-based Scan Statistics
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Expectation-based Scan Statistics
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Additive Linear Time Subset Scanning

Definition:  For a given dataset D, the score function F(S) satisfies 
the Additive Linear Time Subset scanning property if for all 𝑆𝑆 ⊆ 𝐷𝐷
we have

𝐹𝐹 𝑆𝑆 = max
𝑞𝑞>1

𝐹𝐹(𝑆𝑆|𝑞𝑞) where 𝐹𝐹(𝑆𝑆|𝑞𝑞) = ∑𝑠𝑠𝑖𝑖∈𝑆𝑆 𝜆𝜆𝑖𝑖
and 𝜆𝜆𝑖𝑖depends only on the observed count 𝑥𝑥𝑖𝑖, expected count 𝜇𝜇𝑖𝑖, 
and the relative risk, q.
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Additive Linear Time Subset Scanning

Conditioning ALTSS functions on the relative risk, q, allows the 
function to be written as an additive set function over the data 
elements si contained in S.

𝐹𝐹 𝑆𝑆 = max
𝑞𝑞>1

�
𝑠𝑠𝑖𝑖∈𝑆𝑆

𝑥𝑥𝑖𝑖(log 𝑞𝑞) + 𝜇𝜇𝑖𝑖(1 − 𝑞𝑞)
Poisson example:
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Additive Linear Time Subset Scanning

𝐹𝐹 𝑆𝑆 = max
𝑞𝑞>1

�
𝑠𝑠𝑖𝑖∈𝑆𝑆

𝑥𝑥𝑖𝑖(log 𝑞𝑞) + 𝜇𝜇𝑖𝑖(1 − 𝑞𝑞)

Consequence #1:    Extremely easy to maximize by including
“positive” elements and excluding “negative”.

Consequence #2:    Additional, element-specific, terms may 
be added to the scoring function while 
maintaining the additive property.

𝐹𝐹 𝑆𝑆 = max
𝑞𝑞>1
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“Total Contribution” γi of record si for fixed risk, q



Additive Linear Time Subset Scanning
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maintaining the additive property.
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Additive Linear Time Subset Scanning



Three Contributions

Additive Linear Time Subset Scanning (ALTSS) 
property of commonly used 

expectation-based scan statistics

Efficient computation of the optimal 
penalized subset for functions satisfying ALTSS

One example of penalty terms:
soft proximity constraints



Penalized Fast Subset Scanning
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… but the ALTSS property requires evaluating 
the function at a fixed risk.

How do we optimize over the entire range q > 1 ?



Penalized Fast Subset Scanning
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Theorem:  The optimal subset 𝑆𝑆∗ = arg max
𝑆𝑆

𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝(𝑆𝑆)
maximizing a penalized expectation-based scan statistic 
satisfying the ALTSS property may be found be evaluating only 
O(N) subsets, where N is the total number of data elements.  
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Three Contributions

Additive Linear Time Subset Scanning (ALTSS) 
property of commonly used 

expectation-based scan statistics

Efficient computation of the optimal penalized 
subset for functions satisfying ALTSS

One example of penalty terms:
soft proximity constraints



Soft Proximity Constraints
Penalized Fast Subset Scanning allows additional spatial 

information to be included; rewarding spatial compactness and 
penalizing dispersed subsets within a local neighborhood.  
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Soft Proximity Constraints
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Penalty terms may be interpreted as prior log-odds for a location 
to be included in the subset.  
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Soft Proximity Constraints
Penalty terms may be interpreted as prior log-odds for a location 

to be included in the subset.  



Evaluation: Emergency Department 
Data

Two years of admissions from 
Allegheny County Emergency 

Departments

The patient’s home zip code is 
used to tally the counts at 

each location

Centroids of 97 Zip Codes 
were used as locations 



Bayesian Aerosol Release Detector 
(BARD) Hogan et al; 2007

Simulates anthrax spores released over a city

Two models drive the simulator:

Dispersion
Which areas will be affected?

Weather data

Gaussian plumes

Infection
How many infected people 

in an area?
Demographic data

Increased ER visits with 
respiratory complaints



Comparison of Detection Power for BARD 
Simulated Attacks
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Average Detection Power for 
Varying Proximity Constraint Strength
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Conclusions
PFSS is very general and provides a framework for 
incorporating soft constraints into commonly used 

expectation-based scan statistics.

• Exact:  The most anomalous (highest scoring) subset is 
guaranteed to be identified.

• Efficient:  Only O(N) subsets must be scanned in order to 
identify the most anomalous penalized subset in a dataset 
containing N elements.

• Interpretable: Soft constraints may be viewed as the prior log-
odds for a given record to be included in the most anomalous 
penalized subset.



Conclusions
PFSS is very general and provides a framework for 
incorporating soft constraints into commonly used 

expectation-based scan statistics.

• Exact:  The most anomalous (highest scoring) subset is 
guaranteed to be identified.

• Efficient:  Only O(N) subsets must be scanned in order to 
identify the most anomalous penalized subset in a dataset 
containing N elements.

• Interpretable: Soft constraints may be viewed as the prior log-
odds for a given record to be included in the most anomalous 
penalized subset.



Interested?

More details on our web page: 
http://epdlab.heinz.cmu.edu

Or e-mail me at:
neill@cs.cmu.edu
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