
Detection of Patterns in Water Distribution
Pipe Breakage Using Spatial Scan Statistics for Point Events

in a Physical Network
Daniel P. de Oliveira1; Daniel B. Neill2; James H. Garrett Jr., F.ASCE3; and Lucio Soibelman, M.ASCE4

Abstract: Infrastructure systems of many U.S. cities are in poor condition, with many assets reaching the end of their service life and
requiring significant capital investments. One primary requirement to optimize the allocation of investments in such systems is an
effective assessment of the physical condition of assets. This paper addresses the physical condition assessment of drinking water
distribution systems by analyzing pipe breakage data as the main source of evidence about the current physical condition of water
distribution pipes over space. From this spatial perspective, the primary questions are whether data sets present unexpected clustering of
pipe breaks, and where those break clusters are located if they do exist. This paper presents a novel approach that aims to detect and locate
clusters of break points in a water distribution network. The proposed approach extends existing spatial scan statistic approaches, which
are commonly used for detection of disease outbreaks in a two-dimensional spatial framework, to data collected from networked
infrastructure systems. This proposed approach is described and tested in a data set that consists of 491 breaks that occurred over six years
in a 160-mi water distribution network. The results presented in this paper indicate that the adapted spatial scan statistic approach applied
to points in physical networks is able to detect clusters of noncompact shapes, and that these clusters present significantly higher than
expected breakage rates even after accounting for pipe age and diameter. Several possible hypotheses are explored for potential causes of
these clusters.
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Introduction

Most critical infrastructure systems have been rated as in poor
condition by ASCE �2009�. This fact has raised concerns regard-
ing potential effects of failure and has driven improvements in
management practice. The proper assessment of the physical con-
dition of infrastructure assets is a necessary measure required to
improve or optimize the management of such systems �Hassanain
et al. 2003�. Physical condition assessment typically requires the
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inspection of assets, the derivation of some condition index, and
the identification of possible causes of distresses and poor condi-
tion.

Infrastructure managers have increasingly sought new means
to monitor and assess the overall performance of infrastructure
systems, including their physical condition. These means include
better sensing and monitoring technologies, which allow infra-
structure managers to better assess the condition of individual
infrastructure components. However, improvements in data analy-
sis methods are also necessary, in order to make better use of
available data and to allow the identification of more general and
unforeseen deterioration trends in the system.

Several studies have addressed the analysis of physical condi-
tion and deterioration modeling in time �Deb et al. 2002; Kleiner
and Rajani 2001�. Their main goal is to provide prediction of the
time to next failure or remaining service life of a component,
which is an input to the optimization of capital investments.

One alternative and complementary approach is to observe the
location of failures �or some sensor-based measurement of physi-
cal distress� over the extent of a given infrastructure system. In
this paper, a water distribution network is considered and the
identification of spatial clusters of failures is addressed. Such
clusters are regions with an anomalously high number of pipe
breakages. The term pipe breakage is used in this paper to de-
scribe a set of pipe failure events, including pipe body cracks or
splits, joint failures, and hydrant valve failures, which result from
deterioration mechanisms, such as internal or external corrosion,
and surface loads. These failure events are the ones detected by

the utility management and that required a repair record. Such
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events do not include undetected small leaks in the system. It is
important to note that in July 2008 the utility management started
a proactive detection of leaks, which would increase the number
of failure events considered as breakage, since they commonly
created a repair activity and record. As a result, data from this
period were not considered in this paper.

A water distribution pipe network is a specific case of a net-
worked infrastructure system in which exploratory spatial analy-
sis is expected to provide relevant outcomes. The presence of
clustering and the location of clusters are primary issues to be
addressed in an exploratory spatial data analysis of breakage data
�Baddeley 2008; Haining et al. 1998; Smith et al. 2008�. The
pipes in the vicinity of clusters of pipe breaks are natural candi-
dates for replacement and capital investment planning. Once iden-
tified, cluster locations can provide useful information to decision
makers, including the identification of the population at risk in
such critical areas, and the specification of assets to be considered
in capital investment benefit/cost analysis. Also, a possible advan-
tage of cluster detection is the ability to explore each cluster in
terms of local factors leading to high failure rate and the changes
in these failure rates over time, as discussed in Oliveira et al.
�2009�.

The process of mining trends in spatially referenced data has
been broadly adopted in several fields. One example is the public
health field, in which epidemiologists detect clusters of disease
cases to assist in identification of disease outbreaks. This paper
will demonstrate that the field of infrastructure management can
also benefit from such spatial analysis.

The goal of this paper is to present an approach for detecting
spatial clusters of pipe breaks in drinking water distribution sys-
tems, and to demonstrate its application to an actual breakage data
set. More specifically, this approach is based on an adaptation of
the spatial scan statistic approach developed by Kulldorff �1997�,
which detects regions of space with unexpected clusters of events.
The proposed approach aims to identify the most interesting re-
gions in a physical infrastructure network, defined as those re-
gions that present higher than expected breakage intensity,
perhaps as evidence of some source of distress that might be then
controlled. These regions consist of subsets of nearby and con-
nected pipe breaks. The �x ,y� coordinates of each pipe break are
known, i.e., their location in a two-dimensional �2D� coordinate
system, but these breaks are constrained to lie on the underlying
network of pipes.

Differently from other areas in which cluster detection meth-
ods have been used, e.g., epidemiology, the deferred maintenance
existing in most American water distribution systems requires at-
tention not to one single cluster, but rather to a set of significant
clusters. Therefore, multiple clusters are of interest when observ-
ing the results of cluster detection, rather than only the most in-
teresting region, as in the case of analyzing a disease outbreak.

The natural representation of a water distribution system is,
therefore, a planar graph in which edges represent pipes and
nodes represent both pipe breaks and intersections. Clusters of
breaks are expected to have flexible shape, given the distribution
of breaks along pipes and the consequent possibility of noncom-
pact clusters which follow the irregular disposition of pipes in
space �as opposed to the circular spatial clusters detected by typi-
cal spatial scan statistic approaches�. Fig. 1 illustrates such a rep-
resentation. The proposed approach can be also extended to other
networked infrastructure systems, although such extension is not
addressed in this paper.

The proposed spatial scan approach for points in a physical

network is applied to the data set illustrated in Fig. 2. The data set
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consist of a system with 268 km of pipes in which 491 breaks
occurred in the period from 2002 to 2008 in a small municipality
in Western Pennsylvania with an average breakage rate of 1.85
breaks/km.

The remainder of the paper is organized as follows. “Detection
of Clusters and Infrastructure Management” describes the rela-
tionship between the detection of clusters and water distribution
system condition assessment. “Previous Work” discusses previous
work on the spatial scan statistic approach, and on spatial analysis
of infrastructure systems. “Spatial Scan Statistic Approach” de-
scribes the spatial scan statistic approach for point events in a
physical network. “Application Results and Discussion” presents
the results and discussion of the application of this modified spa-
tial scan statistic approach to the actual data set illustrated in
Fig. 2. “Conclusions” presents conclusions and future work.

Detection of Clusters and Infrastructure
Management

The goal of this section is to explain the relationship between the
detection of clusters and infrastructure management needs �e.g.,
the physical condition assessment of drinking water distribution
systems�. In this paper, the random variable of interest is the
occurrence of a break event in space, represented as a point con-
strained to lie on the underlying network of pipes. This point
representation is substantially different than the aggregated count

Fig. 1. Representation of hypothetical water distribution system as a
graph to be used as a running example in this paper. Edges �ei�
represent pipes while nodes can represent both intersections �vi� and
breaks �pi�. Throughout the paper only break nodes will be repre-
sented, intersections being omitted for the sake of clarity.

Fig. 2. Drinking water distribution system analyzed in this paper;
dots are breaks and lines are pipes
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data commonly used when applying the spatial scan statistic ap-
proach, �e.g., the number of observed disease cases in each zip
code�.

A cluster is defined as a region �i.e., in the case of a water
distribution system, a connected subgraph of the pipe network� in
which the density of breaks is significantly higher than expected.
The notion of what constitutes a high density of breaks depends
on a subjective assessment of the expected number of breaks for
a given pipe segment. In the simplest case, assuming a network of
homogeneous pipes, the expected number of breaks per unit
length is just the ratio of the total number of breaks in the data
over the total length of pipes. More generally, the effect of some
covariates that can affect the occurrence of the event of interest is
often accounted for. For instance, when considering the popula-
tion of regions, a larger population is more likely to present more
cases of a disease compared to a smaller population. In the case of
water distribution pipes, the age of a pipe is expected to affect its
breakage rate. Generally, older pipes are expected to break more
often, although the data used in this paper indicate low breakage
rates for pipes over 45 years old, as shown in Fig. 3. This is
probably a result of both of the lack of updates in the database,
i.e., some pipes were replaced within the period covered by the
data set, but were not updated in the geographic information sys-
tems �GIS�, and the fact that the remaining old pipes are those in
less aggressive environments. If the intensity of breaks is still
high after adjusting for the expected rate for pipe age, there is
evidence that some additional factors must be affecting breakage,
and the identification of these factors can be addressed by further
investigation.

The primary goal of this work is to identify spatial regions that
have an abnormally high density of breaks after controlling for
factors that are assumed to affect breakage, e.g., age and pipe
diameter in the case of water distribution pipes. These regions are
important because by knowing their location, the physical condi-
tion of a specific group of pipes can be determined, instead of the
physical condition of hypothetical pipe segments of a certain
type, e.g., a 40-year old, 6-in. cast iron pipe, to the analysis of the
physical condition of a specific group of pipes.

The identification of clusters can provide useful information
on: �1� local indicators of physical condition, which can be used
to assess benefit/cost analysis of replacement and �2� the linkage
of critical pipes with consumer location along the network and the
identification of cases in which critical consumers are vulnerable
to pipes in critical conditions, which can assist prioritization of

Fig. 3. Plot of pipe age in years versus average number of breaks per
kilometer for the data set shown in Fig. 2
maintenance, operation, and replacement decisions.
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The presence of clusters is also evidence that there are depen-
dencies in the data set. These dependencies might result from: �1�
the interaction between breaks, i.e., one break might be, for a
number of reasons, causing subsequent breaks; and �2� from the
nonindependent distribution of environmental factors over space,
e.g., high values of soil conductivity, which is the electrical con-
ductivity of an extract from saturated soil paste �U.S. Natural
Resource Conservation Service �NRCS� 2007�. Fig. 4 illustrates
the case of two regions that are similar in terms of pipe charac-
teristics, but by visual inspection display different breakage inten-
sities. Region B �Fig. 4, right� consists of a dense set of breaks
along an elongated extension of 6-in., 50-year old cast iron pipe.
Region A �Fig. 4 left� consists of a less dense collection of breaks
over a more compact region containing a greater total length of
pipe. Later in this paper, such differences will be more rigorously
addressed.

While allowing the derivation of local indicators and immedi-
ately useful information for infrastructure management decision
making, cluster detection is still a tool for exploratory analysis of
spatial data. By detecting clusters and identifying the affected
locations, the analysis allows the rejection of the hypothesis that
breakage is a random process along the network, and to conclude
that intensities are significantly higher within clusters. However,
this conclusion does not provide an explanation of the actual fac-
tors causing clusters. Regarding factors correlated to breakage,
the analysis can only conclude that the factors used to adjust the
expected rate, e.g., pipe age and size, are not sufficient to explain
the high rate within a cluster. “Application Results and Discus-
sion” presents follow-up analyses to examine several other pos-
sible hypotheses which may explain the anomalous clusters of
pipe breaks.

Previous Work

Relevant research related to this paper falls into two categories:
the use of spatial scan statistics for analysis of data in other do-
mains, and the spatial analysis of infrastructure systems, mainly
drinking water systems. The former research provides the meth-
odological points of departure for the spatial scan statistics ap-
proach presented in the next section, while the latter research
discusses and considers alternative approaches in the infrastruc-
ture management domain.

The spatial scan statistic approach, originally proposed by
Kulldorff �1997�, has been frequently used in the analysis of epi-
demiological data in order to detect outbreaks of disease �Kull-
dorff et al. 2005; Stevenson et al. 2008�. The widely used

Fig. 4. Two similar groups of pipes �both consisting of 6-in.-
diameter, 50-year-old, cast-iron pipes�, represented as the dark
thicker segments, which have visually different intensity of pipe
breaks
SaTScan software �SaTScan is a trademark of Martin Kulldorff�,
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which was developed under the joint auspices of Martin Kulldoff,
the National Cancer Institute, and Farzad Mostashari at the New
York City Department of Health and Mental Hygiene, is based on
the spatial scan statistic approach developed by Kulldorff.

A typical use of the spatial scan statistic approach aims to
identify the most interesting spatial region�s� in a given larger
search area. For example, in a given county or state, a spatial scan
statistic approach might be used to identify a subset of zip codes
that are indicative of an outbreak of some disease. The algorithm
uses a moving window of a given shape �e.g., circular or rectan-
gular� and varying dimensions, which scans the area of interest.
In each spatial location, e.g., zip code, some count variable, such
as the number of disease cases, is measured and a search is per-
formed for spatial regions �groups of nearby zip codes� with sig-
nificantly higher than expected counts.

In each step of the spatial scan, the scanning window captures
a set of observed realizations of the random variable and gener-
ates a score to measure how likely the observed realizations are
compared to the expected distribution of this variable. The win-
dow with highest score consists of the most interesting subset of
locations, as measured by the likelihood ratio statistic described
below.

From this process, three issues are important to be empha-
sized. The first is the search window shape and size, which de-
fines the shape of cluster that can be detected. For instance, a
circular scanning window limits the algorithm to detect compact
clusters, �i.e., 2D circular or oval clusters defined according to
assumed Gaussian distributions�, while a rectangular window al-
lows detection of elongated spatial clusters �Neill 2006�. As dis-
cussed below, neither circular nor rectangular clusters are
appropriate for the water distribution network data considered
here, since neither of these scan window shapes take the network
structure into account.

The second issue is the choice of models for the null hypoth-
esis, i.e., the probability model for the expected outcome in a
given window, and the alternative hypothesis, i.e., a probabilistic
model for the outcome of interest �e.g., a cluster of disease cases,
or of pipe breaks, in some spatial region�. These models can be
defined, for instance, as either a Bernoulli or Poisson process. For
the Poisson case, under the null hypothesis H0, the breakage rate
� is assumed to be identical at all locations. The alternative hy-
pothesis H1�S� assumes a breakage rate �1 inside region S and �o

outside region S, where �1��0. Kulldorff �1997� provided a de-
tailed explanation of the derivation of the Bernoulli and Poisson
model. In the research described in this paper, a variant of the
Poisson model proposed by Neill �2006� is used.

The third issue is the definition of a score F�S� to be calculated
for each region S, in order to estimate whether the observed out-
come deviates from the expected outcome under the null hypoth-
esis. One typical approach is to compute the likelihood ratio, i.e.,
the probability of the observed data under the alternative hypoth-
esis, Pr�Data �H1�S��, divided by the probability of the observed
data under the null hypothesis, Pr�Data �H0�

F�S� =
Pr�Data�H1�S��

Pr�Data�Ho�
�1�

The problem addressed in this paper requires the search of re-
gions of flexible shape over the edges of a graph. Spatial scan
statistic approach that handle searches over regions of flexible
shape in graph structures were proposed by Patil and Taillie
�2004� and Janeja and Atluri �2008�. However, in these ap-

proaches, the subjects of interest are the nodes of a graph G,
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which represent the center of an areal entity with a count at-
tribute, e.g., a county or zip code. This is different from the case
of this paper, in which the events of interest are points over the
edges of the graph.

Shi and Janeja �2009� described a scan statistics approach that
addresses a problem similar to the one addressed in this paper,
e.g., the detection of clusters in a physical network, but with a
different search strategy and score function. Shi and Janeja �2009�
applied their framework to the detection of clusters in traffic ac-
cidents. Their approach includes several search strategies that
search over subsets of possible subgraphs on a network. The
search strategy relies on the linear referencing representation of
point events along predefined routes of a network, which is an
approach commonly used in geographic information systems for
transportation. Such an approach enables any event along a net-
work, e.g., a traffic accident, to be assigned to a mark along a
route. The presence of routes enables, in turn, the inclusion of the
idea of flow direction along the network, which might be a factor
accounting for the occurrence of clusters. Marks are regularly
spaced along a route and each mark will hold a random variable
of interest, i.e., the count of events that occurred close to it. This
is different from considering the location of an event �accident or
pipe break� as a random variable, as presented in this paper.

Furthermore, the statistics used by Shi and Janeja �2009� rely
on the comparison of rates inside and outside a given region of
interest, which are likely to provide overestimated scores and in-
crease false positives in the detection of abnormal regions. The
approach described in this paper uses a different score measure-
ment in order to avoid underestimating the expected counts, by
controlling for variables of interest, such as pipe age and size.
Also, the use of such a search strategy is not adequate in the
absence of explicitly defined routes �such as railroads and high-
ways� and flow direction �in the case of water distribution sys-
tems, flow direction might change depending on the pressure on
some points in the network�.

One study has addressed spatial analysis of the physical health
of infrastructure assets, including analysis of the space-time clus-
tering of water pipe breaks �Goulter and Kazemi 1998�. Goulter
and Kazemi analyzed data from Winnipeg by using an ad hoc
approach to assess the presence of clusters. For instance, they
observed that 22% of breaks occurred within a distance of 1 m of
another break. These results, according to the writers, demon-
strate the presence of spatial autocorrelation in the breakage pro-
cess. However, the writers do not indicate how accurate the
locations of break points are, nor the potential error in the dis-
tance between any two points. It is likely that small clusters of
breaks can occur in space and yet, on a larger scale, no major
deviations from randomness would be detected. Therefore, a more
statistically robust analysis of clustering seems necessary.

Spatial Scan Statistic Approach

The problem informally presented in previous sections can be
more formally posed as follows. Given that: �1� a spatial frame-
work represented as a graph G�V ,E�, in which water distribution
pipes are represented as edges in the set E= �e1 ,e2 , . . . ,en�, and
pipe intersections are represented as a set of nodes V
= ��v1 ,v2 , . . . ,vn��; �2� a set P of breaks, P= �p1 , p2 , . . . , pn�, rep-
resented as points occurring on the edges E; and �3� models of the
null hypothesis Ho and alternative hypothesis H1�S� for any given
region S in graph G; and �4� a likelihood ratio statistic F�S�,

which allows the deviation of the observed breakage within each
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region from an expected realization of breakage to be evaluated.
The goal of the algorithm is to find all regions S �each con-

sisting of a connected set of break points Pj, as shown in Fig. 5�
with abnormally high likelihood ratio scores F�S��Fthresh. The
threshold score for a region to be statistically significant, Fthresh, is
computed using the randomization testing approach described
below.

Since break points are located on the segments of graph G,
clusters are expected to have elongated rather than compact
shapes, following the edges in E. This fact drives the definition of
one primary requisite of the algorithm, the capability to detect
clusters of complex non-compact shapes, which will be addressed
by the definition of an adequate choice of search window.

The method presented in this section follows the framework of
the generic scan statistic approach proposed by Neill �2006�, con-
sisting of the following steps: �1� acquisition of data consisting of
the network structure and the set of spatially referenced break
points pi; �2� choice of a set of spatial regions to search over,
which are subsets of connected points in P; �3� choice of the
models of the data under Ho and H1�S�; �4� definition of a score
function F�S� based on Ho and H1�S�; �5� definition of the most
“interesting” regions; and �6� assessment of the statistical signifi-
cance of the most interesting region�s� identified in Step 5. These
steps are detailed in the following subsections.

Acquisition of Data for a Set of Pipe Segments ei and
Break Points pi

Generally, a breakage data set consists of data points whose main
attribute is the pair of �x ,y� coordinates, which defines the loca-
tion of a break on the edge of a segment ei. This location, for the
research described in this paper, was estimated by a street address

Fig. 5. Illustration of the concept of connected points. Vertices do not
interfere in the connectivity between breaks. Break points not as-
signed to any clusters, �e.g., points p1¯p3 above� impede the con-
nectivity of the clusters, �e.g., C1 and C2 above�.

Fig. 6. Illustration of conventional scan statistics search strategies, g
window of radius d1NN; �b� rectangular window of side 2d1NN captur
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data record, which is taken as an approximation of the true loca-
tion of break occurrence. Regarding the location of breaks, sig-
nificant uncertainty is expected from the mapping procedure,
which first locates breaks as points over a street segment and
subsequently to the pipe that lay under the street. These are pro-
cedures that can be performed in standard GIS. Therefore, the
location of the break along a pipe segment presents more uncer-
tainty, while the association of the break with a given pipe is less
uncertain, as in the data presented in this paper. Pipe age and size,
also attributes included in the data set, can be used as covariates,
as discussed in the next section.

Choose a Set of Spatial Regions to Search Over

The search strategy adopted in traditional spatial scan statistic-
based tools, such as SaTScan, uses circular or rectangular win-
dows. Figs. 6�a and b� illustrate a circular and a rectangular
window, respectively, which are centered on a point event p3.
Both windows neglect the fact that the events of interest are con-
strained by a network space: using a distance metric which does
not take the network into account will harm performance by find-
ing false positive “clusters” in areas with a large total length of
pipe, and will fail to detect true clusters in areas with a small total
length of pipe. Thus an alternative approach is needed, and a new
search strategy that relies on shortest path distances between
points given the underlying network representation has been de-
veloped.

Fig. 7 illustrates a search window over the network space that
aims to correctly account for the network constraint on break
points. The search strategy is defined by traversing the set P of
break points in a graph G. For each point pi� P, regions are
defined by the connected subsets that include point pi and its k
nearest neighbors, where k ranges from 1 to �P�−1. For each of
these regions, the length of the search window is defined by the
distance dkNN between pi �the region center� and its kth nearest
neighbor �NN� �Fig. 7�. The search window includes all edges or
portions of edges reachable within a shortest path distance dkNN

from pi.
First, for each break point pi, the shortest path from pi to each

other point �intersections and break points� is found using Dijk-
stra’s shortest path algorithm �Dijkstra 1959�. Then for each break
point pi and neighborhood size k, the search steps are: �1� identify
the kth nearest neighbor of pi, which will determine the window
size dkNN and �2� find whether each edge ej is �fully or partially�
contained in the search region based on the shortest paths from pi

to the two nodes connected by that edge. Let Lj denote the length
of edge ej, and let dij1 and dij2 denote the shortest path distances

distance d1NN between p3 and its nearest neighbor p2. �a� A circular
rent sets of points around p3 in 2D Euclidean space.
iven a
e diffe
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from pi to the two nodes connected by edge ej. Then the length of
edge ej contained in region S, Lj�S�, can be calculated as
min�Lj ,max�0,dkNN−dij1�+max�0,dkNN−dij2��. This computation
is illustrated in Fig. 8.

The computation time of the search procedure described above
is O�bn2�, where b=total number of break points and n
=number of nodes �break points and intersections� in the graph.
For each of the b break points, the score function F�S� can be
maximized over all regions centered at that break point pi by
performing the following steps: �1� perform a single-source short-
est path computation to obtain the distance from pi to each node,
requiring O�n2� time; �2� sort the edges by distance to pi, where
the graph is planar and there are O�n� edges, and thus this step
requires O�n log n� time; and �3� for each of the b values of the
neighborhood size k and the corresponding distance dkNN, find the
set of edges contained within a distance dkNN of pi, and step
through them. In the worst case, Step 3 requires O�n� time for
each neighborhood size, and thus O�nb� time in total. Thus the
complexity of the algorithm is O�n2� for each of the b break
points, giving a total complexity of O�bn2�.

In order to reduce the search time, the number of regions to be
searched is reduced by limiting the length of the search window
�defined by the distance to the kth nearest neighbor of a given
center point� to a maximum of 4.2 km. Clusters for windows
longer than 4.2 km are unlikely to satisfy the assumption that the
intensity of breaks is homogeneous under the null or alternative
hypothesis, due to variation in underlying environmental factors.
Nevertheless, this threshold definition potentially limits the detec-
tion of clusters that are larger than 8.4 km in diameter.

Fig. 7. Search window S defined by a center point p3 and its nearest n
d1NN=60 between p3 and p2; �b� search window extending up to t
Therefore, the search window extended along all possible paths until

Fig. 8. Search window S defined by a center point p3 and its 3rd-nea
of distance d3NN=140 from p3 to p1; �b� paths from p3 containing the
window with center point p3 and length d3NN=140.
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Choice of Models of the Data under Ho and H1„S…

Given a region S captured by the scanning window and formed by
a set of connected break points pi in P, the observed count ci and
expected count bi of breaks for each edge ei that is fully or par-
tially contained in region S are computed. Then the likelihood
ratio test will compare the following hypotheses:

Ho : ci�Poisson�bi� for all edges ei.
H1�S� : ci�Poisson�qbi� for all edges �or parts of edges� ei

contained in region S, and ci�Poisson�bi� for all edges �or parts
of edges� ei not contained in region S, for some constant q�1.

The expected count bi of breaks for an edge ei under the null
hypothesis is computed as: bi=�i Li, where Li=length of edge ei

in feet, and �i is the expected breakage rate per foot of pipe. The
spatial distribution of breaks over pipes can be assumed to follow
either a homogeneous Poisson process �HPP� or non-HPP
�NHPP�. For the HPP, an equal breakage rate �i=� for all pipe
segments ei is assumed, while for the NHPP, the breakage rate �i

can vary between pipe segments.
Since there are some factors that are known to be correlated to

breakage rate, such as age and pipe diameter �Kleiner and Rajani
2001; Pelletier et al. 2003�, the breakage rate can be adjusted to
different choices of factors. Therefore, several alternatives for as-
sumptions about the underlying process are available, and the
NHPP adjusted for pipe age �NHPPage� and adjusted for pipe di-
ameter �NHPPsize� are considered in the research described in this
paper. Adjusted breakage rates were calculated for age alone, i.e.,
�age for the NHPPage, and for size alone, i.e., �size for the
NHPPsize. Rates were learned from the whole data set available

r �1NN� p2. Illustration of the search strategy: �a� computing distance
t node �intersection v1� but not reaching a distance d1NN from p3.
ches a distance d1NN from p3 for all paths.

ighbor �3NN� p1. Illustration of the search strategy: �a� computation
ide and the left side of edge e1 �thicker line� and the complete search
eighbo
he nex
it rea
rest ne
right s
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for the network considered in this paper and smoothed rates were
generated and used in the algorithm. Fig. 9 provides the rates for
the data set for different pipe attributes.

While breakage rates can potentially be conditioned on any
subset of attributes, it is worth noting that as sample sizes in each
category are reduced when more attributes are considered, esti-
mates will incorporate more noise and therefore be less reliable.
When considering rates for the combined effect of pipe diameter
and age, several groups contain few instances. For example, the
data set contains only 0.06 km of 15-year old pipes with 10 in.
diameter, and thus the two observed breaks in these pipes would
produce an unlikely estimate of 33 breaks/km. The sparsity of our
data did not allow us to reliably produce smoothed estimates, and
thus only separate estimates for pipe diameter and age are used
here.

Define a Score Function F„S… based on Ho and H1„S…

The score function to be assigned to each region S is the likeli-
hood ratio F�S�=Pr�Data �H1�S� /Pr�Data �Ho��, where the null
and alternative hypotheses were defined in an earlier section. For
the Poisson process considered in this paper, the likelihood ratio
statistic is

F�S� = maxq�1

	
ei�S

Pr�ci � Poisson�qbi��

	
ei�S

Pr�ci � Poisson�bi��
�2�

This simplifies to the following expression �Neill 2006�:

F�S� =
maxq�1 e−qBqC

e−B = 
C

B
�C

eB−C if C � B, 1 otherwise

In this expression, C and B denote the total observed count �ci

and the total expected count �bi=��iLi of region S, respectively,
and the maximum likelihood estimate q=max�1,C /B� has been
used. It is important to note that only the edges fully or partially

Fig. 9. Breakage rates �breaks/km�: �a� smoothed rates by pipe age;
�b� by pipe diameter
contained in region S are included in these summations, and for
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partially contained edges, only the length of pipe and the breaks
actually contained in region S are included.

Identification of the Most Interesting Regions

The definition of the most “interesting” regions consists of the
identification of the region in graph G with highest value of F�S�,
and any nonoverlapping secondary clusters which also have sig-
nificantly increased count. It is important to note that small re-
gions, here arbitrarily defined as those with less than four breaks,
were not considered as possible cluster candidates. This is a
choice based on the assumption that the distances between a small
number of breaks can be underestimated due to uncertainty in
break location, leading to false positives in region detection. As
the minimum number of breaks in one region increases and
breaks in different pipes are included, the uncertainty in distances
is expected to be reduced.

Assessment of the Statistical Significance of Identified
Regions

After searching the set of regions si in graph G, a set of no-
overlapping regions and their corresponding log-likelihood ratio
scores are obtained. However, it is important to consider that high
scores can occur just by chance, even when the true distribution
of points follows the null hypothesis Ho. Therefore, it is necessary
to make an assessment of how often we would expect to see a
score as high as or higher than each of the scores in the most
interesting regions set. Such assessment can be performed by ran-
domization testing, in which a large number of simulated data sets
are generated under the null hypothesis of no clusters, the maxi-
mum region score is computed for each simulated data set, and
the original region scores are compared to the distribution of
simulated maximum scores.

In the research described in this paper, the randomization test
consisted of 999 runs of the realization of a process according to
the models under the null hypothesis Ho, for each of the three
cases �NHPPage, NHPPsize, and HPP�. For each simulated data set,
breaks were created by traversing the set of pipes and randomly
creating breaks for each pipe segment according to the Poisson
process. More precisely, for a given edge ei with length Li and
breakage rate �i, the number of breaks for that edge was ran-
domly drawn from a Poisson distribution with mean bi=�iLi, and
each break was assigned a location on that edge uniformly at
random.

The maximum score F�=maxS F�S� is computed for each rep-
lica data set. Then, to compute the p-value of a given region S
from the original data set, its score F�S� is compared to the dis-
tribution of simulated maximum scores F�. If R is the total num-
ber of simulated data set, and N is the number of simulated data
sets with F��F�S�, then the p-value is calculated as

p-value�S� =
N + 1

R + 1
Eq. �3�

This p-value gives an estimate of how likely the region score is to
be generated randomly if the null hypothesis of no clusters of
breaks is true. Regions with p-values smaller than the significance
level �=0.05 are considered statistically significant, and are re-

ported as significant clusters.
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Application Results and Discussion

This section presents the results of the analysis of the previously
described water pipe breakage data set by the described spatial
scan statistic algorithm. The most significant regions for the HPP
are presented in Fig. 10, along with the log-likelihood ratio score
and the p-value for each region.

In Fig. 10, the six statistically significant clusters, along with
the highest-scoring nonsignificant cluster �Cluster 7, which corre-
sponds to Region A in Fig. 4� are shown for the HPP case. Al-
though several regions could, by visual inspection, be considered
possible candidates to form clusters, the most interesting region,
i.e., Region 1 in Fig. 10, is visually deceptive, since it appears as
only one break in the map �actually, there are six nearby breaks in
a very small length of pipe�. Other regions, such as Regions 2 and
4, would be intuitively expected to form a single cluster, but are
split due to different densities of breakage in the different seg-
ments.

These results also demonstrate that the approach is able to
differentiate the two areas presented in Fig. 4. In the HPP results
presented in Fig. 10, Region 7 �corresponding to area A in Fig. 4�
does not provide sufficient evidence that its realization is signifi-
cantly different from the underlying null hypothesis of a HPP
�i.e., its p-value is larger than 0.05�, while Regions 2 and 4 �cor-
responding to Area B in Fig. 4� are found to be statistically sig-
nificant. This suggests that there is some underlying factor in Area
B that is causing the higher than expected intensity of breaks,
which is most likely absent in Area A.

Fig. 10 also presents the results for the NHPP assumptions,
adjusting separately for pipe age and diameter �NHPPage and
NHPPsize�. The results of the randomization test for the assess-
ment of significance of the likelihood ratio scores is provided in
Table 1, which shows the likelihood ratio scores and respective
p-values for the six most interesting regions found across the
three different processes, obtained through randomization testing
with Monte Carlo simulation.

It is interesting to observe that the top five most significant
clusters in the HPP case were significant for NHPPage, while the
sixth cluster was not found to be significant. Similarly, four of the
six significant clusters in the HPP case were also found to be
significant for NHPPsize. These four clusters were significant in all
three analyses, which means that, even accounting for the higher
breakage rates in old pipes and in smaller pipes, these regions still
present an unexpectedly high breakage rate. When accounting for
pipe diameter, Regions 4 and 6 in the HPP �Fig. 10� disappear,
suggesting that the variation in pipe size explained these devia-
tions from the expected number of breaks. Adjustment for pipe
diameter also reduced the scores of Regions 2 and 3, thus ac-
counting partially for their deviation from the expected number of
breaks, but was not sufficient to explain their anomalous counts.
Interestingly, adjustment for pipe diameter increased the scores of
Regions 1 and 5, suggesting that these clusters took place in areas
where the pipe size would lead us to predict a low breakage rate.

Limitations and Uncertainties

It is important to consider the uncertainties that are present in the
analysis, either resulting from the assumptions of the proposed
approach or from the data. As indicated before, problems related
to the location of breaks are a critical source of uncertainty. Break
location problems were handled on a case by case basis in order
to reduce errors in the geocoding process. For each break with an

inconsistent address, staff members in the local authority that pro-
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vided the data were contacted in order to clarify such inconsis-

Fig. 10. Scan statistic results for: �a� clusters detected under the HPP
assumption; �b� clusters detected under the NHPPage assumption; and
�c� clusters detected under the NHPPsize assumption
tencies. Therefore, the location of breaks in terms of the pipe
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segment associated with the break occurrence is considered to be
reliable. However, the location of breaks along the pipe segment
is more uncertain.

Another significant source of uncertainty is the estimation of
the rates for the null hypothesis model for the different types of
processes considered, i.e., NHPPage and NHPPsize. Due to noise in
the data and increases in the variance of estimates for the adjusted
rates resulting from smaller data sets, these estimates might not
accurately represent the true rates under each process assumption.
Finally, one last issue to be mentioned is the uncertainty resulting
from the heuristics used in the search procedure, which were criti-
cal to the computational feasibility of the proposed search algo-
rithm.

Exploring Possible Hypotheses for the Presence of Clusters
Evaluation of hypotheses regarding the causal factors influencing
the observed clusters of pipe breaks is difficult since only obser-
vational data are available rather than data resulting from a con-
trolled experiment. Nevertheless, some hypotheses about the
factors associated with or potentially related to the causes of
breaks can be explored, as presented in this section. Such hypoth-
eses build on domain knowledge in order to search for interesting
associations between breaks and attributes.

One hypothesis relies on the assumption that pressure has an
important role in the occurrence of breaks. In this case, pressure
on pipes is not available in this data set and therefore the eleva-
tion at which the breaks occur is taken as a surrogate variable.
This assumption is valid for most of the system, but a portion of
the northwest portion of the network is known to be a low pres-
sure zone. If the elevation for each break is considered and a
histogram of the elevation distribution is built as shown in Fig.
11, it is possible to observe that Region 1 in the HPP �Fig. 10� has
very low elevation, corresponding to very high hydraulic pres-
sure. Elevation was 256 m on average for the breaks in the clus-
ter, compared to the overall distribution of elevation in the system
as shown in Fig. 11.

Table 1. Description of Most Significant Clusters of Pipe Breaks under

HPP

Log-likelihood P -value Size Log-likelihoo

R1 32.7823 0.001 6 33.5259

R2 32.6398 0.001 21 28.9056

R3 23.4326 0.001 22 29.629

R4 22.2936 0.002 17 19.3669

R5 20.8497 0.005 24 19.2364

R6 17.4254 0.031 6 ns

Fig. 11. Histogram of the elevation of break points
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A second hypothesis relies on the assumption that surface
loads might cause stresses on pipes that eventually lead to break-
age. Such loads might be a single event as in the case of a load
caused by an activity at a construction site, or a periodic load as
in the case of traffic in roads above pipes. Data on unique events
were not available for this study, and no reasonable proxy was
identified. Periodic loads can result from several sources, and
heavy traffic is a major source of load. The locations of bus routes
are presented in Fig. 12, and these routes match some of the
clusters �Regions 2, 4, and 5�. However, there are several route
lengths that are not associated with a cluster as well as clusters
that do not coincide with bus routes. Therefore, while the overlap
between clusters and transportation routes is suggestive of a pos-
sible association between these attributes, the data are not conclu-
sive. Moreover, the distress caused by heavy traffic load depends
on the depth of pipes and pipe bedding, which are unknown for
the present data set. The utility management knows that many
older pipes do not have adequate bedding, but there is no data
available regarding precisely which pipes have adequate bedding.
Pipe depth is unknown and the best information available is that,
on average, pipes are 4 feet �1.2 m� deep. Furthermore, construc-
tion quality is expected to play a major role, but is not captured in
any asset-related database. Other factors might also interact with
surface loads and cause local effects, such as soil type, and pipe
age and material, and a more detailed follow-up analysis might
examine the joint impact of these variables.

nt H0 Models

PPage NHPPsize

P -value Size Log-likelihood P -value Size

0.001 6 39.3022 0.001 6

0.001 21 26.194 0.001 24

0.001 25 19.1803 0.014 4

0.009 17 ns ns ns

0.009 24 24.4094 0.002 11

ns ns ns ns ns

Fig. 12. Location of bus routes and their overlap with regions with
abnormally high breakage
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Conclusions

This paper presented a spatial scan statistics approach for detect-
ing clusters of point events occurring on the edges in a physical
network represented as a planar graph. This approach enabled an
exploratory analysis of the occurrence of break events on a water
distribution system, and can also be applied to other networked
infrastructure assets. After performing this exploratory analysis to
detect anomalous patterns of break events, one possible subse-
quent step is the development of a model to predict breakage in
the network while accounting for the presence of clusters. This
modeling step, however, is beyond the scope of this paper, though
preliminary analysis suggested some possible variables which
might be appropriate for such a model.

The novel features of the proposed approach are: �1� the use of
spatial analysis techniques to assess breakage data sets, in order to
detect regions of high breakage density and �2� the development
of the cluster detection approach, building on the spatial scan
framework of Kulldorff �1997� and Neill �2006�, and its adapta-
tion to the specific challenges of the pipe breakage problem. The
results indicate that the adapted spatial scan statistics approach
presented in this paper was able to detect potentially useful re-
gions of noncompact shape and to account for the expected ef-
fects of pipe age and diameter on the breakage process.

From an asset management perspective, detected regions can
be prioritized for maintenance and replacement, and can be used
in benefit-cost analysis for capital investments. Additionally, the
results presented in this paper are relevant for the insights they
provide into factors leading to the observed abnormal breakage
rates in the water distribution network data set considered here.

While results indicate that the algorithm is able to detect re-
gions with statistically significant and abnormally high occur-
rence of breaks, future work will extend the algorithm capabilities
to provide: �1� detection of space-time patterns, i.e., emerging
clusters, and dynamic changes in cluster shape and size; �2� in-
corporation of sensing data, particularly leak detection data pro-
vided by listening devices known as “correlators,” as an extra
source of information to assess physical condition of pipes; and
�3� multivariate modeling in order to assess the environmental
factors associated with interesting regions that might account for
abnormal breakage patterns observed within clusters.
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