Fast Graph Structure Learning from
Unlabeled Data for Event
Detection

Sriram Somanchi
Daniel Nelll

Event and Pattern Detection Lab
Carnegie Mellon University

This work was partially
supported by NSF grants:

11S-0916345, 11S-0911032,
and 11S-0953330

-

. .I'
L)

&% National Science Foundation

_/__{‘WHERE DISCOVERTIES B EGIN

I

Agenda

Introduction

Problem Statement

o Why is it important?

Event Detection with known graph structure
Learning graph structure for event detection
Related Research

Experimental Setup

Experimental Results

Conclusions and Future work

Introduction

Often times it is hard to directly observe the network

over which an outbreak Is spreading

o Spread of disease outbreak due to person-to-person contact
o Information spread on an implicit social media network

However, we can observe the individual nodes
getting effected, example

o Increased counts of ED visits in a zip code

o Information appearing in blogs for social media networks

Applicable domains
o Information diffusion
o Disease surveillance

‘ Problem Statement

= Glven time series of data
about each node can we infer
the underlying graph network.

Problem Statement

Data Is

the gra

graph t

Given time series of data
about each node can we

Infer the underlying graph
network

unlabeled: We only

observe, counts at each
node and we want to learn

nh.

Primary goal Is to learn a

nat will improve the

detection power.

Why is 1t important?

In case of disease survelllance, it helps

authorities

o ldentify the network on which disease Is spreading
Restrict further spreading

o Find the anomalous subset given the network that
IS learnt, by running GraphScan

Assuming an incorrect graph can result in less timely
and less accurate detection

Event Detection with Known Graph
Structure

If the graph is known, event detection
problem Is to detect connected subgraphs
where recently observed counts are
significantly higher than expected.

This Is achieved by maximizing the log-
likelihood ratio statistic F(S) over all
connected subgraphs S.

Here we assume “Expectation-based
Poisson” statistic, where counts are Poisson-
distributed.

Event Detection with Known Graph
Structure — Algorithms

There are multiple algorithms for event detection

on a known graph

o FlexScan — exhaustive search

o Upper level sets — heuristic based search

o GraphScan — reduces the search space using Linear
Time Subset Scan (LTSS) property

If a scoring function F(S) satisfies LTSS, then

unconstrained optimization over all subsets, can

be efficiently computed In linear time.

In order to score a graph structure we use
GraphScan, as it finds optimal score for the
graph.

Event Detection with Known Graph
Structure — Algorithms

FlexScan, There are multiple algorithms earches
exhaustively over all connected subgraphs with
In a fixed neighborhood size ‘n’ of each graph
node.

Upper level sets, Is a heuristic based search
which provides scalablility, however, may fall to
find the optimal subgraph.

GraphScan also searches over all connected
subgraphs, however prunes many subgraphs
based on Linear Time Subset Scan property to
find optimal subgraph and corresponding
optimal score.

Event Detection with Known Graph
Structure — GraphScan

If a scoring function F(S) satisfies LTSS, then
unconstrained optimization over all subsets,
can be efficiently computed in linear time.

GraphScan, builds on LTSS to speed up the
search ruling out large number of subgraphs
which have provably suboptimal scores.

GraphScan, substantially improved the
timeliness and accuracy of event detection as

compared to Upper Level Sets.

Related Research

There were two algorithms proposed to learn
latent graphs in the context of social networks

NetInfl, forms an o

ptimization problem to find

the best graph, and shows it to be NP-hard. It

further gives an ap

proximation algorithm

ConNIle?, takes a maximum likelihood approach

pased on convex p

rogramming and further uses

_, penalty to favor sparse graphs
However, both of the algorithms assume labeled

data, where affected subset of nodes at each

time step Is given

Learning Graph Structure for

Detection — Data

The graph structure is not
always known and must
be inferred from data.

We have unlabeled
training examples

Dy, D,, ..., D;, where each
D; represents a different
‘snapshot’ of the data at a
time when an eventis
assumed to be occurring
in some connected subset
of nodes.

Learning Graph Structure for Detection —

Evaluatin

Dy

Fy
Fia

Fy;

NFyy
NF .

NFy,

Fza

Fay

NFy,
NF o

NFy,

Dy

Fun
Fiea

qu

NFyy
NFyq

NFy;

Graphs

Fnorm (Gl)

F norm (Gz)

Fnorm (GM)

Let us say we have set of ?tll'aphs
G4, ..., Gy and want to find the best
graph G,, that represents the given
training data.

For each graph find the mean
normalized score across fraining
data

Score each graph for each training example

Normalize the score by dividing by
unconstrained score computed using LTSS.

Take the mean across all training examples
If a graph has low mean normalized
score then it might be missing
essential connections

Though a graph with lot of edges has
high score, it Is less informative.

In order to score each graph we chose GraphScan algorithm, as it finds the
optimal score for a given graph.

Algorithm — Fast Graph Structure

Learning

k All the possible graphs for a given set
of N nodes is exponentially large,

N(N=-1)
M =2z ,and makes it G, %
computationally intractable to search.

= In order to make it tractable, we

propose a greedy approach. Gs
= We start with a complete graph and

sequentially remove edges until no Gy

edges remain, thus we have a

tractable number M = N“;'”. Ge O 8
= Theidea is to remove unnecessary

edges, while preserving essential G o

connections. 6 8

We have to be careful in the order of our edge removal

Algorithm — Edge Selection Methods

|deally, we want to remove an edge from the graph
Gnsuch that the resulting graph G,,,—, preserved the
highest mean normalized score. This is might be
computationally infeasible.

Hence we propose greedy method to choose an edge to
remove, which disconnects the fewest subgraphs of
G.,for each training example.

In early stages there might be a lot of ties, and we
resolve them based on correlation coefficient of the
training data between two nodes. We prefer the edge
with higher correlation. (Gr-Corr)

Mean Normalized Score

Algorithm — Finding Most Significant
Graph

Comparison of mean normalized scores for graphs Gy, ..., Gu

— Graph Gm

—— Randomized Graph Gmr

200

Number of edges (m)

5 We have normalized scoring

distribution of G4, ..., Gy.

We are going to remove
edges in a random order,
multiple times and compute
the mean normalized score of
each graph.

We propose the "most
significant graph” that has the
most anomalously high value
of mean normalized score
given its number of edges

m-.

Algorithm — Computational Complexity
Analysis
The bottleneck in our computation analysis is
number of times we need to score a graph.

Here we use “GraphScan”, which was shown
empirically to take 0(1.2") time.

We prove that expected number of runs of
GraphScan for a given graphs G, ..., Gy, With
J training examples is O(JN log N).

Hence the total expected running time of our
algorithm is 0(1.2"J/Nlog N)

Experimental Setup - Dataset

Emergency Department Data

o Visits with respiratory symptoms for each of 97
Alleghany zip codes.

o We have data for each day from January 1, 2004
to December 31, 2005.

o The resulting data set had a daily mean of 44.0
cases, and a standard deviation of 12.1 cases.
We simulate disease outbreak into this real-

world Emergency Department data.

‘ Experimental Setup — Outbreak
Simulations

We assume that our outbreaks
follow Susceptible-Infected
contagion model.

Outbreaks spread over some
underlying graph structure
increasing in size and severity
over time.

We simulate multiple
outbreaks each time starting at
a center chosen uniformly at
random.

We generated] = 200 injects
as each of training and test
datasets.

Each inject is about 14 days in
duration.

Experimental Setup — Outbreak

Simulations

We assume that our outbreaks
follow Susceptible-Infected
contagion model.

Outbreaks spread over some
underlying graph structure
increasing in size and severity
over time.

We simulate multiple
outbreaks each time starting at
a center chosen uniformly at
random.

We generated] = 200 injects
as each of training and test
datasets.

Each inject is 14 days in
duration.

Experimental Setup — Outbreak

Simulations

We simulate outbreaks spreading over the
following kinds of graphs
o Adjacency graph + Random Edges
Random edges can simulate travel patterns.
o Preferential Attachment graph

Experimental Results —
True vs. Learned graph

Experiment Edges Precision Recall
(true) | GrCorr Corr | GrCorr Corr
Adjacency 216 0.60 0.62 0.89 .86
Adjacency+Travel 280 0.70 0.71 0.86 0.83
Erdos-Renyi (avg) | (varies) 0.56 0.59 0.87 0.81
Pref. Attachment 374 0.93 0.91 0.88 0.81

= Recall is high which shows that we could retrieve a
lot of edges from the original graph.

= Precision Is not too low which shows that we have
do not have too many irrelevant edges.

‘ Experimental Results —
True vs. Learned graph

Graph Edges Precision Recall
(true)

Adjacency + 280
Random

Pref. 374 0.93 0.81
Attachment

= Recall is high which shows that we could retrieve a
lot of edges from the original graph.

= Precision is not too low which shows that we have
do not have too many irrelevant edges.

‘ Experimental Results — Computation
time

Experiment GraphScan Runs | Run Time (minutes)
GrCorr Corr | GrCorr Corr
Adjacency 5527 5765 41 48
Adjacency+Travel | 6985 7306 53 61
Spatial 0952 6266 39 45
Erdos-Renyi (avg) | 6983 7467 93 104
Pref. Attachment 6982 7188 19 56

Experimental Results — Detection

Performance

We compare the graphs based on following
parameters of event detection.

o Number of days to detect (for a fixed fpr)

ITND|
ITUD|

T- set of truly affected nodes, D- detected set of nodes returned by
algorithm using a graph

Also given a graph structure, we might be

interested in searching only among “local
neighborhoods” of size k.

o Overlap measure

Performance — Adjacency Graph

Comparison of Avg Number of days to

o
]
Il

wbe=GrCorr Learned

o
=
L

Detect
g 10
295 -
-]
- g -
2 =4=True graph
E. B.S -
3 =f-Corr Learned
E 75 . ==GrCorr Learned
-E 7 | | | | Random Graph
E o 10 20 30 40 50
< Meighborhood size
Comparison of Overlap coefficient

06 -
=
Q05 7
=
= 04
“g =#=True graph

03 -
; —i—Corr Learned
[0
=
o
=
@]

=+=Random Graph

=]

0 10 20 30 40 50
Neighborhood Size

‘ Pertformance — Adjacency + Random

edges

Comparison of Avg Number of days to
& Detect
[
T 85
2
% 75
o
5 65 - =4—=True graph
_E —4—GrCorr Learned
E 5.5 4
2 == pAdjacency
wy 4.5 T T T T 1
g o 10 20 30 40 50
Neighborhood size
Comparison of Overlap coefficient
0.9 -
E o0s -
[T
IG 0_? -
= 05 -
I _
9 E’i | =4#=True graph
t_% 03 - =#=GrCorr Learned
g 027 == Adjacency
O 01 1
o T T T T 1
0 10 20 30 40 50
Neighborhood Size

‘ Pertformance — Adjacency + Random

edges

Comparison of Avg Number of days to

s Detect

L]

T 85 -

o

@

g7 =4=True graph

-

B 65 - =~ Corr Learned
k- 55 ——GrCotr Learned
E 55 -

g ===Random Graph
uh 45 T T T T 1 .

E, 0 10 20 30 40 5p —F—Adjacency

Neighborhood size

Comparison of Overlap coefficient

09 -
Eos -
QU
IE u_? -
06 =#=True graph
U o
9 oa | ~-Corr Learned
a0
003 - =e=GrCorr Learned
=
o 027 =w=Random Graph
O 01 -

0 T T T T 1 +Adiacency
[} 10 20 30 40 50

Neighborhood Size

Performance — Spatial Spread

Comparison of Avg Number of days to

8 Detect
g 7 -
7]
T 55 |
o
)
w5 -
“..?5_5 i —#—Adjacency
o o =@=Corr Learned
a
'E a5 - —#—GrCorr Learned
3
n:n 4 =—==Random Graphs
I& 3.5 T T 1
8] 40 60

20
Neighborhood size

Comparison of Overlap coefficient

0.3 -
Et 045 -
2
2 04 -
b
g 0.35 - =4—~Adjacency
; 0.3 - == Corr Learned
(1]
E 0.25 - =te=GrCorr Learned
>
o 924 —==Random Graph
0.15 T T T T |
(] 10 20 30 40 50

Neighborhood Size

‘ Pertformance — Erdos-Renyi random graph

Comparison of Avg Number of days to

. Detect
-]
I
=
9 85 -
“ -
'E "2 =4=True graph
w- 0.5
c e ~8-Corr Learned
555 -
-E 45 - =s=GrCorr Learned
=
u:n 35 . . : : : Ancther Random
3_ 0 10 20 30 40 50
Neighborhood size

Comparison of Overlap coefficient

05 -
045 -
04 -
035 -
03 7 =4—True graph
025 -
02 - =-Corr Learned
0.15 -
01 -
005 - ===PAnother Random
u T T T T 1

wbe=(GrCorr Learned

Overlap coefficient

MNeighborhood Size

‘ Pertormance — Preferential attachment graph

Comparison of Avg Number of days to
Detect

85 7
75 4

B.5 A
& - =#=True graph

55 - == GrCorr Learned

45 T T T T 1
4] 10 20 30 40 50

Neighborhood size

Avg number of daysto detect

Comparison of Overlap coefficient

05 -
0.45 +
0.4 -
0.35 +
0.3
025 -
03 - =4=True graph
0.15 4
0.1 A
0.05 -
o) T T T T 1

] 10 20 30 40 50

Neighborhood Size

== GrCorr Learned

Overlap coefficient

Performance — Continuum of Preferential
attachment

Overlap Vs Preferential attachment

o
Lia
o=

S
5]
fed

o
i

=—4=True graph
== Corr Learned
== GrCorr Learned

L~
Pl
m

Average Overlap
]
&

o
e
B

S
[eud
fed

L 0.2 0.4 0.6 0.8 1
Factor of preferential attachment

‘ Robustness — Effect of number of
training examples on pertormance

Number of days to detect vs Number of training
examples
£
a
'E 74 A
Q
: 59 -
4
= 6.4 =4=True graph
_E 59 =#—=GrCorr Learned
5
= 54
o 50 100 150 200
Mumber of training examples
Overlap coefficient vs Number of training
examples

£ 035
]
‘G 0.33 -
£ oa1 -
g°
o 029 7 —4=True graph
& 027
- == GrCorr Learned
@ 025 -
=
O 023 T

o] 50 100 150 200

Number of training examples

The results are for preferential attachment graphs

‘ Robustness — Etfect of percentage of
injects 1n training data on performance

Number of days to detect vs Percentage of
injectsin training data

J.*\\
" - "
e hd -

=l

Number of Daysto detect
w [a1]
w w [=1] w =l w ca

=}

20 40 60 80 100
Percentage of injects

Overlap coefficient vs Percentage of Injects In
training data
.36

@ 034

D p3z A

L

o 03 A

9 028 |

2 026 . N . . ., =#=Truegraph

<> <= <> =
E 024 =de=GrCorr Learned
> 022
Q A

: : .

02

T 1
o) 20 40 60 80 100

Percentage of injects

The results are for preferential attachment graphs

Conclusions

We proposed a novel framework to learn graph
structure from unlabeled data.

Our method Is based on comparing the most
anomalous subsets with and without graph
constraints.

We showed from our experiments that we can
accurately learn the graph structure and the
learned graph structure has better performance
for event detection.

We showed that our learning algorithm is robust
to noise In the training data.

Next steps

In order to scale up our learning algorithms, we would
like to experiment using fast and heuristic scoring
functions for graphs like Upper Level Sets (ULS).

Compare the performance of our methods with existing
methods which require labelled data (NetIinf, ConNle).

Theoretically or empirically bound the error due to
greedy approach we have followed in our edge selection.

Experiment with other datasets.

Reterences

D. B. Neill. Fast subset scan for spatial pattern detection. Journal of
the Royal Statistical Society (Series B: Statistical Methodology), 2011,
to appear.

S. Speakman, E. McFowland Il and D.B. Neill (2010) Scalable
Detection of Anomalous Patterns with Connectivity Constraints. To
Appear

L. Shiand V. P. Janeja (2009) Anomalous window discovery through
scan statistics for linear intersecting paths (sslip). Proc. of the 15t
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining

J. Leskovec, L. Backstrom, and J. Kleinberg (2009) Meme-tracking
and the dynamics of the news cycle. Proc. of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining

M. Gomez-Rodriguez, J. Leskovec, and A. Krause (2010) Inferring net-
works of diusion and inuence. KDD 10

S. A. Myers and J. Leskovec (2010) On the Convexity of Latent Social Network
Inference. NIPS.

Thank Q?

