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Introduction

Often times it is hard to directly observe the networkOften times it is hard to directly observe the network 
over which an outbreak is spreading

Spread of disease outbreak due to person-to-person contact
Information spread on an implicit social media networkInformation spread on an implicit social media network

However, we can observe the individual nodes 
getting effected, exampleg g , p

Increased counts of ED visits in a zip code
Information appearing in blogs for social media networks

Applicable domains
Information diffusion
Disease surveillanceDisease surveillance



Problem Statement

Given time series of data
0, 0, 1, 1, 2, …,

Given time series of data 
about each node can we infer 
the underlying graph network.

Pittsburgh

0 0 1 2 3

New York Boston

0, 0, 1, 2, 3 …,

0, 1, 3, 3, 4 …,

Charlotte

0, 1, 3, 3, 4 …,

0, 0, 1, 1, 2, …,



Problem Statement

Given time series of data 
0, 1, 3, 3, 4, …,

about each node can we 
infer the underlying graph 
network.

Pittsburgh

0 0 0 1 1

Data is unlabeled: We only 
b t t h

New York Boston

0, 0, 0, 1, 1, …,

0, 0, 1, 1, 2 …, observe, counts at each 
node and we want to learn 
the graph. Charlotte

0, 0, 1, 1, 2 …,

Primary goal is to learn a 
graph that will improve the 
detection power

0, 0, 1, 2, 2, …,

detection power. 



Why is it important?

In case of disease surveillance it helpsIn case of disease surveillance, it helps 
authorities

Identify the network on which disease is spreadingIdentify the network on which disease is spreading
Restrict further spreading 

Find the anomalous subset given the network that 
is learnt, by running GraphScan

Assuming an incorrect graph can result in less timely 
and less accurate detectionand less accurate detection



Event Detection with Known Graph 
Structure

If the graph is known, event detectionIf the graph is known, event detection 
problem is to detect connected subgraphs
where recently observed counts are 
i ifi l hi h h dsignificantly higher than expected. 

This is achieved by maximizing the log-
lik lih d ti t ti ti F(S) lllikelihood ratio statistic F(S) over all 
connected subgraphs S. 
Here we assume “Expectation basedHere we assume Expectation-based 
Poisson” statistic, where counts are Poisson-
distributed. 



Event Detection with Known Graph 
Structure – Algorithms 

There are multiple algorithms for event detection p g
on a known graph

FlexScan – exhaustive search
Upper level sets – heuristic based searchUpper level sets heuristic based search
GraphScan – reduces the search space using Linear 
Time Subset Scan (LTSS) property

If a scoring function F(S) satisfies LTSS thenIf a scoring function F(S) satisfies LTSS, then 
unconstrained optimization over all subsets, can 
be efficiently computed in linear time.
In order to score a graph structure we use 
GraphScan, as it finds optimal score for the 
graph. g p



Event Detection with Known Graph 
Structure – Algorithms 

FlexScan, There are multiple algorithms earchesp g
exhaustively over all connected subgraphs with 
in a fixed neighborhood size ‘n’ of each graph 
node. 
Upper level sets, is a heuristic based search 
which provides scalability, however, may fail to 
find the optimal subgraphfind the optimal subgraph. 
GraphScan also searches over all connected 
subgraphs, however prunes many subgraphs
b d Li Ti S b Sbased on Linear Time Subset Scan property to 
find optimal subgraph and corresponding 
optimal score. p



Event Detection with Known Graph 
Structure – GraphScan

If a scoring function F(S) satisfies LTSS thenIf a scoring function F(S) satisfies LTSS, then 
unconstrained optimization over all subsets, 
can be efficiently computed in linear time. y p
GraphScan, builds on LTSS to speed up the 
search ruling out large number of subgraphssearch ruling out large number of subgraphs
which have provably suboptimal scores. 
GraphScan substantially improved theGraphScan, substantially improved the 
timeliness and accuracy of event detection as 
compared to Upper Level Sets. p pp



Related Research

There were two algorithms proposed to learn g p p
latent graphs in the context of social networks
NetInf1, forms an optimization problem to find 
the best graph and shows it to be NP-hard Itthe best graph, and shows it to be NP-hard. It 
further gives an approximation algorithm 
ConNIe2, takes a maximum likelihood approach 
b d i d f thbased on convex programming and further uses 
L1 penalty to favor sparse graphs
However, both of the algorithms assume labeled o e e , bot o t e a go t s assu e abe ed
data, where affected subset of nodes at each 
time step is given 



Learning Graph Structure for 
Detection – Data 



Learning Graph Structure for Detection –
Evaluating Graphs 

.

.

.

In order to score each graph we chose GraphScan algorithm, as it finds the 
optimal score for a given graphoptimal score for a given graph.  



Algorithm – Fast Graph Structure 
Learning

W h t b f l i th d f d lWe have to be careful in the order of our edge removal



Algorithm – Edge Selection Methods



Algorithm – Finding Most Significant 
Graph



Algorithm – Computational Complexity 
Analysis



Experimental Setup - Dataset

Emergency Department DataEmergency Department Data
Visits with respiratory symptoms for each of 97 
Alleghany zip codes. g y p
We have data for each day from January 1, 2004 
to December 31, 2005. 
The resulting data set had a daily mean of 44.0 
cases, and a standard deviation of 12.1 cases. 

We simulate disease outbreak into this real-
world Emergency Department data. 



Experimental Setup – Outbreak 
Simulations



Experimental Setup – Outbreak 
Simulations



Experimental Setup – Outbreak 
Simulations
We simulate outbreaks spreading over theWe simulate outbreaks spreading over the 
following kinds of graphs

Adjacency graph + Random EdgesAdjacency graph  Random Edges
Random edges can simulate travel patterns. 

Preferential Attachment graph



Experimental Results –
True vs. Learned graph

Recall is high which shows that we could retrieve aRecall is high which shows that we could retrieve a 
lot of edges from the original graph. 
Precision is not too low which shows that we have 
do not have too many irrelevant edgesdo not have too many irrelevant edges. 



Experimental Results –
True vs. Learned graph

Graph Edges
(true)

Precision Recall

Adjacency + 
Random

280 0.70 0.86

Pref. 
Attachment

374 0.93 0.81

Recall is high which shows that we could retrieve a

Attachment

Recall is high which shows that we could retrieve a 
lot of edges from the original graph. 
Precision is not too low which shows that we have 
do not have too many irrelevant edgesdo not have too many irrelevant edges. 



Experimental Results – Computation 
time



Experimental Results – Detection 
Performance



Performance – Adjacency Graph



Performance – Adjacency + Random 
edges



Performance – Adjacency + Random 
edges



Performance – Spatial Spread



Performance – Erdos-Renyi random graph



Performance – Preferential attachment graph



Performance – Continuum of Preferential 
attachment



Robustness – Effect of number of 
training examples on performance

The results are for preferential attachment graphs



Robustness – Effect of percentage of 
injects in training data on performance

The results are for preferential attachment graphs



Conclusions

We proposed a novel framework to learn graph p p g p
structure from unlabeled data. 
Our method is based on comparing the most 
anomalous subsets with and without graphanomalous subsets with and without graph 
constraints. 
We showed from our experiments that we can 

t l l th h t t d thaccurately learn the graph structure and the 
learned graph structure has better performance 
for event detection. 
We showed that our learning algorithm is robust 
to noise in the training data. 



Next steps

In order to scale up our learning algorithms, we would p g g ,
like to experiment using fast and heuristic scoring 
functions for graphs like Upper Level Sets (ULS). 
C th f f th d ith i tiCompare the performance of our methods with existing 
methods which require labelled data (NetInf, ConNIe). 
Theoretically or empirically bound the error due toTheoretically or empirically bound the error due to 
greedy approach we have followed in our edge selection. 
Experiment with other datasets. 
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