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ABSTRACT

We present a model of sequential choice which explains the emer-
gence and persistence of unpopular, inefficient behavioral norms
in society. We model individuals as naive Bayesian norm followers,
rational agents whose subjective expected utility is increased by
adherence to an established norm. Agents use Bayesian reasoning
to combine their private preferences and prior beliefs with empirical
observations of others’ decisions. When agents must infer the
preferences of others from observation, this can result in negative
cascades, causing the majority of agents to choose a dispreferred
action (because they believe, incorrectly, that they are following
the majority preference). We demonstrate that negative cascades
can result even when the degree of conformity is relatively low,
and under a wide range of conditions (including heterogeneity in
preferences, priors, and impact of public opinion). This allows us
to present a general model of how rational norm-following behavior
can occur, and how unpopular norms might emerge, in real popula-
tions with heterogeneous preferences and beliefs.
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1. Introduction

It is well known that the opinions of others play a huge role in many
of the everyday decisions we make. The clothes we wear, the cars we
drive, and the food we eat are all influenced to varying extents by
public opinion; even our major life decisions such as which schools
to attend, or what career to pursue, are strongly dependent on the
choices of others. The role of ‘peer pressure’ in influencing the beha-
vior of schoolchildren is well established: children may be motivated
either to take drugs, or to ‘just say no,” depending on the influence of
their peers. Nor are adults immune to this pressure: our support of a
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political candidate, or our stance on a public issue, may be influ-
enced by opinion polls or by the views of our neighbors. The ‘band-
wagon’ effect (Leibenstein 1950) is well known in the marketing
literature: consumers are much more likely to buy a product if
they are convinced of its popularity. This is why, for example,
McDonald’s advertises ‘billions and billions’ of hamburgers sold,
and why companies such as Nike and Reebok spend millions of
dollars annually on celebrity endorsements.

The phenomenon of ‘herd behavior’ occurs when people follow
the actions of others, even when their private information or prefer-
ences suggest an alternative course of action. Beginning with the
seminal work of Banerjee (1992), Bikhchandani et al. (1992), and
others, various models have been proposed to explain how herding
can result from individual rational decisions. These models have
been applied to a variety of political, social, and economic situa-
tions, including product choices, investment, voting, fertility choices,
political movements, fashions, fads, and cultural change. In particu-
lar, in sequential choice situations where individuals are influenced
by the actions of prior decision-makers, various positive feedback
mechanisms can trigger cascade effects where it is optimal for each
new decision-maker to follow the behavior of the preceding indi-
viduals, regardless of his own private information or preferences.!

A number of positive feedback mechanisms have been identified
and discussed in the literature; in many cases, multiple mechanisms
may contribute to a cascade effect. In the work of Katz and Shapiro
(1986) on technology choice, positive feedback results from network
externalities: widespread adoption of a single technology reduces the
costs due to lack of compatibility between different technologies.
This can lead to lock-in of an early-established technology,
making it difficult for later alternatives to gain market share even
if the alternatives are technologically superior; one example of this
is the QWERTY keyboard design (Dawid 1985). Brian Arthur’s
(1989) work on increasing returns and lock-in in technology choice
discusses these effects as well as price and performance externalities.
Increased investment in a given technology generally leads to
advances in that technology, resulting in lower prices and improved
performance; also, increased production decreases unit cost due to
economies of scale, and these mechanisms encourage further invest-
ment in the technology at the expense of alternative technologies.
Arthur’s examples of lock-in due to price and performance extern-
alities include the adoption of the gasoline-powered automobile
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(rather than steam-powered alternatives) in the 1890s; another
example would be the triumph of the microcomputer against mini-
computer and mainframe alternatives. More generally, coordination
externalities can result in many decision situations where an indi-
vidual’s payoff is affected by the actions of the others with whom
he interacts; these include ‘collective action’ such as political demon-
strations (Lohmann 1994) as well as social dilemmas such as the
Prisoner’s Dilemma.

Perhaps the most well known of these positive feedback mech-
anisms is found on the literature on ‘informational cascades’
(Bikhchandani et al. 1992; Banerjee 1992). The informational
cascade model describes situations where individuals must choose
between several alternatives, one of which is ‘objectively correct’
(and thus, would be preferred by all individuals if they had complete
information). However, each individual only has partial information
(a noisy signal which may be positively correlated with the correct
choice), and thus each must choose based on his private signal
and his observation of the choices of others. In sequential choice
situations, informational cascades arise when it is optimal for an
individual (having observed the actions of prior decision-makers)
to follow the behavior of the preceding individuals without regard
to his own information. As a result, the decisions of individuals
in a cascade convey no new information, and thus each new
decision-maker (presented with an identical decision situation)
also chooses to ignore his own information and follow the herd.
Thus one of the most important results in the herding literature is
a demonstration of the power of informational cascades in inducing
conformity: in models such as Bikhchandani et al. and Banerjee,
informational cascades will always arise, and unless the cascade is
broken by external shocks (such as the release of public infor-
mation), it will continue to induce conforming behavior indefinitely.

1.1 Informational vs. Reputational Cascades

Informational cascades have been used to explain a wide variety of
phenomena, including investment in financial markets (e.g. Welch
1992; Lee 1998), fashions, fads, and cultural change. For some of
these phenomena, the informational cascade model is clearly appro-
priate: for example, the laboratory experiments of Anderson and
Holt (1997), where each individual in turn must guess (based on
partial information) from which urn a ball has been drawn. Similarly,
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in the investment literature, the question is what action a firm should
take to maximize its profit: thus one of the choices is objectively
correct, and players must use the information provided by other
players’ choices to maximize their probability of making the correct
choice. However, in other examples of herding behavior (such as
product choice), the ‘correct’ choice is subjective, and may differ
from person to person. In our canonical example (a choice between
two brands of soft drink), each person’s optimal choice depends
both on his own private preference as well as his desire to choose
the more popular brand.

Thus it is clear that, in these subjective choice situations, it is not
informational cascades but other positive feedback mechanisms
which cause cascade effects.> Many of these feedback mechanisms
can be grouped under the heading of reputational effects: effects
resulting from the approval or disapproval of others. As discussed
in depth by Kuran (1995), reputational concerns can have huge
effects on decision-making, and can often cause individuals to
make decisions contrary to their private preferences, a phenomenon
known as preference falsification. For example, Scharfstein and Stein
(1990) show that reputational effects can cause investment managers
to follow the herd, even when they believe that they could have made
greater expected profit by acting differently. Some reputational
effects may be direct: societies or individuals may punish deviations
from an established norm, with the severity of sanctions ranging
from mild disapproval (negative expressions or words) to severe
punishment (including torture or death). Similarly, adherence to a
norm may lead to approval or even substantial rewards. In many
cases, norms and customs have been sufficiently internalized that
deviating from the norm may cause severe emotional stress even in
the absence of external sanctions. Even in cases where there is no
clearly established societal norm, and neither rewards nor punish-
ments are likely to be substantial (such as our soft drink example),
individuals still tend to follow the perceived majority preference.
One reason for this is the strong psychological connection between
reputation and perceived self-worth: individuals often have a
strong fear of social criticism or rejection, and even mild disapproval
by a peer group may cause severe damage to self-esteem.

As Kuran (1995) notes, however, it is often impossible to please
everyone. Preferences that are acceptable to one individual or
group may be unacceptable to another, and thus decision-makers
must balance the reputational effects resulting from approval/
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disapproval from many different sources. Thus Kuran defines repu-
tational utility as the net payoff generated by the sum of positive and
negative sanctions for holding that preference. As a result, reputa-
tional effects may be dependent not only on the majority preference
but on the size of that majority: an individual may choose to act in
opposition to a slight majority, while choosing to follow the norm set
by a larger majority. In cases where groups have differing amounts
of power and prestige, this discrepancy must also be taken into
account; a dominant social group may have a significant impact
on societal norms even if representing only a small share of the
population.

1.2 Strong vs. Weak Cascades

In the literature, cascade effects are typically labeled by the primary
mechanism of positive feedback: thus we have ‘informational cas-
cades’ resulting from informational effects, ‘reputational cascades’
resulting from reputational effects, and similarly ‘networking,’
‘price,” or ‘availability’ cascades. For our formal model of cascade
effects, however, our main interest is not the positive feedback
mechanism but the effect it creates: how agents combine their pri-
vate preference with their perception of the distribution of prefer-
ences in society, in order to make a decision. We distinguish
between two types of cascades, which we denote by strong and
weak cascades respectively. A strong cascade occurs when an agent’s
private preference is weighted proportional to the preference of
other individuals, and a weak cascade occurs when an agent’s pri-
vate preference is weighted proportional to the preference of society
as a whole. The two types of cascade tend to exhibit very different
long-run behavior: in strong cascades, once a large number of
other individuals’ decisions have been observed, an agent’s private
preference is almost certain to be ‘drowned out’ by the information
conveyed by previous decisions. Thus total cascades typically occur:
there exists some point after which every individual will follow the
herd, and thus (in the limit of an infinite population) the proportion
of herd-followers tends to 1. In weak cascades, on the other hand,
the number of prior decision-makers does not matter, but only the
perceived distribution of preferences in the population. Thus indi-
viduals make different choices depending on the strength of their
private preferences, as compared to the size of the majority. As
noted above, some individuals may choose to follow a norm if they
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believe that it is followed by nearly everyone in a society, but may
diverge from the norm if a significant minority chooses to do so as
well. As a result, partial cascades typically occur: the long-run pro-
portion of individuals following the norm will converge to some
value p < 1 as the population size grows large. In other words, in
a weak cascade, every individual whose reliance on public opinion
is sufficiently high will follow the herd, but other individuals may
choose to diverge from the herd; the long-run result of the cascade
depends on the distribution of weights of public opinion in the popu-
lation. It is clear from this description that strong cascades tend to be
easier to analyze than weak cascades, and the majority of the litera-
ture has focused on strong cascades. Our model focuses on the weak
cascade case, but can also be easily applied to strong cascades; as a
result, many of the strong cascade models (including Arthur 1989;
Bikhchandani et al. 1992; and Bicchieri and Fukui 1999) can be
represented as special cases of our model. This is discussed in
more detail in Section 4.4.

The clearest example of a strong cascade is the typical informa-
tional cascade setting of Banerjee (1992) and Bikhchandani et al.
(1992). In this setting, any individual will follow the herd once the
total information conveyed by previous individuals’ choices out-
weighs his own private information, and thus total cascades occur.
If every individual has identical precision of information, an indi-
vidual’s private information would be weighted proportional to
the information of a single observed decision; if individuals have
greater confidence in their own information than that of others,
private information may be given a higher weight. A second example
of strong cascades is the reputational cascade setting of Bicchieri
and Fukui (1999). In this case, all individuals are highly sensitive
to public opinion: individuals are assumed to follow the perceived
majority preference (if one exists) regardless of the size of the
majority. Thus an individual’s private preference is counted as one
‘vote’ in determining the majority preference; this model can be
easily extended to allow individuals to place extra weight on their
private preferences. In this case, the reputational cascade setting
becomes formally identical to an informational cascade model,
with weight of private preference corresponding to precision of
private information: in fact, we can view this as an informational
cascade where the goal is to infer, and follow, the majority prefer-
ence. A third and final example of strong cascades can be found
in Arthur’s (1989) work on price and performance externalities, as
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discussed above. Economies of scale, and improvements due to tech-
nological advance, are typically influenced by the total production of
a technology rather than its relative proportion in the population.
Thus, if the technology is made sufficiently reliable and inexpensive,
almost everyone will prefer this technology over alternatives, and
total cascades will occur. This is clear from Arthur’s model, where
after lock-in of a product occurs, it is in everyone’s best interest to
choose the locked-in technology.

The clearest example of a weak cascade is the case of a reputa-
tional cascade with no clear societal norm, and no strong or explicit
sanctions, as in our canonical example of soft drink choice. In this
case, each individual or group may have a different preference,
and a decision-maker must consider the distribution of preferences
across the population. In such cases, a slight majority may not be
sufficient to cause an individual to choose contrary to his private
preference, but a large majority may sway the individual to follow
the herd. More generally, weak cascades may arise from a variety
of coordination effects, where utility is increased by actions or pre-
ferences that ‘agree’ with those of others, and decreased by actions
or preferences that ‘disagree’ with those of others. Then total utility
from coordination effects is computed as a sum of the utilities for
agreement and disagreement with another individuals, weighted by
the probabilities of agreement/disagreement. This is similar to, but
more general than, the reputational utility of Kuran (1995): coordi-
nation effects can result in utility due to gain or loss of reputation,
but can also affect utility in a variety of other ways. One example
is the networking cascades of Katz and Shapiro (1986). In this
case, the payoffs do not result from reputation, but from compat-
ibility; choosing identical technologies allows easier communica-
tion and interaction between the possessors of these technologies,
while choosing different and incompatible technologies may make
mutually beneficial interactions difficult or impossible to achieve.

1.3 Inefficiency of Cascade Effects

Another important result of the literature on cascade effects, and a
major focus of this paper, is that cascades (though caused by indi-
vidually rational behavior) may lead to inefficient outcomes.
Banerjee (1992) presents a model of informational cascades with a
continuum of possible choices and a single correct choice; he proves
that, for any size of the population, the probability that no one in
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the population chooses the correct option is bounded away from
zero. Bikhchandani et al. (1992) and Welch (1992) consider binary
choices, and show that informational cascades can cause behavior
to converge to the wrong choice. Bikhchandani et al. comment
that ‘even for very informative signals . . . the probability of the
wrong cascade is remarkably high.” The reason for this inefficiency
is that cascades prevent aggregation of information: once a cascade
begins, individuals’ actions convey no information about their pri-
vate signals or preferences, and thus do not improve the quality of
later decisions. Thus, if early decisions convey incorrect or mislead-
ing information, the cascade effects prevent (or at least, make more
difficult) the dissemination of new and correct information, amplify-
ing the impact of the incorrect information on future decisions.
Similarly, in the work of Katz and Shapiro (1986) and Arthur
(1989) on technology choice, random events (amplified by positive
feedback mechanisms such as network and price externalities) can
cause an inferior technology to be ‘locked-in,” preventing the dis-
semination of superior alternatives. As Arthur notes, we should be
very cautious of any explanation that seeks to explain adoption of
a technology in terms of the winner’s ‘innate superiority,” since it
is often the inferior technology which is adopted.

Bicchieri and Fukui (1999) have used cascade effects to explain the
emergence and persistence of unpopular and inefficient norms in
society. Examples of such norms include widespread corruption
and bribery of public officials (Bicchieri and Rovelli 1995), violent
behavior by members of juvenile gangs, and norms of discrimination
against minorities (Bicchieri and Fukui 1999); in each case, the
norms persist despite being dispreferred by the majority of society,
and even by the groups actively involved in maintaining the norm.
Several factors could contribute to the persistence of unpopular
norms: individuals may choose irrationally, or in social dilemmas
such as the Prisoner’s Dilemma, individually rational choices may
result in poor collective outcomes. However, Bicchieri and Fukui
have shown that unpopular norms can result in a population of
rational agents, even in interactions where there is no conflict
between the individual and collective good. This can occur whenever
individual choices are influenced by the preferences of others, but
the exact distribution of preferences is not known and must be
inferred from observation. If the behavior that an individual
observes does not reflect the true preferences of society as a whole,
he may be influenced to choose an action which is dispreferred
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both by himself and by society. As a result, others will observe his
action and adjust their choices accordingly: this can lead to a nega-
tive cascade in which the majority of people choose a dispreferred
action. For example, in our canonical example of soft drink prefer-
ence, an individual may drink Pepsi instead of Coke because he
observes others drinking Pepsi and assumes that Pepsi is universally
preferred, though in fact those others are only drinking Pepsi
because they observed others doing so, and so on. In this paper,
as in much of the prior literature on cascade effects, one major
goal is to examine the probability that negative cascades will
occur, and the magnitude of the effect of these cascades, in a variety
of sequential decision-making situations. Our ‘biased random walk’
model allows exact computation of these probabilitiecs and magni-
tudes under certain simplifying assumptions, and precise estimation
of these quantities by simulation in the more general model setting.

1.4 Our Model

Thus we present a model of cascade effects which builds on the prior
work of Bicchieri and Fukui (1999), as well as much of the earlier
work on informational and reputational cascades. As in other
models of cascade effects, we examine a micromodel of the behavior
of individual rational agents, and show that this leads to herd
behavior in the aggregate. Moreover, we show that herding is
often inefficient, in that (with finite and often high probability) the
majority of the population will choose an action which is contrary
to their private preference. As in the cascade models of Arthur
(1989), Banerjee (1992), and Bikhchandani et al. (1992), we typically
assume that the order of moves is sequential, exogenous, and ran-
domly determined. However, we also examine situations where
there is some simultaneity in decision-making; this is discussed in
Section 4.6.

Our goal is much the same as that of Bicchieri and Fukui (1999):
to examine the prevalence of inefficient and unpopular norms in
society through quantitative investigation of cascade effects in
general, and negative cascades in particular. However, we reject
some of the simplifying assumptions made by their model (and
much of the prior literature) in order to present a more general and
realistic model of cascade effects in heterogeneous populations.
First, it should be noted that our model is not limited to one particular
positive feedback mechanism (such as ‘informational cascades’ or
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‘reputational cascades’) but can be applied across all of these
models. To achieve cascade effects, only two conditions are neces-
sary: sequential choice with observation of previously made choices,
and some sort of positive feedback mechanism which encourages
individuals to follow the herd. Then the essential question is how
individuals combine their observations of previously made choices
with their private preferences and prior beliefs. We propose a two-
level hierarchical model: first, individuals use ‘naive Bayesian’
reasoning to combine their observations and priors into an estimate
of the distribution of preferences across the population. Second,
individuals combine this estimate with their private preference
using an additive utility model similar to (but distinct from) the
dual preference model of Kuran (1995). As is evident from this
method, our focus is on ‘weak cascades’ (since individuals weight
their private preference proportional to the distribution of prefer-
ences in society as a whole), but the model can also be easily adapted
to ‘strong cascades,’ as discussed in Section 4.4. Most importantly,
in the weak cascade setting, we do not require every member of the
population to follow the perceived majority preference, but allow
them to take into account the size of the majority as compared to
the strength of their private preferences. This is very different than
previous cascade models such as Banerjee (1992), Bikhchandani
et al. (1992), and Bicchieri and Fukui (1999), which assume that
every individual places very high weight on public opinion, and
thus follows the majority. In such situations, it is not surprising
that cascades occur, but the more realistic scenario (where many
individuals do not place high weight on public opinion) has not
been adequately explored. In this scenario, our model demonstrates
that (in the limit of a large population) ‘partial cascades’ will always
occur. Moreover, in many cases these cascades will be inefficient:
negative cascades can occur even in a population where the majority
of individuals put low weight on popular opinion. However, the
impact of a cascade may differ depending on individuals’ weights
of public opinion: in some cases, cascades may have small or negli-
gible effects, while in other cases they may exert a huge influence on
decisions.

This brings us to the most interesting aspect of our model of
cascade effects: the possibility of a heterogeneous population. In
addition to having different private preferences, individuals may
have different prior beliefs about the distribution of preferences
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in the population, and may be influenced to differing extents by their
private preferences, prior beliefs, and observations of other people’s
behavior. As a result, each individual may have a different ‘thresh-
old’ for following the herd, where the threshold may be based
both on the number of prior decision makers and the observed pro-
portions of each choice. This concept of threshold is similar to that
of Granovetter and Soong (Granovetter 1978; Granovetter and
Soong 1983, 1986, 1988). Our model differs from Granovetter’s,
however, in both the micromodel (how the thresholds are computed)
and the macromodel (aggregation of individual choices into cascade
effects). In particular, in our model each agent’s threshold results
from combining private preferences, priors, and observations in a
certain way (given by our micromodel of ‘naive Bayesian norm
followers’) while Granovetter and Soong simply assume a distribu-
tion of thresholds across the population and examine the resulting
dynamics. Additionally, our macromodel of sequential decisions is
stochastic (modeled as a biased random walk), while Granovetter
and Soong use deterministic models including a simple bandwagon
effect (each individual acts once his threshold is passed) and popu-
lation modeling by differential and difference equations. Thus the
main difference of our model from the prior literature is its applic-
ability to heterogeneous populations, where individuals differ not
only in their preferences and prior beliefs, but also in the relative
weights they give to their private preferences, priors, and observa-
tions. An individual in our model is characterized by four continu-
ous parameters: his norm-independent utility, weight of popular
opinion, weight of observation, and prior; many of the previous
models are special cases of this, where all individuals have high
weights of public opinion, high weights of observation, and equal
priors.

Thus we present a sequential choice model of decision-making,
and show that cascade effects emerge from individual rational
decisions. We model individual decision-makers as ‘naive Bayesian
norm followers,” rational but myopic agents who use Bayesian
reasoning to combine their private preferences and prior beliefs
with their empirical observations of other agents’ decisions. A naive
Bayesian norm follower calculates the expected utility of an action
as a weighted sum of its ‘norm-independent utility’ (NIU) and its
‘norm-following utility’ (NFU). The NIU of an action is indepen-
dent of the choices of other agents, while the NFU of an action is
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proportional to the agent’s Bayesian estimate of the probability that
the action will agree with that of another randomly selected agent. In
cases where disagreement between agents has potential negative con-
sequences, it may be in an individual’s best interest to choose actions
which he believes are favored by the majority, even if the actions are
dispreferred with respect to his private preferences. But in cases
where a) there is no significant majority, b) there has not been
enough observed behavior to determine a majority, or c) the influ-
ence of public opinion is low, the individual may choose his
preferred action even if this may cause disagreement with others.

In the following sections, we present our model of cascade effects.
Section 2 presents the micromodel, examining how individual naive
Bayesian norm followers make preference decisions. Section 3
examines the aggregate behavior of a population of naive Bayesian
norm followers, using a ‘biased random walk’ model to calculate the
probability and magnitude of (positive and negative) cascades.
Section 4 generalizes the model to preference-dependent parameters,
unequal priors, and varying weights of observation and public
opinion. Section 5 discusses the underlying assumptions of myopic
‘naive Bayesian’ rationality in the micromodel, and Section 6 con-
cludes the paper.

2. A Model of Naive Bayesian Norm Followers

Our micromodel of individual rational decision-making attempts to
answer the question of how an individual combines three distinct
influences: his private preference (i.e. which action he would prefer
if the preferences of other members of the population were irrele-
vant), his prior beliefs (i.e. his prior expectation of the distribution
of preferences in the population), and his observations of others’
choices. We propose a two-level hierarchical model. At the top
level, individuals are ‘norm followers’: rational decision-makers
who maximize subjective expected utility, where the utility of an
action is assumed to be increased both a) if it reflects the agent’s
private preference, and b) if it adheres to an established norm (or
majority preference). At the lower level, individuals use ‘naive
Bayesian’ reasoning to combine their observations and priors into
an estimate of the distribution of preferences across the population.
Combining these two levels appropriately, we obtain our model of
‘naive Bayesian norm followers.’



NEILL: CASCADE EFFECTS 203

At the top level of our model, the total utility of an action is the
sum of two components: a norm-independent utility (NIU) and a
norm-following utility (NFU). The norm-independent utility is a
measure of the agent’s private preference for an action: it can be
thought of as a reward or punishment which the agent receives
regardless of the actions of other members of the population. For
example, if an agent prefers Pepsi to Coke (in the absence of infor-
mation about others’ preferences), this is equivalent to saying that
NIU(Pepsi) is higher than NIU(Coke) for that agent. The norm-
following utility of an action is independent of the agent’s private
preference: instead, it is a measure of the agent’s desire to choose
actions which are preferred by the majority of others (i.e. to follow
a norm if one is established). For example, NFU(Pepsi) would be
higher than NFU(Coke) for an agent if the agent believes that the
majority of people prefer Pepsi, and if this belief makes the agent
more likely to choose Pepsi. This is similar to the dual preference
model of Kuran (1995), where an individual’s public preference is
computed by choosing the option which maximizes the sum of
‘intrinsic,” ‘reputational,” and ‘expressive’ utilities. Kuran’s model
is specifically geared toward the case of a public vote without
secret balloting: the ‘intrinsic utility’ of an action reflects its impact
on the decision of society as a whole, the ‘reputational utility’ of
an action represents the influence of others through reputational
effects, and the ‘expressive utility’ of an action reflects an indi-
vidual’s desire to express his private preference (avoiding preference
falsification). Our model is geared more toward individual, subjec-
tive preference decisions, rather than votes for the preference of
society as a whole. For example, an individual does not drink
Coke because we wants to transform the world into a Coke-drinking
society; he drinks Coke because he enjoys it. Thus our norm-
independent utility is somewhat similar to Kuran’s expressive utility:
an individual maximizes norm-independent utility by choosing the
action corresponding to his private preference (though simply
because he prefers this option, not because he feels the general need
to express autonomy). Similarly, our norm-following utility includes
not only reputational effects, but all the effects of other individuals’
choices, including informational and coordination effects. The
important issues in our model are that the individual desires both
to follow his private preference and to follow the norm: thus we
distinguish between these ‘norm-independent’ and ‘norm-following’
components of total utility.
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Why might a rational agent prefer to follow a norm? In the pre-
vious section, we discussed a variety of positive feedback mechanisms
(including information, reputation, and networking/coordination)
which influence individuals to follow the observed behavior of the
herd. For another useful perspective on norm-following, we turn
to Bicchieri (2003), who presents a detailed discussion of the differ-
ent types of behavioral norms and why a rational agent might choose
to follow each. She distinguishes between ‘descriptive norms,” which
are the equilibria of coordination games, and ‘social norms,” which
transform social dilemmas (e.g. the Prisoner’s Dilemma) into co-
ordination games. In brief, an individual would wish to follow a
descriptive norm because his utility is maximized by coordinating
with others: for example, he would prefer to drive on the right
side of the road if he believed that others did the same. For a beha-
vioral rule R to be a descriptive norm, a rational agent will prefer R
conditional on his belief that others prefer R. For social norms, on
the other hand, an agent’s preference for R is conditional not only
on his belief that others prefer R, but also on his belief that others
expect him to prefer R. Thus an agent might wish to follow a social
norm for a number of reasons: he might seek approval (or reward,
or agreement) for following the norm, he might seek to avoid dis-
approval (or sanctioning, or disagreement) for failure to follow
the norm, or he might internalize the norm (and as a result, his
private preferences would shift toward the norm). These reasons
for norm-following fit in well with our discussion of positive feed-
back mechanisms above, including both coordination and reputa-
tional effects.

For the purposes of our model, we define a norm as a perceived
regularity in behavior that, in turn, influences behavior via some
positive feedback mechanism. Norms need not be universally
followed to have an influence on behavior: rather, we assume that
agents seek to maximize the probability of agreement with others.
This desire is rational since we are assuming that some positive feed-
back mechanism (whether information, reputation, or coordination)
is at work, and thus an agent’s utility is increased by agreement with
the perceived majority preference. The norm-following utility of an
action « is defined to be a weighted average of the utilities for agree-
ing and disagreeing with other agents, where each utility is weighted
by its probability of occurrence. Let us assume a binary decision
between two actions, 4 and B. Then an agent’s norm-following
utility for choosing action 4 is NFU(A) = uP(A4) +u_P(B),
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where u, and u_ are the utilities for agreement and disagree-
ment respectively (u, > u_), and P(4) and P(B) are the agent’s
estimates of the probabilities that another agent will choose 4 or
B respectively. From this, we can calculate his total subjective
expected utility for choosing A: U(A4) = NIU(A) + NFU(A) =
uy + uy P(A) +u_P(B). Similarly, the agent’s total utility for choos-
ing B is: U(B)=NIU(B)+ NFU(B) = ug +uP(B)+ u_P(A).
Then a rational agent will choose 4 whenever U(A4) > U(B), that is,
whenever U(A) — U(B) = (uy — up) + (P(A) — P(B))(uy —u_) > 0.

Now we must consider the second level of our hierarchical model,
which explains how the agent estimates the probabilities P(4) and
P(B). A ‘naive Bayesian norm follower’ will estimate these prob-
abilities by using Bayes’ rule to combine his observations with his
prior estimates of these probabilities. To do so, he assumes that
choices are binomially distributed, and thus infers the maximum
a-posteriori estimate of P(A) using a beta-binomial model. Assuming
that the agent has observed N actions, N4 of which were action 4,
and Np of which were action B, and assuming that the agent has a
Beta(a, B) prior,’ he estimates:

P(A4) = arg max Pr(|N 4, Np) = arg max Pr(N 4, Ng|0)Pr(6)

_ _ Nyg+(a—1)
—argmax V(1 —O)Nege—1(1 g1 = AT )
arg de ( ) ( ) N+ ( B—2)

A more useful parametrization of this expression is in terms of
Py(A), the agent’s prior estimate of P(A), and k, the agent’s weight
of observation. Setting Py(A) = (¢ — 1)/(a + B—2)and k = (1) /(e +
B — 2), we obtain P(4) = (Py(A4) + kN,4)/(1 + kN).* Thus, under the
beta-binomial model, the Bayesian posterior estimate of P(A4)
simplifies to a weighted sum of the prior estimate Py(4) and the
empirical (observed) proportion N4/N. Similarly, we can compute
P(B) = (Po(B) + kNp)/(1 + kN). Note that P(4)+ P(B)=1, so
the Bayesian posterior estimates are consistent. The weight of obser-
vation k is a positive constant which is assumed to be fixed for a
given agent, but can vary from agent to agent: agents with a high
weight of observation are more influenced by their empirical obser-
vations (i.e. the proportion of observed actions in which A is chosen),
while agents with a low weight of observation are more influenced by
their prior estimate of the probability of 4.
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Now we can combine the two levels of our hierarchical model.
Using the agent’s Bayesian estimates for P(A) and P(B), in the
expression derived for U(A) — U(B), we obtain:

Py(4) — Po(B) + k(N4 _NB)(M )
I +kN T

Now we let Au=uy —ug, AP = Py(4A) — Py(B), AN = Ny — N,
and ¢ = u, — u_. This gives us:

U(A) — U(B) = (ug — up) +

AP+ kAN
1+ kN

A rational agent will choose action 4 when U(A)— U(B) > 0,
choose action B when U(A) — U(B) < 0, and be indifferent between
A and B when U(A4) — U(B) = 0. Thus the agent’s choice is depen-
dent on six variables. Two of the variables represent the current
state: the total number of actions observed N, and the difference
between the numbers of 4 and B actions observed, AN. The other
four variables are parameters intrinsic to a given agent: his private
preference (parametrized by Au), his prior (parametrized by AP),
his weight of observation k, and his weight of public opinion g.
We assume that each agent’s utility function is normalized so that
|Au| = 1; we can do this without loss of generality since an agent’s
utility function is only unique up to a positive linear transforma-
tion (von Neumann and Morgenstern 1944), and no inter-agent
utility comparisons are made. We also note that the quantity
|(AP+kAN)/(1 +kN)| < 1. Thus, if the (normalized) weight of
public opinion ¢ >> 1, the individual relies heavily on public opinion
to make his choices, and if ¢ < 1, the individual is not influenced by
the preferences of others. For moderate values of ¢, the individual
will only be influenced by public opinion if the proportion of the
majority is sufficiently large.

Now we must ask an essential question: what makes our naive
Bayesian norm followers ‘naive’? This is not meant to be a pejorative
term, but rather a descriptive one: they follow a decision rule similar
to that of a ‘naive Bayes classifier’ in the machine learning literature
(e.g. Mitchell 1997), maximizing Bayesian a-posteriori probability
under the assumption that all observations are independent given
the model. It is important to note, however, that this assumption
of independence of observations is blatantly false: in fact, the
sequence of observations exhibits strong dependence due to cascade
effects, and the naive Bayesian norm followers do not take this into

U(A)— U(B) = Au+q
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account. We revisit this issue in detail in Section 5, considering a
variety of reasons why agents might fail to consider cascades, and
thus exhibit naiveté.’

3. Naive Bayesian Norm Followers and Cascade Effects

We now consider a large population of naive Bayesian norm
followers, each of whom must choose between the two actions A
and B. We assume without loss of generality that action A4 is pre-
ferred by the majority of the population, if a majority exists: let
x > .5 be the proportion of the population preferring 4. Each
agent must estimate x based on his observations of other agents’
actions: agents do not know the size of the majority, nor do they
know which action is preferred by the majority (i.e. they do not
know that x > .5). As derived above, an agent will choose 4 when
Au+ g(AP+kAN)/(1 + kN) > 0, where Au, AP, ¢, and k are para-
meters intrinsic to that individual. Thus we can ask the very general
question: what proportion of agents will choose A4, given the distri-
bution of these four parameters in the population? This depends, of
course, on the information available to each player at the time when
he makes his decision. If all players decide simultaneously, an agent
will choose 4 if Au 4+ gAP > 0, and thus the proportion of the popu-
lation choosing 4 would simply be the proportion for which this
relation holds. For instance, if all agents have AP = 0 (equal prior
probabilities for 4 and B), then each agent would choose according
to his private preference, and thus the proportion of the population
choosing 4 would be equal to x. Much more interesting effects occur
when the players choose sequentially and can observe the choices of
previous decision-makers; we focus on this sequential choice model
for the remainder of the paper. We typically assume that the order
of decisions is randomly determined, that players can observe all
previous decisions, and choose one at a time.® Assuming a suffi-
ciently large population size, this is equivalent to a model where a
randomly selected player is chosen from the population each turn,
with values of Au, AP, g and k drawn at random from their respec-
tive distributions. This player will then choose 4 or B based on his
four parameters as well as the current values of AN and N. As a
result of this choice, N will be increased by one, and AN will be
increased or decreased by one (if the player chooses A or B respec-
tively). Thus we can model the sequential choice situation as a
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random walk on AN, where N is an additional state variable which
influences the transition probabilities. Unfortunately, no general
closed form solution exists for this random walk model, for arbitrary
distributions of Au, AP, ¢, and k. However, we can easily simulate
such a random walk, maintaining the current values of AN and N:
on each time step, we sample the four parameters from their respec-
tive distributions, and adjust AN and N accordingly. In Sections 4.5
and 4.6 we consider simulation results for the general model; for the
remainder of the paper, however, we make various simplifying
assumptions which allow calculation of a closed form solution.
We begin by considering an extremely simple model, and gradually
remove these simplifying assumptions through this section and the
next, enabling us to examine the behavior of our model under a
wide variety of conditions, including heterogeneity in preferences,
priors, and the weights of observation and public opinion.

We initially consider the simple case where all agents have
|Au| = 1 (normalized payoffs), AP =0 (equal prior probabilities
for A and B) and k > 1 (high weight of observation). This allows
us to simplify the decision rule: an agent will choose action A
when Au+ g(AN)/(N +¢) > 0, where ¢ = 1/k is a small positive
constant. Thus an agent who prefers action 4 will make his dispre-
ferred choice if N > 1 and AN < —N/q. Similarly, an agent who
prefers action B will make his dispreferred choice if N > 1 and
AN > N/q. For now, we make the further simplifying assumption
that each member of the population is either strongly dependent
on public opinion (¢ >> 1) or makes decisions independently of
public opinion (¢ < 1). In this case, an individual with ¢ > 1
chooses 4 when AN > 0, chooses B when AN < 0, and chooses
his private preference when AN = 0. An individual with ¢ < 1
chooses his private preference regardless of AN. Let z equal the
proportion of individuals who are strongly dependent on public
opinion; we initially assume that an individual’s dependence on
public opinion is independent of his preference for either 4 or B.
Now we ask the following question: in terms of x (the proportion
of the population preferring 4) and z (the proportion of the popula-
tion dependent on public opinion), what proportion of the popu-
lation will actually choose action A?

Though in our general model, each player observes all previous
actions, let us first consider an even simpler model, where each
player can observe only the previous player’s action. In this case,
we can easily calculate a closed-form solution: we find that the prob-



NEILL: CASCADE EFFECTS 209

z+x(1-z)  z+(1-x)(1-2z)

x(1-z) ‘

(1-x)(1-z)

Figure 1. Markov chain for sequential choice dependent on previous player’s action

ability of a randomly selected player choosing A4 is z + x(1 — z) if the
previous player chose 4, and x(1 — z) if the previous player chose B.
Thus we have a two-state Markov chain with transition probabilities
shown in Figure 1, and we can calculate the stationary distribu-
tion of this chain. For any z < 1, we find that the proportion of
the population choosing 4 converges to x. In other words, the
same proportion of the population chooses A4 as if all players had
chosen simultaneously, so no cascade effect has occurred. However,
if z=1, then every player will make the same choice as the first
player: thus with probability x every player will choose 4, and
with probability 1 — x every player will choose B. In either of these
situations, a fotal cascade has occurred: every individual, in turn,
chooses to follow the observed behavior of others regardless of his
own private preference. The first situation, where everyone in the
population chooses 4, is known as a positive cascade; the second
situation, where everyone in the population chooses B, is known
as a negative cascade. More generally, a positive cascade occurs
when the proportion of the population choosing the majority-
preferred action is greater than the size of the majority; a negative
cascade occurs when the proportion of the population choosing
the majority-preferred action is less than the size of the majority.
We are most interested in negative cascades which cause the major-
ity of the population to choose a dispreferred action, resulting in an
inefficient and unpopular behavioral norm.

3.1 The Biased Random Walk Model

It is not surprising, of course, that cascade effects can occur when
every individual’s behavior is determined by public opinion (i.e.
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when z = 1). With a slight adjustment to our model, we find a much
more interesting variety of results. Thus we consider the sequential
choice model discussed above, where each player can observe the
aggregate result of all previous choices: the jth player to make a
choice knows how many of the first j — 1 players chose 4 and B
respectively, and can use this information to estimate the probability
P(A) with Bayes’ rule.

To calculate the probability of positive and negative cascades, we
can represent the model as a biased random walk on AN: the model
begins with AN = 0, and on each turn, an agent will either choose A4
(increasing AN by one) or choose B (decreasing AN by one). We
continue to assume the simplified model with AP =0 and k > 1.
Thus an agent’s choice is made based on his preference Au, his
weight of public opinion ¢, and the current value of AN. Assuming
as above that a player is randomly selected from the population each
turn, the probability of increasing or decreasing AN can be calcu-
lated from x (the proportion of the population which prefers A4), z
(the proportion of the population which is highly dependent on
public opinion), and the current AN. Let p*, p~, and p° denote
the probabilities of moving right (i.e. increasing AN) when
AN >0, AN <0, and AN = 0 respectively. If AN > 0, any agent
who either prefers A or places high weight on public opinion will
choose A; thus the probability of moving right is p*t =z+
x(1 —z). If AN < 0, an agent will only choose A4 if he prefers 4 and
places low weight on public opinion; thus the probability of moving
right is p~ = x(1 — z). Finally, if AN =0, the agent will choose
according to his private preference: the probability of increasing
AN is p’ = x. Figure 2 gives a pictorial representation of this
random walk.

To analyze this random walk, we first consider the positive and
negative regions as two separate random walks, then consider the

~ — _— -  —

z+(1-x)(1-z) x(1-z) 1-x| x (1-x)(1-z) z+x(1-z)
AN=-00 AN<O AN=0 AN>0 AN =+ 00

Figure 2. Random walk for sequential choice dependent on all previous actions
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CERSIONS

Figure 3. A directed random walk with absorbing boundary (Markov chain
representation)

random walk formed by joining the two at the origin. Each region
can be treated as a directed random walk with an absorbing bound-
ary at the origin, and probability p of moving away from the origin
(Figure 3). For the positive region, p = p* = z + x(1 — z). For the
negative region, p=1—p~ =z 4+ (1 —x)(1 —z). The behavior of
each random walk depends on its value of p: if p < .5, the random
walk will return to the origin in a finite number of time steps, but
if p > .5, there is some non-zero probability of diverging to infinity
(i.e. never returning to the origin). This probability p,, can be com-
puted in terms of p: poo =1 — (1 —p)/(p) = 2 — 1/p (see Shiryayev
1984, p. 547549, for proof and further discussion).

We can now calculate the probability of positive and negative cas-
cades by combining the two random walks. Since each random walk
will either diverge to infinity or return to zero, we can represent this
as a Markov chain with five states (—oo, —1, 0, +1, 4+00). This
Markov chain is shown in Figure 4. The +o0 states are absorb-
ing, and the 0 state will transition to either +1 or —1 with prob-
abilities p° and 1 — p® respectively. The +1 states will transition
to oo with probabilities pi. =max(2—(1)/(p*),0) and
P—oo =max(2 — (1)/(1 — p7), 0) respectively, and transition back
to 0 otherwise. Thus if either p™ > .5 or p~ < .5, the process will
(with probability 1) end in one of the absorbing states. We note
that for any z > 0, p™ > .5, so divergence to +oo can occur. In
this case, the proportion of agents choosing A is equal to
pT=z+x(1—z)>x, so we have a positive cascade effect. If
p~ < .5, then divergence to — oo is also possible. In this case, the pro-
portion of agents choosing A4 is equal to p~ = x(1 — z) < x, so we
have a negative cascade effect. Moreover, since the proportion of
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1
w . i
l—po
Figure 4. Simplified Markov chain for sequential random walk dependent on all
previous actions

1
1_p+ 0 p+ 0 .

P,

agents choosing A is less than .5, the process has converged to an
inefficient norm in which the majority chooses a dispreferred action.

If pyo >0 and p_ > 0, we can calculate the probability of a
negative cascade as ((1 —p")p_oo)/((1 = p°)p_ oo + P°Pi o). Since
this quantity is positive whenever x(1 —z) < .5 and x < 1, these
are the necessary conditions for a negative cascade to occur. In
other words, if at least half of the population are ‘unconditional’
followers of the majority action, then negative cascades cannot
occur; if more than half the population either prefers the minority
action or conditionally prefers the majority action, then negative
cascades can occur. This means that, if at least half of a population
of naive Bayesian norm followers places high weight on public
opinion (z > .5), negative cascades are always possible regardless
of the size of the majority. Moreover, negative cascades can also
occur when less than half place high weight on public opinion, as
long as there is a sufficiently large minority.

3.2 Examples

Let us consider a population where a 75% majority prefers Coke to
Pepsi (x = .75). We consider a sequential choice model as above:
each individual in the population must make a choice between the
two drinks, given only the aggregate result of all previous choices
(the number of people, so far, who have chosen Coke and Pepsi
respectively). As before, we assume that every individual has equal
priors (AP = 0) and a high weight of observation (k > 1).

First, we consider the case where 80% of the population puts high
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weight on popular opinion (z =.8). Based on the random walk
model above, we compute pT=z+x(1-2)=.95 p =
x(1 —z) = .15, and p® = x = .75. Since p* > .5 and p~ < .5, both
positive and negative cascades can occur. To compute the probabil-
ity of a negative cascade, we first compute p, oo = 2 — (1)/(p™) = .947
and p_o =2 —(1)/(1 — p~) = .824. Then the chance that a negative
cascade will occur is (1 — p°)p_ o) /(1 = PO)P— 0o + P°P1 00) = 23%.
In this case, 1 — p~ = 85% of the population will drink Pepsi, even
though only 25% prefer Pepsi; the other 60% prefer Coke, but
believe (incorrectly) that they are following the majority preference.
If a negative cascade does not occur, a positive cascade will result in
pT =95% of the population drinking Coke (75% because they
prefer Coke, and 20% following the norm).

Second, we consider the case where 40% of the population puts
high weight on popular opinion (z = .4). Using the random walk
model, we calculate pt =z + x(1 —z) = .85, p~ =x(1 —z) = 45,
and p’ = x =.75. Since p~ < .5, a negative cascade can occur,
even though the majority of the population does not put high
weight on popular opinion (z < .5). We compute p, o = .824 and
P—oo = .182, and thus the probability of a negative cascade is
(1 = P o) /(1 = pPPY_ oo + POPioo) & 6.9%. If a negative cascade
occurs, 1 —p~ =55% of the population will drink Pepsi (25%
because they prefer Pepsi, and 30% because they believe they are
following the majority preference). If a negative cascade does not
occur, a positive cascade will result in pt = 85% of the population
drinking Coke (75% Coke-preferring, and 10% norm-following).

Finally, we consider the case where 20% of the population puts
high weight on popular opinion (z = .2). Using the random walk
model, we calculate pt = .8, p~ = .6, and p” = .75. Since p~ is not
less than .5, we know that negative cascades cannot occur, and a
positive cascade always occurs. As a result, pt = 80% of the popu-
lation will choose Coke.

4. Generalizing the Model

At this point we reconsider some of the simplifying assumptions
made in our model (constant and preference-independent para-
meters, equal priors, and high weight of observation). These
assumptions may not hold in certain real-world interactions, so we
consider the effects of relaxing each assumption on the large-scale
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results of our model (i.e. the frequency and magnitude of positive
and negative cascades). In Sections 4.1-4.4, we maintain the
assumptions that each individual puts either very high weight or
very low weight on popular opinion, and similarly for weight of
observation. In Sections 4.5 and 4.6, we allow for continuous
values of these parameters, ranging from very high to very low.
This generalization complicates the analysis of the random walk
model, since the transition probabilitiecs become dependent on N
(the total number of choices) as well as AN (the difference in the
observed numbers of 4 and B choices). As a result, we use simula-
tion rather than obtaining an exact solution; nevertheless, we can
obtain results to any desired degree of accuracy by repeated simula-
tion. We demonstrate that allowing for continuous parameter values
does not have a significant impact on the general results of our
model, thus justifying our decision to focus on the variety of inter-
esting cases where an exact closed-form solution may be obtained.

4.1 Preference-Dependent Parameters and Fanaticism

Our first assumption in the simplified model was that each indi-
vidual’s parameters (weight of public opinion ¢ and weight of
observation k) are independent of his preference for either 4 or B.
But in many circumstances, different groups may rely more or less
strongly on their observations of others’ behavior. For example, a
group with strongly pacifistic beliefs may refuse to go to war even
if an overwhelming majority supported the war, while many sup-
porters of the war might reconsider their stance if it was almost
universally opposed. Thus we may have a situation in which indi-
viduals® parameters may be highly correlated with their preference
Au. Here we focus on one such effect, which we term fanaticism.
A segment of the population is ‘more fanatical’ than another seg-
ment of the population if it holds more strongly to its private prefer-
ences and priors, and relies less on observations of others’ behavior.
Most importantly, then, a more fanatical group will have lower
weights of public opinion ¢ than a less fanatical group; additionally,
the more fanatical group may have lower weights of observation k,
along with strongly biased priors AP. Here we focus on the simpler
case where all individuals have equal priors and high weight of
observation; however, we allow different probabilities of depending
on public opinion, conditioned on whether the individual prefers A
or B. Let z4 be the probability that an individual is dependent on
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public opinion given that he prefers 4, and let zp be the probability
that an individual is dependent on public opinion given that he
prefers B. We can calculate the probability of positive and negative
cascades using the random walk model as before, except that z is
different for AN > 0 and AN < 0. For AN > 0, an individual will
choose action A if he prefers action 4, or if he prefers action B
but is dependent on public opinion: thus p* = zg+ x(1 — zp).
Similarly, for AN < 0, an individual will choose action A4 if he
prefers action 4 and is not dependent on public opinion: thus
p~ = x(1 — z4). Finally, for AN = 0, an individual will choose his
private preference as before: thus p” = x. We can calculate the prob-
ability of positive and negative cascades from p*, p~, and p° as
above.

If z4 > zp, this means that those preferring the minority action B
are more ‘fanatical’ and less likely to change their beliefs based on
public opinion. This will result in a higher probability of negative
cascades and smaller probability of positive cascades. Also, if a
negative cascade occurs, its magnitude (i.e. the proportion choosing
B) will be increased, but if a positive cascade occurs, its magnitude
(i.e. the proportion choosing 4) will be decreased.

We reconsider the above example in which 75% of the population
prefers Coke, and 40% of the population is dependent on public
opinion (x = .75, z = .4). However, we assume that the influence
of public opinion is different for Coke and Pepsi drinkers: 50% of
Coke drinkers and 10% of Pepsi drinkers are dependent on public
opinion (z4 =.5, zp =.1). From this information we calculate
pT=zp+x(1 —zp)=.775 and p~ = x(1 — z4) = .375; note that
p’ = x=.75 as before. This gives us a probability of negative
cascades of 16%, as compared to 7% for the symmetric case
z4 = zp = z. Also, if a negative cascade occurs, 1 —p~ = 63% of
the population will choose B, as opposed to 55% for the symmetric
case; if a positive cascade occurs, p™ = 78% of the population will
choose 4, as opposed to 85% for the symmetric case.

If zp > z4, this means that those preferring the minority action B
are more likely to be swayed by the observed preference of the
majority: in this case, the minority is /ess fanatical in their beliefs
than the majority. As a result, the probability and magnitude of a
negative cascade will be decreased, and the probability and magni-
tude of a positive cascade will be increased; this may even pre-
vent negative cascades from occurring altogether. If in the above
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example, 70% of Pepsi drinkers and 30% of Coke drinkers were
dependent on public opinion, we would have p"=:zp+
x(1 —zp) =.925 and p~ = x(1 — z4) = .525. As a result, negative
cascades would not occur, and we would have a population where
93% of individuals drink Coke (75% Coke-preferring and 18%
norm-following), as opposed to 85% in the symmetric case.

4.2 Unequal Priors, Viral and Mass Marketing

Our second assumption in the simplified model was that all indi-
viduals have equal priors: if they have not observed any actions,
they assume that the majority preference is equally likely to be A
or B. However, unequal priors can result in many circumstances
from an individual’s beliefs, prejudices, and past experiences. For
example, advertisements or propaganda may attempt to convince
the population that a particular product is majority-preferred, and
vocal expressions of support for (or protest against) a candidate
or policy may lead others to (potentially inaccurate) estimates of
its base of support.

Manipulation of the prior probabilities through advertisement or
public dissemination of information may dramatically affect the
probability and magnitude of cascade effects, especially if some frac-
tion of the population has low weight of observation (and thus,
depends heavily on their priors in making a decision). We consider
low weights of observation in the following subsection; for now,
we continue to assume that all individuals have high weight of obser-
vation (k >> 1). In this case, any difference in the observed counts of
actions 4 and B will outweigh the influence of the prior, thus p* and
p~ are the same as in the original model. The only change is in p°, the
probability that an individual chooses 4 when the number of obser-
vations of 4 and B are equal. When AN =0, an individual will
choose according to his prior if his weight of public opinion is
high, and according to his private preference if his weight of
public opinion is low. We assume that every member of the popula-
tion has a prior weighted toward either 4 or B; let y be the propor-
tion of the population with priors weighted toward A. Thus if
AN =0, an individual will choose 4 with probability p° = yz +
x(1 —z) = x+ (y — x)z. Since only p° is changed, unequal priors
(assuming high weight of observation) will change the probabilities
but not the magnitudes of positive and negative cascades. If y > x,
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then the number of people believing that the majority is 4 is greater
than the number of people actually preferring 4, and the probability
of negative cascades is decreased. If y < x, then the number of
people believing that the majority is B is greater than the minority
of people actually preferring B, and the probability of negative
cascades is increased.

Reconsider the example with 75% of the population preferring
Coke, and 40% of the population placing high weight on public
opinion (x = .75, z = .4). We consider three cases: one where every-
one initially believes (correctly) that Coke is majority-preferred, one
where everyone initially believes (incorrectly) that Pepsi is majority-
preferred, and one where the beliefs are split equally. For all
examples, we calculate p™ = .85 and p— = .45 as above. If everyone
believes a priori that Coke is preferred, we have y = 1, and thus
P’ = x + (y — x)z = .85. In this case, the probability of negative cas-
cades would be only 3.8% (as opposed to 6.9% with equal priors).
If everyone believes a priori that Pepsi is preferred, we have y =0,
and thus p” = x 4+ (y — x)z = .45. In this case, the probability of
negative cascades is increased to 21%. Finally, if half the population
believes a priori that Coke is preferred, we have y = .5, and thus
P’ =x+(y —x)z =.65. In this case, the probability of negative
cascades is 11%. Note that the probability of negative cascades is
higher if the population is evenly divided with respect to priors,
than if all members of the population have uninformative priors.

The ability to change the proportions of positive and negative
cascades through manipulation of priors is extremely important in
fields such as marketing and politics. In the example given above,
a successful mass marketing campaign by Pepsi would triple the
probability that Pepsi-drinking is adopted as a norm, while a
successful mass marketing campaign by Coke would halve that
probability. In fact, the impact of advertising is probably more
significant than this since some fraction of the population might
have low weight of observation; we consider this in the following
subsection.” We also note that dissemination of public information
by a reputable source (e.g. the government, or trusted news media
sources) could decrease the probability of negative cascades signifi-
cantly by revealing the true majority preference: this would not only
change people’s priors in the direction of the true majority, but also
decrease the weight of observation (reflecting people’s increased
confidence in their prior estimates). This corresponds to the obser-
vations of Bikhchandani et al. (1992) and others that cascade effects
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are fragile; since the information content of a cascade is low, a nega-
tive cascade can be overturned by the public release of very little new
information. For example, a news agency might release a public
opinion poll based on the (private) preferences of a sufficiently
large sample of the population, or the government might provide
health warnings or other items which give clear indications of
which norms are ‘efficient” or ‘inefficient.’

Finally, we consider the role that this model might play in schemes
for ‘viral marketing.” The goal of viral marketing is to ‘take advan-
tage of networks of influence among customers to inexpensively
achieve large changes in behavior’ (Domingos and Richardson
2001). The idea is that, rather than using company resources to
market to a large number of potential customers, we market to
only a smaller number of customers who are most ‘influential’ (able
to communicate their preference to a large number of others). In a
sequential choice scenario, it is clear that the most influential
decision-maker is the first person to make a decision: thus if a
viral marketer knew the order of decisions, and could only afford
to market to a single customer, his optimal strategy would be to
market to the first decision-maker. This is why, for instance, presi-
dential candidates spend a significant amount of time and energy
campaigning in the state of New Hampshire, even though the state
has relatively few electoral votes: they hope that winning the first
primary will create a ‘bandwagon’ effect and increase the probability
of victory in succeeding primaries.

Let us consider the Coke-Pepsi example above, with 75% of indi-
viduals preferring Coke and 40% of individuals placing high weight
on public opinion (x = .75, z = .4). We assume that all individuals
have high weight of observation. Furthermore, let us assume that
marketing a product to an individual biases his priors toward that
product (i.e. convinces him that the product is majority-preferred,
unless his observations indicate otherwise); all other individuals
have uniform priors. Thus if Coke is marketed to the first individual,
he will choose Coke if he either prefers Coke or has high weight of
public opinion, i.e. with probability z + x(1 — z) = .85. Thus the
random walk on AN has probability .85p, o, = .7 of diverging to
400 before its first return to zero, probability .15p_ o, = .027 of
diverging to —oo before its first return to zero, and probability
1 — (.7+.027) = .273 of returning to zero at least once. If it returns
to zero, then the probability of a negative cascade is 6.9% as above.
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From this, we find that the probability of a negative cascade (i.e. the
majority of the population drinking Pepsi) is .027 + (.273)(.069) =
4.6%, as compared to 6.9% if no marketing was done, and 3.8% if
Coke was marketed to all customers. It is clear from this example
that viral marketing is extremely successful in the sequential choice
case; in this case it achieved 74% of the impact of mass marketing
at a tiny fraction of the cost.

If Pepsi is marketed to the first individual, he will choose Coke
only if he both prefers Coke and has low weight of public opinion,
i.e. with probability x(1 — z) = .45. Thus the random walk on AN
has probability .45p, o, = .371 of diverging to + oo before its first
return to zero, probability .55p_ o, = .1 of diverging to — oo before
its first return to zero, and probability 1 — (.371 +.1) = .529 of
returning to zero at least once. From this, we find that the probabil-
ity of a negative cascade is .1 + (.529)(.069) = 14%, as compared to
6.9% if no marketing was done, and 21% if Pepsi was marketed to
all customers. Again, the example demonstrates that viral marketing
was able to achieve a significant impact (48% of the impact of mass
marketing) with very little cost.

4.3 Low Weight of Observation

Our third assumption in the simplified model was that all individuals
have high weight of observation: they tend to rely on empirical obser-
vations of others’ actions rather than their prior beliefs about others’
preferences. This assumption is fairly realistic, in that people tend to
reject prior assumptions when these assumptions conflict with direct
observations. In fact, Kahneman and Tversky (1973, 1974) argue
that people tend to systematically underweight or ignore the influ-
ence of prior probabilities when making a judgment, instead focus-
ing on the ‘representativeness’ of an example (its empirical similarity
to a particular population). This does not imply, however, that all
individuals have weight of observation so high that they ignore
their priors. When the number of observations NN is small, or there
is not a strong observed majority preference (i.e. |AN| is small com-
pared to N), it makes sense for a rational decision-maker to rely
more heavily on his prior information. This is particularly important
when the prior is obtained from a reliable source (e.g. government
news releases) and when empirical observations may be heavily
biased by cascade effects. Morecover, Anderson and Holt (1997)
find no evidence of a representativeness bias in their experimental
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results on ‘informational cascades in the laboratory’: though there
were a significant number of errors, subjects tended to make a
decision consistent with Bayes’ rule even when it conflicted with
representativeness. As they state, the representativeness heuristic
may not apply when the priors in the model are based on the sub-
jects’ own inferences, rather than being given in the experimental
instructions.

We find that lowering the weight of observation has two main
effects. First, it tends to reduce the probability p* and increase the
probability p~, which has the effect of reducing the magnitude of
cascades, and may also significantly change the relative probabilities
of positive and negative cascades. Second, it amplifies the effects of
biased prior probabilities: if priors are strongly biased toward the
majority-dispreferred action, this may even result in a situation
where only negative cascades (i.e. no positive cascades) can occur.

We consider the case where all individuals have priors biased
either toward A or toward B. As above, let y be the proportion of
the population with priors biased toward A4; also let x be the pro-
portion preferring 4, and z be the proportion placing high weight
on public opinion. Finally, we assume that all individuals have
either very high weight of observation (k > 1) or very low weight
of observation (k = 0): let w be the proportion with high weight of
observation. For simplicity, we assume that priors, weight of public
opinion, and weight of observation are uncorrelated and prefer-
ence-independent. In this case, we can once again use the random
walk model, and condition the probability of moving right on the
current value of AN. In all cases, an individual will choose A4 if he
prefers A and places low weight on public opinion. Similarly, an
individual will always choose A if his priors are biased toward A
and he has high weight of public opinion and low weight of observa-
tion. If an individual has high weights of public opinion and obser-
vation, he will choose 4 if AN >0, Bif AN <0, and according
to his prior if AN =0. From this analysis, we calculate
pr=x(1-2)+y(0—wyz+wz, p =x(1-2)+py(1 —w)z, and
P° = x(1 — 2) + y(1 — w)z + ywz. Simplifying, we obtain p° = x +
(v — x)z as in the previous subsection; thus the weight of observation
does not affect choices when AN =0. We also obtain
pr=z+x(1-2)— 0 —-p)(1l =w)z<z+x(1 —z), and thus p*
will be decreased by lowering the weight of observation whenever
y<1 and z>0. Similarly, we note that p~ =x(1 —z)+
y(1 —w)z > x(1 — z), and thus p~ will be increased by lowering the
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weight of observation whenever y > 0 and z > 0. Thus, if the popu-
lation is divided with respect to priors (0 < y < 1) and some fraction
has high weight of public opinion (z > 0), the magnitudes of both
positive and negative cascades will be reduced. Reducing p*™ and
increasing p~ may also affect the relative probabilities of positive
and negative cascades. If y ~ 1, p~ will be increased significantly
more than p* is reduced, and thus the probability of negative cas-
cades will be reduced. If y & 0, on the other hand, p™ will be reduced
significantly more than p~ is increased, and thus the probability of
negative cascades will be increased. It is even possible to have situa-
tions where negative cascades are guaranteed; this will occur if
pT < .5 (since p~ < pt, we will also have p~ < .5 in this case).

To demonstrate these effects, we reconsider the example where
75% of the population prefers Coke (x = .75) and 40% of the popu-
lation places high weight on public opinion (z = .4). Again we con-
sider three cases: y =1 (everyone believes a priori that Coke is
preferred), y = 0 (everyone believes a priori that Pepsi is preferred),
and y = .5 (prior beliefs are evenly divided between Coke and Pepsi).
This time, however, we assume that the majority (90%) of the popu-
lation has low weight of observation: let w = .1. For y = 1 we calcu-
late p* = p® = .85 and p~ = .81: thus a positive cascade will always
occur, causing 85% of the population to drink Coke. Compare this
to the case in which all individuals had high weight of observation
(w =1), which still allowed for negative cascades to occur (with
3.8% probability). In this case, negative cascades can only occur
when w > % For y =0, on the other hand, we calculate p* = .49
and p~ = p” = .45: thus a negative cascade will always occur, caus-
ing 55% of the population to drink Pepsi. This is very different than
the case of w = 1, where the probability of negative cascades was
only 21%. In this case, positive cascades can only occur when
w > % Finally, for y=.5 we calculate p* = .67, p’ = .65, and
p~ = .63. Thus we have a situation where over half (67%) of the
population chooses the majority preference, but surprisingly, the
proportion of individuals choosing the majority preference is actu-
ally less than the proportion of the majority! Even though AN
goes to +o00, and almost every individual who has high weights of
public opinion and observation chooses A, this is outweighed by
the large number of individuals who choose B (even though they
prefer A) because of their incorrect prior beliefs that B is majority-
preferred. This somewhat paradoxical result demonstrates that



222 RATIONALITY AND SOCIETY 17(2)

priors can have a significant effect on the results of collective
decisions, especially when the weight of observation is low.

4.4 Varying Weight of Public Opinion

Next we examine the assumption that an individual’s weight of
public opinion ¢ is constant, rather than varying with the number
of observations N. Relaxing this assumption allows us to connect
our model directly to the prior work of Bikhchandani et al.
(1992), a framework which is also used in the experiments of Ander-
son and Holt (1997) and is closely related to the models of Arthur
(1989) and Bicchieri and Fukui (1999).

In particular, we consider situations in which one of the two
actions (A or B) is ‘objectively correct,” and would be preferred by
all individuals if they had complete information. This occurs, for
example, in the laboratory experiments of Anderson and Holt
(1997), where each individual in turn must guess from which urn a
ball has been drawn. Similarly, the reputational cascade model of
Bicchieri and Fukui (1999) assumes that every individual wants to
choose the action which is preferred by the majority, regardless of
his own private preference. In each of these cases, an individual
values his own information or preference no more than that of
any other individual; thus the ‘rational’ decision is to follow the
majority of observed decisions, counting the individual’s private
information as a single observed decision (Bikhchandani et al,
1992). This can be expressed as a special case of our model where
we set ¢ = N, and make the assumptions of equal priors and high
weight of observation. An individual will choose 4 in our model
if Au+g(AP+kAN)/(1+kN) > 0. Setting AP=0, k> 1, and
q = N, this simplifies to Au+ N(AN/N)= Au+ AN > 0. Since
we assumed (without loss of generality) that |[Au| = 1, an individual
who prefers 4 will choose 4 if AN > —1, and an individual who pre-
fers B will choose 4 if AN > 1. For k large but finite, the weight of
public opinion is actually slightly less than one (kN)/(kN + 1) so ties
(i.e. when Au+ AN = 0) will be broken by the individual’s private
preference. For k = 0o, the weight of opinion is exactly one, so an
individual preferring 4 when AN = —1 or preferring B when
AN =1 is indifferent between the two actions. In this case, as in
the original model of Bikhchandani et al, we assume that he flips a
coin to decide.
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We should note that the assumption of ¢ o« N applies to strong
cascade situations, when an individual considers his preference (or
private information) to be as relevant as the decisions of ¢y other
individuals; in this case, we set ¢ = N/qgo. On the other hand, the
assumption of ¢ constant applies to weak cascade situations, when
an individual weights his own preference proportional to the average
preference of the population as a whole. As discussed above in
Section 1.2, the former is a better assumption when describing prob-
lems with an objectively correct decision that must be inferred from
private information and observations, while the latter is a better
assumption when describing phenomena such as fashions, fads,
and customs, in which there is no objectively correct decision. In
deciding whether to follow an observed custom, for instance, a
rational individual must decide based on the strength of his own
personal preference as well as his estimate of the prevalence and
importance of that custom within society; a decision to reject a beha-
vioral norm may be rational for a given individual even if that norm
is strongly entrenched and the individual risks public disapproval by
doing so.

Let us first consider the model of Arthur (1989), where agents
must choose sequentially between two technologies 4 and B, and
the payoffs for adopting a technology are increased proportional
to the number of previous adopters of that technology. Arthur
assumes two groups with distinct preferences: type R individuals
have payoffs agr + rN4 for choosing 4 and bg + rNp for choosing
B, and type S individuals have payoffs as + sN4 for choosing A
and bg + sNp for choosing B. Arthur assumes ag > bg, as < bg,
and an equal proportion of types R and S. Thus we have three
distinct regimes: for AN > (bs — as)/(s) both types will choose A4,
for AN < (bg — ag)/(r) both types will choose B, and otherwise
each individual will choose his private preference (4 for R-types,
B for S-types). Thus the probabilities of increasing AN are 1 for
AN > (bs — as)/(s), 0 for AN < (bg —ag)/(r), and § otherwise,
and the model simplifies to an unbiased random walk with absorb-
ing boundaries. This is a simple case of our model (which is, more
generally, a biased random walk with transition probabilities depen-
dent on AN and N); it can be easily represented by setting AP = 0,
k> 1,x=.5and g = N/qo, where qo = qo.gr = (ag — br)/(r) for R-
types and g0 = qo.s = (bs — as)/(s) for S-types. Then the probability
of A4 being locked-in can be easily calculated as (qo.r)/(qo.r + go.s)
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for Arthur’s model; we note that both 4 and B cascades are total
(all individuals adopt the locked-in technology) and irreversible
once the absorbing boundary has been reached.

Next, we consider how the Coke/Pepsi example would be treated
by the Bikhchandani et al. model. Let us assume as above that 75%
of the population prefers Coke (x = .75). In order to calculate the
probability of positive and negative cascades, we must consider
five distinct regions. First, whenever AN < —1, an individual will
always choose Pepsi, and thus a negative cascade results. Second,
whenever AN > 1, an individual will always choose Coke, and
thus a positive cascade results. If AN =0, an individual will
choose according to his private preference; assuming that indi-
viduals are picked from the population randomly, this implies that
the probability of moving right is x =.75. If AN = —1, an indi-
vidual will choose Pepsi if he prefers Pepsi, and flip a coin otherwise;
this implies that the probability of moving right is x/2 = .375. If
AN =1, an individual will choose Coke if he prefers Coke, and
flip a coin otherwise; thus the probability of moving right is
x+ (1 —x)/(2) = .875. From these values, we find that the prob-
ability of negative cascades is (.25(1 —.375))/(.25(1 — .375)+
75(.875)) = 19%. We also note that, since the AN >1 and
AN < —1 states are absorbing, it often takes only two decisions to
create a irreversible positive or negative cascade. Our model, on
the other hand, allows cascades to be reversed after any number
of initial decisions, though the probability of reversing a cascade
would be very small if |AN| > 0. Also, the Bikhchandani et al.
model (like Arthur’s increasing returns model) results in total
cascades, i.e. the proportion of the population choosing an action
goes to either 1 or 0 as the number of choices N goes to infinity.
Our model, by allowing some individuals to have lower weight of
public opinion, also allows for partial cascades in which some indi-
viduals do not choose the majority-chosen action. This is a more
realistic model of preference decisions, in which non-homogeneous
results (such as part of the population choosing Coke, and part
choosing Pepsi) are extremely common. Thus our model is clearly
a generalization of previous models of cascade effects, allowing
for more realistic populations with varying priors, weights of
public opinion, and weights of observation.
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4.5 Simulating the General Model

We now consider the macromodel in its full generality, where we
allow for continuous distributions of individuals’ priors A P, weights
of public opinion ¢, and weights of observation k. We continue to
assume (without loss of generality) that |Au| = 1 for all individuals;
let x > .5 be the proportion of individuals preferring 4 (i.e. indi-
viduals with Au = 1). In the general case, as discussed in Section 3,
we have a biased random walk on AN, where N is an additional
state variable that affects the transition probabilities. For a given
state (AN, N), we transition either to state (AN + 1, N 4 1) or state
(AN — 1, N + 1) with probabilities p and 1 — p respectively, where:

AP+ kAN
p= Pr(Au+q+7 > 0)

14+ kN

AP + kAN
_ p(+—

1+ kN

> —1) +(1 —x)Pr(qw > 1)

14+ kN

For arbitrary distributions of AP, ¢, and k, no general closed-form
solution exists for this random walk model. However, it is simple to
simulate the model, assuming a large but finite population of M indi-
viduals (here we use M = 10000), and known distributions of AP, ¢,
and k. On each time step t = 1... M, we simulate the choice of one
individual by sampling Au, AP, ¢, and k from their respective distri-
butions, and updating AN and N accordingly. Once all M indi-
viduals have made their choices, we calculate the proportion of
individuals x,,; choosing 4, and compare this to x: if x,, is signifi-
cantly greater than x, a positive cascade has occurred, and if x,, is
significantly less than x, a negative cascade has occurred. Our signi-
ficance test is simple, since choices are binomially distributed under
the null hypothesis of no cascade: we assume that a cascade has
occurred whenever x,;, is outside the 95% confidence interval for
x, 1.e. when |x,p5 — x| > 1.96,/(x(1 — x)/M). We repeat the entire
simulation 10000 times, allowing us to calculate the probabilities
of positive and negative cascades, as well as the average magnitude
of each type of cascade.

For our first set of simulations, we continue to make the simplify-
ing assumptions of AP =0 and k > 1, but we allow ¢ to vary uni-
formly over the interval [0, ¢,.]. We test for two values of x, a
slight majority (x = .55) and a larger majority (x = .75), and use
values of ¢, ranging from 1 to 50. See Table 1 for results: P,
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Table 1. Probabilities and magnitudes of positive and negative cascades,

k>1
x=.55 x=.75

Gmax P pos Xpos P neg Xneg P pos Xpos P neg Xneg
1 .027 562 .026 538 .023 760 .026 740
2 .025 .562 .022 .538 711 785 011 740

3 170 .582 .040 538 1.000 .892 .000 -

4 491 .827 258 367 1.000 924 .000 -
5 .548 .881 382 .166 952 937 .044 .604
10 554 950 446 .063 776 974 224 .092
20 .549 976 451 .029 764 987 236 .041
30 552 985 .449 .019 753 992 247 .026
40 558 988 442 014 747 994 253 .020
50 .548 991 452 011 757 995 243 015

and P, are the probabilities of positive and negative cascades, and
Xpos and x,., are the average magnitudes of positive and negative
cascades (i.e. the average proportion x,,, of individuals choosing
the majority preference A4 in each case).

For both x = .55 and x = .75, we can divide the results into three
distinct regimes. For sufficiently low values of ¢, we find that no
cascades occur, and we have x,,; &~ x. More precisely, the results in
this case are indistinguishable from those generated by a binomial
distribution with parameter x: x,, falls outside of the 95% confi-
dence interval for x only 5% of the time, with approximately
equal probabilities of x,,; < x and x,,s > X, and thus the effects of
cascades are negligible. For high values of ¢,,,., we find that near-
total cascades occur: if a positive cascade occurs then nearly every-
one adopts the majority preference (x,,s =~ 1), and if a negative
cascade occurs then nearly everyone adopts the minority preference
(xops = 0). Also, in this case we find that cascades occur with prob-
ability near 1, with the probability of positive cascades approxi-
mately equal to the proportion of the majority x. This is not
surprising, since in cases where the weight of public opinion is
high, nearly everyone will follow the lead of the first decision-
maker, who will choose 4 with probability x. For moderate values
of ¢max, We find that partial cascades occur: if a positive cascade
occurs we have x < x,p < 1, and if a negative cascade occurs we
have 0 < x,; < x. The magnitudes of both positive and negative
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cascades increase with ¢, 1.€. positive cascades have higher x,,
and negative cascades have lower X, as ¢, increases. Also, the
relative probability of positive cascades as compared to negative cas-
cades (Ppos/ Pyeg) is highest for moderate values of gqy. For x = .55,
both P,, and P, increase with g, but P,, increases more
rapidly: for example, for ¢, =4, we have P, = .491 (nearly
equal to its limiting value of x = .55) while P,., = .258 (only slightly
more than half of its limiting value of 1 — x = .45). Similarly, for
x = .75, Pyos increases much more rapidly than P, and this results
in positive cascades occurring with probability significantly greater
than x. In fact, for ¢, =3...4, we find that positive cascades
always occur, and negative cascades never occur, while for
dmax = 5, positive cascades occur 95% of the time.

It should be noted that these results are very similar to those
obtained in the case where all individuals have either very high or
very low weights of public opinion. For z (the proportion of indi-
viduals with high weights of public opinion) near 1 in the simplified
model, we have pt &~ 1 and p~ ~ 0, so both positive and negative
cascades are near-total cascades, and the probability of positive
cascades is approximately p’ = x. For z sufficiently small in the
simplified model, we have a slight positive cascade where only those
individuals with very high weights of public opinion are affected
by the cascade; as z approaches zero, the proportion choosing A
converges to pt =z + x(1 — z) ~ x. Finally, for moderate values
of z, we have partial cascades, where the probability of positive cas-
cades is larger than x, and also the magnitude of positive cascades is
larger than the magnitude of negative cascades (i.e. X,o5 > 1 — Xye0).
All of these results are also visible in Table 1; thus the simplified case
(with all weights of public opinion ¢ either very high or very low)
displays all of the interesting behaviors of the general case with a
continuous distribution of ¢.

For our second set of simulations, in addition to allowing ¢ to
vary uniformly over [0, ¢,q], we also allow k to vary uniformly
over [0, k4], and allow AP to vary uniformly over [—1, 1]. For sim-
plicity, we fix ¢, = 10; we again test for two values of x (x = .55
and x =.75), and use values of k,,,, ranging from 0 to 100. See
Table 2 for results.

We first consider the results for large values of k., given
¢max = 10 and the uniform distribution of priors. In this case, we
find that the magnitudes of positive and negative cascades are iden-
tical to those for the equivalent case with no priors (i.e. ¢;ux = 10,
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Table 2. Probabilities and magnitudes of positive and negative cascades,

Gmax = 10
x=.55 x=.75
Komax Ppos Xpos Preg Xneg Pos Xpos Peq Xpeg
0 .000 - 1.000 516 .000 - 1.000 .582

.01 930 .853 .047 385 1.000 948 .000 -
.02 875 .888 .093 197 1.000 959 .000 -

.05 784 916 .189 .098 999 .966 .001 131

B 718 930 .268 .079 991 969 .009 11

2 .664 939 .326 .070 951 971 .049 .103

.5 .600 .945 397 .066 .847 972 153 .096

1 .569 .948 429 .064 77 973 223 .094
10 522 950 478 .063 .639 974 .361 .092
100 524 950 476 .063 .617 974 .383 .092

k> 1,and AP = 0 for all individuals). However, the probability of
negative cascades is substantially higher for uniformly distributed
priors than for no priors: for uniform priors, P, was 48% for
x = .55 and 38% for x = .75, while these probabilities were reduced
to 45% and 24% respectively for no priors. This corresponds to two
of the observations made in Section 4.2: first, when weights of obser-
vation are sufficiently high, the probabilities but not the magnitudes
of cascades are affected by biased priors. Second, the probability of
negative cascades is higher for evenly divided priors than for no
priors, since the proportion of individuals with priors biased
toward the minority preference B (50%) is higher than the propor-
tion of individuals actually preferring B.

Next we consider the effects of decreasing k., on the prob-
abilities and magnitudes of cascades. For lower values of &, the
magnitudes of both positive and negative cascades are reduced; as
discussed in Section 4.3, this effect occurs because a smaller pro-
portion of individuals are influenced by their observations of
others’ behavior. Additionally, the probability of negative cascades
decreases with decreasing ky4y: Pyeg decreases from 48% down to
5% for x =.55, and from 38% down to 0% for x =.75. This
effect results because the increase in p~ from lower weights of obser-
vation k outweighs the decrease in p': in particular, negative
cascades will not occur at all when p~ > .5, and this effect is visible
for x = .75 and k., < .02.
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Finally, we note that in the special case of k,,,, = 0, individuals
are not affected by their observations of others’ behavior. As a
result, each individual will choose 4 or B independently, depending
on whether Au + gAP is positive or negative. In this case, for priors
equally distributed toward 4 and B, the proportion of individuals
choosing 4 will be between .5 (the proportion whose priors are
biased toward A) and x (the proportion who actually prefer A4).
Thus the net effect is equivalent to a negative cascade (i.e. a propor-
tion less than x adopt A4), but this effect results from independent
choices with biased priors rather than any actual ‘cascade’ effect
as such. We should also note that this effect will not occur for any
positive value of k,,,,: if the population is sufficiently large, indi-
viduals’ observations will eventually overwhelm their priors for
any kg > 0.

Thus we have used simulation to examine a variety of cases of the
general model, allowing for continuous distributions of the para-
meters AP, g, and k. It is clear from our results that the effects
observed in the general model are very similar to those obtained in
the simplified model, where all individuals have either very high or
very low weights of observation and public opinion. In particular,
for either weight of public opinion ¢ or weight of observation &,
we can achieve equivalent effects by either increasing the mean of
the continuous distribution of that parameter in the general
model, or increasing the proportion of the population with high
values of that parameter in the simplified model. These correspon-
dences justify our decision to focus on the simplified model, allowing
us to compute exact closed-form solutions for the magnitudes and
probabilities of positive and negative cascades, while achieving the
same range of cascade effects as in the more general model.

4.6 Simultaneous and Sequential Choice

At this point, we revisit one of the fundamental assumptions of our
macromodel: the assumption of sequential choice. As in many of the
previous models of cascade effects (e.g. Arthur 1989; Banerjee 1992;
Bikhchandani et al. 1992), we assume that individuals make choices
one at a time, and are influenced by the entire sequence of previously
made decisions. Our assumption of sequentiality is somewhat
weaker than that made by previous models, since individuals are
not assumed to observe the entire sequence of previous choices,
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but only the aggregate counts N, and Np (the numbers of indi-
viduals choosing 4 and B respectively). Nevertheless, our assump-
tion neglects several phenomena which are relevant to some of the
real-world examples we consider. First, rather than observing the
aggregate counts N4 and Np, individuals may only be able to
sample from this distribution, obtaining counts 74 and np based
on the choices made in their immediate (spatial or temporal) vicinity.
Models of this sort are considered in Arthur and Lane (1993) and
Banerjee and Fudenberg (2004), and require somewhat different
Bayesian updating rules than the present model. For the purposes
of our discussion, we note that cascade effects (and in particular,
negative cascades) can still occur when only a sample of previous
choices are observed. In fact, we expect the probability of negative
cascades to increase, since there is a greater probability that the
sampled choices will not be representative of the decisions of society
as a whole; see Bicchieri and Fukui (1999) for one example of this
effect.

A second effect neglected in our model is that individuals may
change their minds, updating a decision in light of subsequently
made decisions. This effect may be treated in one of two ways:
either individuals may be allowed to make multiple choices, each
of which is counted separately, or individuals may be allowed to
make a new choice which invalidates their previous choice. The
former applies to examples such as product choice, where indi-
viduals may buy multiple products; this effect is already accounted
for in our model, since we assume that individuals are chosen from
the population with replacement. The latter applies to examples
where only an individual’s ‘current’ choice is visible, as may be the
case in fashions or fads. In this case, the magnitudes of cascades
would be increased, since early-choosing individuals who originally
chose in opposition to the cascade may change their minds and
decide to join the cascade as well.

The most important effect that our model has not yet considered
is simultaneity: it is clear that in many cases, different individuals
may make decisions simultaneously in different locations. One
possible way of dealing with this effect is to assume that separate
and independent cascades occur in different locations, with a strict
sequence of decisions occurring for each distinct cascade. In this
case, we must consider what happens when two cascades (which
were formerly spatially isolated) meet: decision-makers at the inter-
section of the two cascades would be influenced by observations
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resulting from both cascades, and the resulting choices may propa-
gate to regions formerly dominated by one cascade or the other. For
a more detailed treatment of the spatial propagation of cascades, the
reader is referred to the work of Watts (2002), who examines net-
work models of cascade effects. We note, however, that even allow-
ing for multiple spatially isolated cascades (with sequential decisions
in each cascade) neglects the fact that essentially simultaneous
decisions may in fact be made in the same spatial locale. Thus one
simple but interesting extension to our model is to assume that
decisions are made in groups: we assume 7 discrete time steps,
where individuals are influenced by decisions made on previous
time steps, but are not influenced by other decisions made on the
current time step. The standard model of sequential choice is equiva-
lent to assuming that exactly one individual makes a choice on any
given time step; we can easily consider cases where G individuals
make a choice simultaneously on a given time step, where the para-
meter G denotes the ‘group size.” It is clear that cascade effects will
still occur in the case where decisions are made in groups, as long as
individuals both observe the decisions of previous groups, and are
influenced by these decisions. It is also clear that the probability of
negative cascades will be reduced if the size of early-deciding
groups is large: negative cascades are much more likely to occur
when a majority of the early decision-makers choose contrary to
the majority preference of society as a whole, and (assuming that
individuals are drawn at random from the population) this is very
unlikely to occur when group size is large. Nevertheless, negative
cascades can still occur, either because of sampling variance in
small groups, or systematic bias in groups of any size.

To quantify these effects, we ran several simulations of the general
model. As in our first set of simulations in Section 4.5, we made the
simplifying assumptions of AP = 0 and k > 1, but allowed ¢ to vary
uniformly over the interval [0, ¢,,.,]. However, rather than assuming
that one individual chooses on each time step (G = 1), we assumed
group sizes of G =10 and G = 100; these results are given in
Tables 3 and 4 respectively. In each case, we used two values of x
(x =.55 and x = .75) as above. As expected, the most noticeable
effect of increasing G was that the probability of positive cascades
increased, and the probability of negative cascades decreased, with
increasing group size. For x = .55 and large values of guax, Preg
decreased from 45% for G =1, to 34% for G =10, to 11% for
G =100. For x=.75 and large values of ¢4y, Pne decreased
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Table 3. Probabilities and magnitudes of positive and negative cascades,
group size 10

x=.55 x=.75

Gmax P pos Xpos P neg Xneg P pos Xpos P neg Xneg
1 .026 562 .024 538 .024 760 .025 740
2 .023 .562 .026 .538 .669 783 011 740

3 .060 572 .025 538 1.000 .892 .000 -

4 279 .803 .053 459 1.000 926 .000 -

5 439 .869 105 220 1.000 943 .000 -
10 .694 944 298 .067 988 973 012 .095
20 .665 976 335 .030 980 987 .020 .042
30 .656 984 .344 .020 979 991 021 .027
40 .658 988 342 015 980 993 .020 .020
50 .664 990 336 012 978 995 .022 .016

from 25% for G = 1, to 2% for G = 10, to near 0% for G = 100. For
very high weights of public opinion ¢, negative cascades will only
occur if a majority of the first group chooses the minority preference
B; this phenomenon becomes increasingly uncommon as group size
becomes large. As above, the probability of negative cascades may
be even lower for moderate values of ¢,.: we note that for
Gmax = 3...4 and x = .75, positive cascades always occurred, and
negative cascades never occurred, regardless of group size. Another
effect of increasing group size is that the transition from the ‘no cas-
cades’ regime (low values of ¢,,,,) to the ‘near-total cascades’ regime
(high values of ¢,,,,.) occurs for larger threshold values of ¢,,,,. Thus
for a given, moderate value of ¢,,,x (€.2. ¢max = 4), we find that the
magnitudes of both positive and negative cascades decrease with
increasing group size. This may also prevent cascades from occur-
ring for low values of ¢.: for x = .55 and group size 100, non-
negligible positive and negative cascades do not occur until ¢,y > 3
and ¢, > 5 respectively, while for group size 1, these thresholds
Were ¢max > 2 and g, > 3 respectively.

Thus we have considered the assumption of sequential choice in
our macromodel, and its influence on cascade effects. The most
important result to note from our discussion is that strict sequential
choice is not necessary for cascade effects to occur: as long as some
individuals make decisions after other individuals, and these indi-
viduals both observe and are influenced by previous decisions,



NEILL: CASCADE EFFECTS 233

Table 4. Probabilities and magnitudes of positive and negative cascades,
group size 100

x=.55 x=.75
Gmax P, pos Xpos P neg Xneg P pos Xpos P neg Xneg
1 .026 562 .026 538 .024 760 .027 740
2 .026 .562 .024 538 544 777 017 740
3 .026 .562 .026 538 1.000 .887 .000 -
4 .035 .613 .025 .539 1.000 922 .000 -
5 116 791 .025 538 1.000 939 .000 -
10 .886 905 .021 263 1.000 970 .000 -
20 936 964 .064 .041 1.000 984 .000 -
30 910 976 .090 .029 1.000 989 .000 -
40 .894 981 .106 .023 1.000 991 .000 -
50 .889 984 11 .019 1.000 992 .000

cascades will occur. As discussed above, the size of these cascades is
strongly influenced by the distribution of weights of public opinion,
and cascade effects may range from negligible to total. It is also
important to note the effects of simultaneous choice on the relative
probabilities of positive and negative cascades: as the amount of
simultaneity (parametrized by group size G) increases, negative
cascades become increasingly rare, and this may even prevent nega-
tive cascades from occurring altogether.

5. Discussion: Revisiting the Micromodel

Lastly, we reconsider the underlying assumptions of our micromodel
of naive Bayesian norm followers. Given that cascade effects (and in
particular, negative cascades) occur, it is possible that the choices an
agent observes may not be an accurate reflection of the preferences
of the population as a whole. More precisely, naive Bayesian norm
followers assume that all their observations are i.i.d. (independent
and identically distributed) given the model. But if a cascade has
occurred, the sequence of previous choices will be highly correlated.
Why, then, do our rational decision-makers not take this possibility
into account, and adjust their decisions accordingly? There are
several possible answers to this question. First, the structure of the
game is not assumed to be common knowledge: in fact, we typically
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assume that agents do not observe the sequence of previously made
decisions, but only the aggregate numbers of 4 and B decisions
made. Thus, agents may incorrectly assume that previous choices
were made simultaneously rather than sequentially. This effect is
very likely to occur when an individual can only observe the beha-
vior of the others around him at a given point in time, and thus
does not realize that the other agents’ behavior emerged gradually
through a process of imitation. If all previous choices were made
simultaneously rather than sequentially, they would correctly reflect
the private preferences (and prior beliefs) of a sample of the popula-
tion, and cascade effects would not apply.®

A second cause of ‘naive’ behavior is the phenomenon of pluralis-
tic ignorance: individuals often have erroncous cognitive beliefs
regarding the ideas, sentiments, and actions of others (O’Gorman
1975). In particular, individuals often believe that their private
thoughts and feelings are different from those of others, even
though their public behavior is identical (Miller and McFarland
1987). Bicchieri and Fukui (1999) discuss pluralistic ignorance in
detail, and distinguish between two major classes of effects. First,
pluralistic ignorance may result in the illusory belief that others
hold a given set of values more strongly than the individual does
himself: this effect is evident in the studies of O’Gorman (1975),
where white Americans overestimated the support of other whites
for racial segregation, and Prentice and Miller (1993), where college
students tended to overestimate the prevalence of alcohol abuse
among other students. The primary representation of this effect in
our model is the weighting of individuals’ priors AP; as discussed
above, biased priors (especially when combined with low weights
of observation) can lead to situations where incorrect beliefs cause
a high probability of negative cascades.

More relevant to the current discussion, however, is Bicchieri and
Fukui’s second class of effects caused by pluralistic ignorance: even
when individuals correctly identify the positive values of a group,
they underestimate others’ strength of motivation to avoid acting
inconsistently with this value. Thus they conclude that others’
norm-following actions accurately represent their private prefer-
ences, though in fact those actions may be dispreferred (resulting
instead from the individuals’ priors and observations of others’
behavior). One example of this effect is the reluctance of school-
children to risk ‘looking stupid’ by asking questions in a classroom
situation (Miller and McFarland 1987): they assume that others do
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not ask questions because they understand the material, when in fact
it is simply to avoid potential embarrassment. Thus the children
keep quiet, not realizing that their silence results from, and adds
to, a cascade effect which influences others to keep quiet as well.
In other words, pluralistic ignorance causes individuals to assume
that their observations are independent, though in fact they may
be strongly correlated due to the effects of cascades. Bicchieri and
Fukui go on to argue that inefficient norms result from cascade
effects under conditions of pluralistic ignorance, and present a
model of this norm-following behavior. In fact, the assumption of
pluralistic ignorance is not absolutely necessary for cascades to
occur, though it does tend to strengthen their effects. If pluralistic
ignorance does not hold, individuals (realizing that cascade effects
occur) may place less weight on their observations, reducing the
probability and magnitude of cascades. Nevertheless, the assump-
tion of pluralistic ignorance is very reasonable in our model. We
assume a heterogeneous population in which individuals vary in
their weight of public opinion; since the makeup of the population
is not common knowledge, individuals cannot tell whether their
observations resulted from a ‘norm-ignoring’ or ‘norm-following’
population. Thus the assumption of pluralistic ignorance is simply
equivalent to assuming that individuals believe a priori that z (the
proportion of the population dependent on public opinion) is low,
and this is a perfectly reasonable thing for them to believe.

A third reason why agents may not take cascade effects into
account is that, in certain cases, the realization that cascades occur
may not affect an agent’s decision. If the agent’s weight of public
opinion is sufficiently high, he will follow the decision that is more
likely to be in the majority, regardless of the possibility that his
observations may be wrong, and regardless of the size of the
majority. Though cascades may cause overestimates of the size of
the majority, and may occasionally lead to incorrect beliefs about
the majority preference, the perceived majority preference is still
more likely to be the true majority preference, and thus will be
chosen by individuals with high weight of public opinion, even if
pluralistic ignorance does not hold. For example, consider the
basic informational cascade model of Bikhchandani et al. (1992),
where every individual has partial information about the ‘correct’
decision, and every individual’s private information has equal pre-
cision. Thus, if the first two individuals choose an action a, every
succeeding individual will also choose that action. This does not
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require pluralistic ignorance to occur: even if a rational individual
knows that all decisions after the first two are the result of an infor-
mational cascade, it will still be in his best interest to follow their
lead, since the information content of the first two decisions out-
weighs his own private information. Similarly, in our model we
often make the assumption that every individual has either very
high or very low weights of public opinion and observation: in this
simplified case, an individual with high weights will follow the
herd, and an individual with low weights will follow his private pre-
ference, regardless of whether cascades are taken into account.

A fourth reason why agents may not consider cascade effects is
that their goal may actually be to match other agents’ actions
rather than their preferences. This may be the case when the main
reason for agreeing with others is purely for coordination purposes
rather than the result of social pressure to conform. For example, an
individual would prefer to drive on the right side of the road if
almost everyone drives on the right, even if most people would
have preferred (in the absence of other traffic) to drive on the left:
in this case it is clear that agreement with actions, not with prefer-
ences, maximizes an agent’s utility. If an agent’s utility is increased
when his action agrees with other agents’ actions, then our naive
decision rule corresponds to one of two assumptions: either a)
agents only need to coordinate with previously made actions (i.e.
future decisions are irrelevant to their payoffs, as in Arthur’s (1989)
model), or b) agents assume that past observations are an accurate
predictor of future decisions. This latter assumption is somewhat
reasonable since the probabilities of positive and negative cascades
are dependent on the current value of AN; on the other hand,
agents would then be myopic in the sense that they do not consider
the effects of their own action on the future actions of others. In fact,
in early stages of the sequential decision-making process, a single
decision may greatly affect the probabilities of positive and negative
cascades, and naive agents fail to take this into account.

Thus we have considered several reasons why agents might not
adjust their weight of observation to take into account the possibility
of cascade effects. Since the structure of the game, and the decision
rules of the other players, are not assumed to be common knowl-
edge, agents might not have sufficient information to take cascades
into account. Alternatively, it might not be necessary to take
cascades into account: this may be the case when agents attempt
to coordinate with the actions of the other players rather than
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their preferences, or when certain restrictions are placed on the type
of player. Finally, the phenomenon of pluralistic ignorance may
cause agents to reason naively. If none of these reasons are applic-
able to a given situation, and agents have unlimited rationality, it
might be necessary to extend the micromodel to account for agents’
belief that cascades may occur. We prefer to assume that at least
one of the above reasons is valid, and thus that agents make rational,
but myopic, decisions as given by our model of ‘naive Bayesian
norm followers.’

6. Conclusions

Thus we have presented a model of naive Bayesian norm followers,
rational agents whose subjective expected utility is increased by
adherence to an established behavioral norm. A naive Bayesian
norm follower’s estimate of the utility of an action is increased pro-
portional to the probability that the action will agree with that of
another (randomly selected) agent, and this probability is calculated
using Bayes’ rule. However, agents are ‘naive’ in that they assume
independence of previously made decisions; we consider a variety
of phenomena, including pluralistic ignorance and lack of common
knowledge, which may lead to agents’ naiveté. We consider a hetero-
geneous population where different agents may be influenced to
different extents by their private preferences, prior beliefs, and
empirical observations of other agents’ preferences; this generalizes
previous models such as Banerjee (1992) and Bikhchandani et al.
(1992), which assume a high degree of conformity (i.e. that every
agent will follow a norm once it is established), equal priors, and
common knowledge of priors. Our model can be applied both to
strong cascades (where agents’ private preferences are weighted pro-
portional to the preferences of ¢y other agents) and weak cascades
(where agents’ private preferences are weighted proportional to
the preference distribution of society as a whole), and is applicable
to cascade effects resulting from a variety of positive feedback
mechanisms, including informational, reputational, and networking
cascades.

In addition to presenting a model of how rational norm-following
decisions can be made, we also investigated when unpopular and
inefficient norms might emerge from sequential choice in a popula-
tion of naive Bayesian norm followers. Using a biased random walk
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model, we demonstrated that unpopular norms can result from
‘negative cascades,’ in which the majority of the population chooses
a dispreferred action because each agent’s observations lead him or
her to incorrectly believe that he or she is following the majority pre-
ference. We have shown that unpopular norms can emerge even
when the majority of agents do not place high weight on popular
opinion, and under a wide range of conditions, including hetero-
geneity in preferences, priors, and the weights of public opinion
and observation. We examined the effects of real-world phenomena
such as marketing, fanaticism, and pluralistic ignorance on the
model, and investigated how these factors affect the probability
and magnitude of negative cascades. For example, marketing may
influence the priors of individuals, convincing them that a particular
product is majority-preferred; we considered the impact of both
‘mass marketing’ and ‘viral marketing’ techniques on consumer
choice. We also examined various generalizations of the model,
including preference-dependent parameters, simultaneity in choices,
and varying weights of public opinion and observation. This allows
us to present a simple but general model of norm-following behavior
which explains the emergence and persistence of unpopular, ineffi-
cient behavioral norms in society.’

NOTES

1. Granovetter and Soong (1986) and others have also examined dispersion effects,
where individuals are motivated by negative feedback to choose differently
from previous decision-makers (for example, avoiding a restaurant because it is
too crowded). Such effects are outside the scope of this paper.

2. To be more precise, some informational effects may be at work even in a subjective
choice setting, but these are unlikely to be as influential as reputational effects. In
our example of soft drink choice, an informational effect can occur if individuals
are influenced by others’ choices to conclude that a soft drink is better tasting or
otherwise superior. In this case, others’ choices are perceived as carrying informa-
tion about product quality, even if no such information is actually present. This
effect is closely related to the availability cascade model of Kuran and Sunstein
(1999): just as the availability of a perception in public discourse may lead to
belief in its plausibility, so might popularity of a product lead to belief in its
innate worth.

3. The beta distribution is a special case of the Dirichlet prior distribution; this very
general prior is commonly used for Bayesian estimates of multinomial probabil-
ities from data when no other constraints are known. This method is also called
‘maximum a-posteriori’ (MAP) learning, or Laplace smoothing, in the statistical
learning literature. Human behavior consistent with Bayes’ rule has been observed
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in laboratory experiments by Anderson and Holt (1997), but also see Kahneman
and Tversky (1973, 1974) for situations where non-Bayesian behavior may occur.

4. An identical expression for P(A4) can be derived using model averaging rather
than model selection, i.e. setting P(A) and Py(A) equal to the expectations rather
than the modes of their respective beta distributions. In this case, we have
P(A) = Ey[Pr(6|N4, Np)] = (N4 +@)/(N +a+ B). Then setting Py(4) =
(a)/( + B)and k = (1)/(« + B), we again obtain P(4) = (Py(A) + kN ,4)/(1 + kN).

5. Arthur and Lane (1993) present an alternative Bayesian model in an informa-
tional cascade-type framework with a homogeneous population and various
other strong assumptions (for instance, that individuals reveal not only their pro-
duct choice but their estimate of the true value of that product). Even in this less
general model, naiveté is assumed, as the agents do not model the market-share
allocation process (how the sequence of choices depends on the products’
values) but instead use a uniform prior. In other Bayesian models of informational
cascades, such as Banerjee (1992) and Banerjee and Fudenberg (2004), agents are
not naive in this sense, but instead the models rely on extremely strong assump-
tions of common knowledge (e.g. common knowledge of rationality, common
priors, and common knowledge of the Bayesian update rules) which limit their
applicability outside a very specific informational cascade setting.

6. This assumption of a sequential, exogenously determined order of decisions is
identical to the models of Arthur (1989), Banerjee (1992) and Bikhchandani et
al. (1992). Other models, such as Chamley and Gale (1994), Caplin and Leahy
(1994), Zhang (1997), and Bicchieri and Fukui (1999) allow agents to choose
the timing of their decisions: as a result, agents with more significant information,
or stronger preferences, tend to move first, and other individuals follow their lead.

7. In addition to influencing agents’ prior probabilities, advertising also impacts
consumer choice in several other ways. It may influence agents’ private preferences
(for example, by convincing them that the product is of superior quality), and may
introduce agents to choices of which they were previously unaware. We neglect
these two effects for the purposes of our discussion.

8. Incorrect information may still be obtained in the simultaneous choice situation
due to sampling error. Even if the sample is unbiased, sampling results in signifi-
cant variance for small sample sizes. In fact, in the ‘trendsetters and conformists’
model of Bicchieri and Fukui (1999), inefficient norms result from sampling vari-
ance rather than from cascade effects in the standard sense: the game is structured
so that all trendsetters move first (simultaneously), choosing their private prefer-
ence, then all conformists move (simultaneously), following the norm set by the
majority of trendsetters. A negative cascade can result when the trendsetters are
not a representative sample of the population, i.e. when the majority preference
of the trendsetters differs from the majority preference of the population as a
whole. In the absence of a systematic bias in preferences, the probability of nega-
tive cascades approaches zero when the number of trendsetters becomes large;
thus the assumption that the number of trendsetters is small is crucial to the
Bicchieri and Fukui model. Our model, on the other hand, does not rely on a
small, predetermined set of trendsetters: instead, negative cascades may emerge
spontaneously from the aggregation of information inherent in sequential
choice situations. We believe that this is a more reasonable model of the cascade
effects observed in voting, product choice, and other situations where negative
cascades may lead to inefficient and unpopular norms.
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