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The Alternating Prisoner's Dilemma is a variant of the iterated Prisoner's Dilemma in which
the players alternate in the roles of actor and recipient. We searched for strategies which are
&&optimal'' in the Alternating Prisoner's Dilemma with noise (a non-zero probability that
a player's decision will be transmitted incorrectly). In order to achieve success against a variety
of other strategies, a strategy must be &&self-cooperating'' (able to achieve mutual cooperation
with its clone), &&C-exploiting'' (able to exploit unconditional cooperators), and &&D-unexploit-
able'' (able to resist exploitation by defectors). It must also have high evolutionary &&domi-
nance'', a general measure of evolutionary performance which considers both resistance to
invasion and the ability to invade other strategies. A strategy which meets these optimality
criteria can evolve cooperation by invading a population of defectors and establishing a stable
cooperative society.

Most of the strategies commonly discussed in the Alternating Prisoner's Dilemma literature
are low-memory strategies such as Tit For Tat, Pavlov, and Firm But Fair, but none of these
strategies can simultaneously meet all of the optimality criteria. However, we discovered
a class of higher memory &&Firm Pavlov'' strategies, which not only meet our stringent
optimality criteria, but also achieve remarkable success in round-robin tournaments and
evolutionary interactions. These higher memory strategies are friendly enough to cooperate
with their clone, pragmatic enough to exploit unconditional cooperators, and wary enough to
resist exploitation by defectors: they are truly &&optimal under noise'' in the Alternating
Prisoner's Dilemma.
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Introduction

The Prisoner's Dilemma is a widely used math-
ematical model of interactions between indi-
viduals with partially con#icting goals. In this
paradoxical 2]2 non-zero sum game, each
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player must choose whether to cooperate for
mutual bene"t or to defect for individual bene"t
(harming the other player). The outcomes of the
Prisoner's Dilemma game are given in the follow-
ing payo! table (Table 1).

If both players cooperate, each receives the
payo! R as a reward for mutual cooperation. If
both players defect, each receives the payo! P as
a punishment for defecting. If one player defects
while the other cooperates, the defector receives
payo! ¹ (as a temptation to defect), while the
cooperator receives the sucker payo! S. The
Prisoner's Dilemma is de"ned by ¹'R'P'S.
( 2001 Academic Press



TABLE 1
Payo+s to P1/P2

P1

C D

P2 C R/R T/S
D S/T P/P
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Additionally, 2R'¹#S, so cooperation
achieves more points than alternating ¹ and
S payo!s.

What is the optimal strategy for the Prisoner's
Dilemma? It is clear that mutual cooperation is
preferable to mutual defection, but in the one-
shot Prisoner's Dilemma game, no matter what
the other player chooses, a player can achieve
a higher payo! by defection. Hence the optimal
strategy is to defect, and mutual defection is
the only rational result of a one-shot Prisoner's
Dilemma. An Iterated Prisoner's Dilemma (IPD)
occurs when a Prisoner's Dilemma interaction is
repeated by the same players over a number of
rounds. Based on past results, reciprocal altruism
can develop, enabling mutual cooperation to be-
come a rational option. A strategy for the IPD is
an algorithm for deciding whether or not to co-
operate on a given round, based on the results of
previous rounds. It is clear that some strategies
are better than others. If a player cooperates too
often, the other player can take advantage of him
by defecting; if he defects too often, the other
player is likely to retaliate, resulting in low scores
for both players. Since a strategy's performance
in the IPD is highly dependent on the other
player's strategy as well as the speci"c parameters
of the game, it is much less obvious as to what an
&&optimal'' IPD strategy would be, or even how
&&optimal'' should be de"ned. In 1980, Robert
Axelrod conducted a computer &&tournament'' in
which 14 strategies designed by leading game
theorists were matched against each other. The
winning strategy was ¹it for ¹at (¹F¹), submit-
ted by Anatol Rapoport. This strategy co-
operates initially, then echoes what the other
player chose in the last round (Axelrod & Hamil-
ton, 1981). Tit for Tat is very successful in many
variants of the Prisoner's Dilemma game, and its
success has sparked theories of the evolution of
cooperation based upon reciprocity (Axelrod,
1984). These models have been applied to "elds
ranging from economics to biology (e.g. Maynard
Smith, 1982; Axelrod, 1984; Milinski, 1987).

Tit for Tat, however, is clearly not successful in
an iterated Prisoner's Dilemma with &&noise'',
a non-zero probability that a player's decision
will be transmitted incorrectly. In an IPD inter-
action between two ¹F¹ strategies, a single acci-
dental defection can lead to an endless sequence
of mutual recriminations (Nowak & Sigmund,
1990). Various other strategies have been exam-
ined for the the noisy iterated Prisoner's Dile-
mma, including the Pavlov (Win-Stay, Lose-Switch)
strategy, which cooperates only after mutual co-
operation or mutual defection. Pavlov is an &&er-
ror correcting'' strategy: against its clone, it can
recover from an accidental defection, resuming
mutual cooperation in a relatively small number
of rounds (Kraines & Kraines, 1989, 1993).

The Alternating Prisoner's Dilemma (APD) is
a variant of the iterated Prisoner's Dilemma in
which the players alternate in the roles of actor
and recipient rather than acting simultaneously
(Nowak & Sigmund, 1994; Frean, 1994). In this
game, players alternate turns, and on each
player's turn he must choose whether to co-
operate or defect. This game models many situ-
ations in which participants must take turns in
helping each other, such as gift-giving, or biparti-
san cooperation in politics. Alternating recipro-
cal altruism is also commonly observed in animal
behavior: for example, South American vampire
bats who have found a good meal will help hun-
gry bats by donating some of their surplus food
(Wilkinson, 1984). In this sort of interaction, only
one bat (the one with food) makes a decision
to cooperate; this cooperation is likely to be
reciprocated by other bats during future feedings.
Similarly, an Alternating Prisoner's Dilemma is
observed in the guarding behavior of the dwarf
mongoose (Rasa, 1989). When a group leaves the
termite mound where it has roosted for the night,
one member (a subadult male) will stay behind
and maintain a watch for predators, increasing its
own risk in order to protect the group. At the
next mound, another individual will run ahead
and establish the next watch, while the rearguard
rejoins the pack. In this example, the guarding
animal must make a choice between displaying
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vigilant guard behavior (cooperation) or focusing
on its own safety (defection). Examples of alter-
nating reciprocal altruism can also be seen in the
"ghting of young male baboons (Trivers, 1985).
In these examples, it makes no sense for the
players to cooperate simultaneously (Nowak
& Sigmund, 1994), so the standard Iterated
Prisoner's Dilemma does not model the situation
as well as the Alternating Prisoner's Dilemma.

To simplify our calculations, we focus on
a &&strictly alternating'' Prisoner's Dilemma be-
tween two players, A and B (i.e. A gets one turn,
then B gets one turn, every round). Player A's
choices are denoted in upper case (C or D), and
player B's choices are denoted in lower case (c or
d). To keep score, we treat each turn after the "rst
one as if it were a complete Prisoner's Dilemma,
and thus each player receives two payo!s every
round. For example, consider an APD game
which starts at CdDc. This means that, on the
"rst turn, Player A chooses C. Since it is the "rst
turn, neither player receives a payo!. On the
second turn, Player B chooses d. Since Player A's
last choice was C, A receives a sucker payo! S,
and B receives a temptation payo! ¹. On the
third turn, Player A chooses D. Since Player B's
last choice was d, both players receive a punish-
ment payo! P. On the fourth turn, Player
B chooses c. Since player A's last choice was D,
A receives a temptation payo! ¹, and B receives
a sucker payo! S. Thus after the sequence CdDc,
each player has received a total payo! of
¹#P#S. This process continues inde"nitely,
with players receiving payo!s based on the last
two turns.

Though some have argued that the IPD and
the APD are mathematically equivalent (Axel-
rod, 1984), the two games can result in dramati-
cally di!erent interactions between strategies.
For example, in an IPD game between two Tit
for Tat players, a single accidental defection leads
to a sequence of alternating temptation and
sucker payo!s, while in an APD game, an error
leads to a sequence of punishment payo!s. As
a result, strategies may be successful in IPD but
not APD interactions, or vice versa. For example,
two Pavlov players quickly restore mutual co-
operation after an error in the IPD (CD DD CC
CC2), but in the APD an error leads to a 6-turn
cycle of temptation, punishment, and sucker
payo!s (CdDcDdCdDcDd2). Thus the Pavlov
strategy is `self-cooperatinga in the IPD but not
the APD. The Firm but Fair (FBF) strategy,
which cooperates except after receiving a sucker
payo!, is self-coooperating in the APD but not
the IPD (Frean, 1994). Two FBF players can
restore mutual cooperation after an error in the
APD (CdDcCc2), but in the IPD an error leads
to alternating temptation and sucker payo!s (CD
DC CD DC2). From these examples, it is clear
that the IPD and APD are distinct problems, and
successful strategies for one game may perform
poorly in the other.

n-ply strategies for the Alternating
Prisoner:s Dilemma

We now de"ne some strategies which are com-
monly discussed in the Alternating Prisoner's
Dilemma literature, and introduce the general
notion of an &&n-ply'' strategy. The n-move history
of a game is a string of C's and D's
H"h

n
h
n~12

h
2
h
1
, where h

k
"C if a player co-

operated k turns ago, and h
k
"D if a player

defected k turns ago. Odd indices correspond to
the opponent's moves, and even indices corres-
pond to the player's moves. The opponent's
moves are generally written in lower case, and the
player's moves in upper case. For example, a 3-
move history of cCd would mean that the oppo-
nent's most recent move was defection, the
player's most recent move was cooperation, and
the opponent's previous move was cooperation.

We can enumerate the 2n possible history
strings H in a lexicographic order, with H

1
"

C2Cc, H
2
"C2Cd,2, H

2n~1
"D2Dc,

H
2n"D2Dd. An n-ply strategy for the APD

chooses whether to cooperate or defect based on
the n-move history H. The strategy is de"ned by
2n numbers (a

12
a
2n), where 0)a

i
)1 for all i,

and each a
i

corresponds to the probability of
cooperation if H"H

i
.

For example, the 2-ply strategy (1 0 1 0.2) will
cooperate if H"H

1
or H"H

3
, that is, if the

2-move history is Cc or Dc. Similarly, it will
defect if the 2-move history is Cd, and cooperate
with probability 0.2 if Dd.

The commonly discussed 1-ply strategies in-
clude A¸¸C (1 1), A¸¸D (0 0), ¹F¹ (1 0), and
Random (1

2
1
2
). The commonly discussed 2-ply
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strategies include Pavlov (1 0 0 1), Firm But Fair
(1 0 1 1), and the &&generous strategies'' g1
(1 1

3
1 1

2
), g2 (1 1

2
1 1

2
), and g3 (1 2

3
1 1

2
). We can

also form a 2-ply strategy by a trivial extension of
a 1-ply strategy: the 2-ply strategy (a b a b) be-
haves equivalently to the 1-ply strategy (a b). In
general, the n-ply strategy S

n
is equivalent to the

n#1-ply strategy formed by concatenating
S
n

with itself.
To fully specify an n-ply strategy, we should

also specify its behavior at the start of the game
(turns 1..n). We generally assume that h

k
"C for

k*n, that is, &&moves'' in the history list before
the start of the game are assumed to be coopera-
tion. For example, on the "rst turn of a game,
a 3-ply strategy will assume that the history is
H"cCc. Alternatively, we can average over all
possible initial history sequences.

What Does it Mean to be Optimal?

The question of what makes a strategy &&opti-
mal'' in the Iterated Prisoner's Dilemma or Alter-
nating Prisoner's Dilemma is very di$cult to
answer. As many researchers have noted, the
performance of a strategy is highly dependent on
which other strategies it interacts with; this has
led to several con#icting de"nitions of the term
&&optimality'', with resulting di!erences in which
strategies (if any) are considered optimal. Accord-
ing to one line of argument, optimality is de"ned
relative to a given set of opponents: the optimal
strategy is the one which achieves the highest
score (with respect to some measure) against that
set of opponents. One typical measure of perform-
ance is the average score in a round-robin tour-
nament interaction. As we shall prove, no "xed
strategy performs best against every given set of
opponents in a round-robin tournament inter-
action, and this has caused many to argue that no
optimal strategy exists.

However, there are three main problems with
this argument. First, it is not clear that we should
limit our search to &&"xed'' strategies: given a su$-
ciently long game length, it may be possible for
a strategy to achieve success against an opponent
by making a large number of exploratory moves,
constructing and testing hypotheses which de-
scribe the opponent's behavior, and thus adapt-
ing over time. Such strategies are beyond the
scope of this paper; we consider only those strat-
egies whose behavior is governed by simple, "xed
rules. Second, it is not clear if a round-robin
interaction is the best measure of &&success''
on which to base our de"nition of optimality.
Numerous other measures have been proposed,
including various measures of success in evolu-
tionary interactions. We consider many of these
&&evolutionary optimality criteria'' later in the
paper, and propose our own measure of evolu-
tionary success. This measure, which we call
&&evolutionary dominance'', is a combination of
evolutionary stability (ability to resist invasion)
and evolutionary potency (ability to invade other
strategies). Nevertheless, all of these measures
depend on the choice of opponents; it is clear that
if we require an &&optimal'' strategy to be optimal
with respect to every given set of opponents, most
reasonable measures will conclude that no opti-
mal strategy exists.

The third, and most profound, objection to this
argument questions the idea that &&optimal'' strat-
egies must be most successful with respect to
every given set of opponents. In the real world,
organisms must react to an uncertain environ-
ment; they are likely to have limited and incom-
plete knowledge, and must act in the best way
they can, given this knowledge. Thus we ask the
following question: what is the best "xed strategy
for an organism to choose, assuming no prior
knowledge of the set of opponents? An optimal
choice of strategy is one which maximizes its
expected success under uncertainty, given the in-
formation and options available to it. In other
words, we consider a strategy optimal if no other
known strategy is expected to achieve a higher
performance in this uncertain environment. Thus
we use an inductive approach to optimality, one
which bears a distinct resemblance to the modern
scienti"c method: a strategy is considered opti-
mal until we discover a strategy which is demon-
strably &&better''.

In order to apply this method, we must pro-
pose and examine &&optimality criteria'', stan-
dards for evaluating the general performance of
a strategy. If we de"ne a reasonable set of criteria,
strategies which meet these criteria are clearly
preferable to those which do not: by de"ning
increasingly strict criteria, we can eliminate non-
optimal strategies and gradually narrow down
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the possibilities for an optimal strategy. If we
limit the domain of strategies under considera-
tion (for example, all n-ply strategies), we may
even be able to "nd a single strategy which is
clearly optimal in that domain.

The question remains: how do we de"ne these
optimality criteria? It is clear from our de"nition
that an optimal strategy must perform with
a high degree of relative success in interactions
with many other sets of strategies. Thus we
search for criteria which are strongly correlated
with a high average performance. In other words,
it is not su$cient to propose criteria and consider
a strategy &&optimal'' if it meets these standards. It
is also necessary to show that strategies which
meet the criteria are highly successful against
a wide variety of strategies (with respect to such
established criteria as round-robin tournament
performance), for otherwise our chosen criteria
would be useless.

Before de"ning the optimality criteria, we "rst
attempt to gain a general idea of what it means
for a strategy to be &&successful'' in an Alternating
Prisoner's Dilemma interaction. We consider
a single, in"nitely long APD game between two
strategies X and>. The goal of each strategy is to
maximize its average payo! per turn,

w" lim
N?=

1
N!1

N
+
i/2

p (i),

where p (i) is the payo! received by that strategy
after turn i. Though the in"nite game length is an
idealization of real-life interactions, it serves as
a good approximation of situations in which the
probability of further encounters is high (Nowak
& Sigmund, 1994). Kraines and Kraines show
that average payo!s in 4-round and 8-round
games are closely approximated by the in"nite
game (2000). Thus even short games can be
modeled closely by this assumption, as long as
the players believe that the game will continue.

We denote the expected value of the payo!
w to strategy X in an in"nitely long game against
strategy > as w(XD>). In particular, we de"ne
w(XDX), the &&self-payo!'' of strategy X, to be the
expected value of its payo! w in an in"nitely long
game against its clone. In certain cases (i.e. inter-
actions between deterministic strategies with no
noise), payo!s may vary depending on which
strategy goes "rst. In these cases, we average the
two possibilities. We assume that an APD strat-
egy X will interact with many di!erent strategies
> over time, and thus the strategy's goal is to
maximize its average payo! against all strategies
it interacts with. Assuming a population of oppo-
nents >

i
with varying frequencies f (>

i
), with

+
i
f (>

i
)"1:

w (X)"+
i

f (>
i
)w (XD>

i
).

The relative success of two strategies X and
> can be evaluated by comparing w(X) and w(>):
strategies with higher w are considered to be
more successful.

What characteristics must a strategy have for it
to achieve relative success against a wide variety
of other strategies? Two things in#uence a strat-
egy's payo! on any given turn: a strategy scores
higher if it defects, and if its opponent cooperates.
Thus a strategy X should choose to cooperate
with a strategy > only if cooperating will make
> signi"cantly more likely to cooperate on future
turns. In particular, a strategy should be able to
exploit unconditional cooperators, as well as pre-
vent other strategies from exploiting it. It should
also cooperate with nice, but unexploitable, strat-
egies such as Tit for Tat. Thus one possibility for
the optimality criteria would be to consider
a strategy's scores against A¸¸C, A¸¸D, and
¹F¹. However, since ¹F¹ performs poorly in
games with noise, and choosing any speci"c vari-
ation of ¹F¹ adds a subjective bias to our cri-
teria, we choose instead to consider a strategy's
score against its clone. Strategies which can
achieve cooperation with their clones are likely to
cooperate with a wide range of other strategies,
while strategies which do not cooperate with
their clones are unlikely to achieve cooperation
with most other strategies.

Combining these desired characteristics, we
"nd that an &&optimal'' strategy must possess
three essential properties. It must be &&self-
cooperating'' (able to achieve mutual coopera-
tion with its clone), &&unexploitable'' (able to resist
exploitation by A¸¸D and other strategies), and
&&exploiting'' (able to exploit unconditional coop-
erators). We will show that strategies which
meet these simple criteria are able to achieve
remarkable success with respect to a variety of
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measures, including a round-robin tournament
simulation.

These properties are also essential for success
in the &&evolutionary'' APD, in which a strategy's
payo! w is used as a measure of its reproductive
"tness (Maynard Smith & Price, 1973). Strategies
which receive higher payo!s are able to produce
more o!spring, while those with poor perfor-
mance quickly die o!, and thus the population of
strategies evolves over time. In the evolutionary
APD, an &&optimal'' strategy should be able to
invade and resist invasion by other strategies.
According to Maynard Smith's de"nition (1982),
strategy X invades strategy Y if w (XD>)'
w(>D>), or if w(XD>)"w(>D>) and w(XDX)'
w(>DX). We will discuss the evolutionary APD,
de"ning a more precise measure of evolutionary
&&dominance'', but for now we simply consider
a strategy's evolutionary interactions with un-
conditional cooperators (the A¸¸C strategy) and
unconditional defectors (the A¸¸D strategy). An
optimal strategy should be able to evolve co-
operation by invading a population of defectors
and establishing a cooperative &&society''. Once
established, this society should be &&stable''
enough to resist invasion by defectors, as well as
resisting genetic drift, the in"ltration of the popu-
lation by unconditional cooperators. Strategies
which are unexploitable and self-cooperating can
establish a stable cooperative society of this sort,
and strategies which are exploiting can resist
genetic drift. We will also show that the strategies
meeting these criteria are extremely successful in
evolutionary interactions with a wide variety of
other strategies, with success de"ned by the
measure of &&evolutionary dominance''.

OPTIMALITY CRITERIA

We de"ne three criteria for optimality, &&self-
cooperating'', &&C-exploiting'', and &&D-unexploit-
able''. We "rst de"ne a &&self-cooperating''
strategy in terms of its self-payo! w(XDX), com-
paring this to the self-payo!s of A¸¸D (the
lowest possible self-payo! ) and A¸¸C (the high-
est possible self-payo! ):

De5nition 1. A strategy X is self-cooperating if
w(XDX)'w(A¸¸DDA¸¸D). A strategy X is totally
self-cooperating if w(XDX)"w(A¸¸CDA¸¸C).
Next, we de"ne a &&C-exploiting'' strategy in
terms of its payo! against A¸¸C, again compar-
ing this to the payo!s of A¸¸D (maximum) and
A¸¸C (minimum).

De5nition 2. A strategy X is C-exploiting if
w(XDA¸¸C)'w(A¸¸CDA¸¸C). A strategy X
is totally C-exploiting if w(XDA¸¸C)"
w(A¸¸DDA¸¸C).

Third, we de"ne a &&D-unexploitable'' strategy
in terms of its payo! against A¸¸D, again com-
paring this to the payo!s of A¸¸D (maximum)
and A¸¸C (minimum).

De5nition 3. A strategy X is D-unexploitable if
w(XDA¸¸D)'w(A¸¸CDA¸¸D). A strategy X
is totally D-unexploitable if w(XDA¸¸D)"
w(A¸¸DDA¸¸D).

More generally, we de"ne the &&relative perfor-
mance'' of strategy X against strategy > to be

p
Y
(X)"

w(XD>)!inf
Z

w (ZD>)
sup

Z
w(ZD>)!inf

Z
w(ZD>)

.

Thus p
Y
(X)"1 if X achieves the maximum pos-

sible score against>, and p
Y
(X)"0 if X achieves

the minimum possible score against >. We now
consider the &&relative performance'' of strategy
X against A¸¸C and A¸¸D, which we denote by
p
C

and p
D
, respectively:

p
C
"p

ALLC
(X)

"

w(XDA¸¸C)!w(A¸¸CDA¸¸C)
w(A¸¸DDA¸¸C)!w (A¸¸CDA¸¸C)

,

p
D
"p

ALLD
(X)

"

w (XDA¸¸D)!w(A¸¸CDA¸¸D)
w (A¸¸DDA¸¸D)!w(A¸¸CDA¸¸D)

.

Thus, a strategy is &&C-exploiting'' if p
C
'0, and

&&totally C-exploiting'' if p
C
"1. Similarly, a strat-

egy is &&D-unexploitable'' if p
D
'0, and &&totally

D-unexploitable'' if p
D
"1. Note that each of

these quantities is the proportion of defections by
X against A¸¸C or A¸¸D, respectively.



TABLE 2
p values for no noise APD

Strategy p
S

p
C

p
D

¹F¹ (1 0 1 0) 1 0 1
G¹F¹ (1 g 1 g) 1 0 1!g
A¸¸C (1 1 1 1) 1 0 0
A¸¸D (0 0 0 0) 0 1 1
PA< (1 0 0 1) 1 0 1

2
FBF (1 0 1 g) 1 0 1

1`g
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We also de"ne the &&relative self-performance''
of a strategy to be

p
S
"

w (XDX)!w (A¸¸DDA¸¸D)
w(A¸¸CDA¸¸C)!w (A¸¸DDA¸¸D)

.

Note that a strategy is &&self-cooperating'' if
p
S
'0, and &&totally self-cooperating'' if p

S
"1.

Now we consider what p values a strategy must
have to be considered &&optimal''. A &&perfectly
optimal'' strategy X should attain the maximum
possible score against all strategies >: that is,
p
Y
(X)"1 for all >. However, a simple argument

shows that this is impossible to achieve:

Proposition 1. No perfectly optimal strategy
exists.

See Appendix A for proof. We now consider
strategies which are optimal in their interactions
with cooperators and defectors. To quantify this,
we apply the Maynard Smith criteria. For X to
invade A¸¸C, w (XDA¸¸C)'w(A¸¸CDA¸¸C),
which implies p

C
'0. For X to invade A¸¸D,

w(XDA¸¸D)"w(A¸¸DDA¸¸D) and w(XDX)'
w(A¸¸DDX), which implies p

D
"1 and p

S
'0.

For X to resist invasion by A¸¸C, w(XDX)*
w(A¸¸CDX). Solving for w(XDX) in terms of p

S
,

and w(A¸¸CDX) in terms of p
C
, we obtain

p
C
*

R!P
R!S

(1!p
S
) .

For X to resist invasion by A¸¸D, w(XDX)'
w(A¸¸DDX). Solving for w (XDX) in terms of p

S
,

and w(A¸¸DDX) in terms of p
D
, we obtain

p
D
'1!

R!P
¹!P

p
S
.

We de"ne a &&strongly optimal'' strategy as one
which can invade and take over a population of
defectors, establishing total self-cooperation, and
resist invasion by A¸¸D and A¸¸C. A &&weakly
optimal'' strategy can invade and take over
a population of defectors, establishing some de-
gree of self-cooperation, and resist invasion by
A¸¸D and A¸¸C. This implies:
De5nition 4. A strongly optimal strategy is
a strategy with p

D
"1, p

S
"1, and p

C
'0.

De5nition 5. A weakly optimal strategy is a
strategy with p

D
"1, p

S
'0, and p

C
'( (R!P)/

(R!S )) (1!p
S
).

We now consider these criteria for APD games
withm varying amounts of noise.

OPTIMALITY CRITERIA FOR NO NOISE APD

In the no noise APD, we assume that errors do
not occur; a strategy always makes the choice
(cooperation or defection) that it intends to
make. Thus we know that w(A¸¸CDA¸¸C)"R,
w(A¸¸DDA¸¸D)"P, w(A¸¸CDA¸¸D)"S, and
w(A¸¸DDA¸¸C)"¹ for the no noise APD. Thus
p
S
"(w(XDX)!P)/(R!P), p

C
"(w(XDA¸¸C)!

R)/(¹!R), and p
D
"(w(XDA¸¸D)!S)/(P!S).

We now consider the strategies which are
most commonly discussed in the Prisoner's
Dilemma: Tit for Tat (¹F¹), Generous Tit For
Tat (G¹F¹), A¸¸C, A¸¸D, Pavlov (PA<), and
Firm But Fair (FBF). We compute p

S
, p

C
, and

p
D

for each strategy in an APD with no noise
(Table 2).

As can be seen from the table, none of these
strategies are even weakly optimal. ¹F¹ is
closest to optimal, since it can invade a popula-
tion of defectors and establish complete coopera-
tion. However, since ¹F¹ does not exploit
unconditional cooperators, it is vulnerable to
in"ltration by A¸¸C, allowing defectors to rein-
vade. It should be noted that all of these strat-
egies have a &&2-ply memory'' or less: they react
based only on the last two turns (strategy's move



TABLE 3
p values for in,nitesimal noise APD

Strategy p
S

p
C

p
D

¹F¹ 1
2

0 1
G¹F¹ 1 0 1!g
A¸¸C 1 0 0
A¸¸D 0 1 1
PA< 1

2
1
2

1
2

FBF 1 0 1
1`g
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followed by opponent's move). In fact, we can
prove:

Proposition 2. No 0, 1, or 2-ply strategy is
strongly optimal in the APD with no noise.

See Appendix A for proof. We note that a 2-ply
strategy may be weakly optimal: the GRIM strat-
egy (1 0 0 0) with initial cooperation probability 1

3
has p

S
"1

9
, p

C
"2

3
, and p

D
"1, and thus meets

the criteria for weak optimality. In order to "nd
a strongly optimal strategy, however, we must
consider strategies of 3-ply memory or higher.

OPTIMALITY CRITERIA FOR INFINITESIMAL

NOISE APD

We now consider APD games with noise.
Noise is de"ned as a non-zero probability e that
an error occurs on a given turn: a strategy will
defect when it meant to cooperate, or cooperate
when it meant to defect, with probability e. This
discrepancy between intent and result may be
caused by performance errors or environmental
factors; these errors in implementing a rule are
unavoidable in any biological context (May,
1987).

In an APD game with &&in"nitesimal noise'', it
is possible for a player's decision to be transmit-
ted incorrectly, but the probability of this occur-
ring is extremely low. The in"nitesimal noise case
can be thought of as the limiting case of "nite
noise, with a noise probability eP0, or the re-
sults can be applied as an approximation for
small e'0.

We note that the presence of in"nitesimal noise
does not change the interactions between A¸¸C
and A¸¸D: thus w(A¸¸CDA¸¸C)"R,
w(A¸¸DDA¸¸D)"P, w(A¸¸DDA¸¸C)"¹, and
w(A¸¸CDA¸¸D)"S as in the no noise case.
However, it is important to note that w(XD>) can
have a discontinuity at e"0: in other words, the
performance of a strategy can di!er signi"cantly
between the no noise case (e"0) and the in"ni-
tesimal noise case (eP0). For example, consider
the behavior of the Tit for Tat strategy, in an
APD game with its clone. For the no noise case,
¹F¹ and its clone will cooperate continually,
giving p

S
"1. For the in"nitesimal noise

case, a single error will lead to a rut of mutual
defection with payo! P, while a second error will
restore mutual cooperation. In an in"nitely long
game we can expect ¹F¹ and its clone to be in
the mutual defection rut half the time, giving each
an average payo! of (R#P )/2. Thus p

S
"1

2
for

the ¹F¹ strategy. We use similar reasoning to
compute p

S
, p

C
, and p

D
for ¹F¹, G¹F¹, A¸¸C,

A¸¸D, PA<, and FBF. We assume that g<e for
the G¹F¹ and FBF strategies (Table 3).

Thus, we can see that none of these lower
memory strategies is even weakly optimal. As in
the no noise case, we can prove that no strategy
of less than three ply is strongly optimal. But for
in"nitesimal noise, we can go even further, prov-
ing that:

Proposition 3. No 0, 1, or 2-ply strategy is
(strongly or weakly) optimal in the in,nitesimal
noise APD.

See Appendix A for proof. Thus, in order to
"nd optimal strategies for the in"nitesimal noise
APD, we must examine strategies with 3-ply or
higher memory.

OPTIMALITY CRITERIA FOR FINITE NOISE APD

We now consider APD games with a noise
level 0(e(1

2
, examining as to how a strategy's

payo! changes as a function of e. This enables us
to analyse games where the approximation e+0
does not hold.

First, it should be noted that the expected
average payo! from continued &&mutual coopera-
tion'' (ie. when both strategies intend to co-
operate) is less than R in the presence of noise. If
a strategy intends to cooperate with an error level



TABLE 4
p values for FBF (1 0 1 1) as a function of e

e p
S

p
C

p
D

0.001 0.999 0.001 0.499
0.010 0.990 0.007 0.495
0.050 0.953 0.034 0.475
0.100 0.913 0.064 0.450
0.200 0.843 0.111 0.396
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e, it will actually cooperate with probability
1!e, and defect with probability e. Similarly, if
a strategy intends to defect, it will cooperate with
probability e, and defect with probability 1!e.
Thus, the payo!s to A¸¸C and A¸¸D di!er from
the no noise and in"nitesimal noise cases

w (A¸¸CDA¸¸C)"(1!e)2R#e2P

#e (1!e) (¹#S),

w (A¸¸DDA¸¸D)"(1!e)2P#e2R

#e (1!e) (¹#S),

w (A¸¸DDA¸¸C)"(1!e)2¹#e2S

#e (1!e) (R#P),

w(A¸¸CDA¸¸D)"(1!e)2S#e2¹

#e (1!e) (R#P).

Since the p values of a strategy are de"ned in
terms of these payo!s, we obtain the expected
p values for A¸¸C and A¸¸D. For A¸¸C,
p
S
"1 and p

C
"p

D
"0. For A¸¸D, p

S
"0 and

p
C
"p

D
"1. For nearly all strategies, however,

the p values vary as a function of e. In most cases,
p
C

increases, and p
S

and p
D

decrease, with
increasing e. For example, we can compute
the p values for FBF (1 0 1 1) as a function of
e (Table 4). Recall that for in"nitesimal noise,
p
S
"1, p

C
"0, and p

D
"0.5.

Now, since the p values of a strategy vary with
e, how do we determine if a strategy is self-
cooperating, C-exploiting, or D-unexploitable
with "nite noise? One possibility is to choose
a constant &&noise resistance threshold'' NR¹.
Then for any given e, we de"ne:

De5nition 6. A strategy is self-cooperating at
noise e if p

S
*NR¹.

De5nition 7. A strategy is C-exploiting at noise
e if p

C
*NR¹.

De5nition 8. A strategy is D-unexploitable at
noise e if p

D
*NR¹.
Using a noise resistance threshold of
NR¹"0.9 and the ¹"5 payo! table, we "nd
that FBF is self-cooperating for e)0.117, but is
not D-unexploitable. ¹F¹, on the other hand, is
D-unexploitable for e)0.0697, but is not self-
cooperating.

In addition to de"ning the optimality criteria
for speci"c values of e, we also examine how
a strategy's self-payo! w(XDX) changes as a func-
tion of e. In particular, we de"ne a &&noise resist-
ance coe$cient'' NRC

S
, which gives a lower

bound for w(XDX) as a linear function of e. This
means that w(XDX) e"e*R!(NRC

S
)e for all

e. We assume that the noise level can vary from
0 to e

max
"0.2. Thus we de"ne

NRC
S
" sup

(e/02emax)

R!w (XDX)e/e
e

.

Once we have found NRC
S
, this gives us a lower

bound on the performance of a strategy for all
e)e

max
: we know w(XDX)*R!(NRC

S
)e. Thus

if a strategy has NRC
S
"5, and assuming R"3,

we know w(XDX)*3!5e. It should also be
noted that, for strategies which are not totally
self-cooperating under in"nitesimal noise,
NRC

S
"R.

It is clear that a strategy with lower NRC
S

is
more resistant to noise. How low must NRC

S
be

for a strategy to be considered &&"nite noise resis-
tant''? To answer this question, we consider the
results of a single error on the total self-payo! of
a strategy. For A¸¸C against its clone, an error
results in the pattern CdCcCc: the defector gains
(2¹!2R) and the cooperator loses (2R!2S) as
a result of this error, for an average loss of
2R!(¹#S) per player. For the (5,3,1,0) payo!
table, each player loses an average of
2(3)!(5#0)"1 point per error, and thus
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w+3!e, or NRC
S
+1. For FBF against its

clone, an error results in the pattern CdDcCc:
each player loses 3R!(¹#S#P)"three
points per error, and thus w+3!3e, or
NRC

S
+3. In general, if a single error leads to

N straight defections on average, each player
loses (N#1)R!(N!1)P!(¹#S) points per
error. We de"ne a strategy to be &&"nite noise
resistant'' if one error leads to an average of two
defections or less. This implies:

De5nition 9. A strategy is ,nite noise resistant if
NRC

S
)3R!P!¹!S.

Thus a strategy is "nite noise resistant for the
(5, 3, 1, 0) payo! table if NRC

S
)3, and for the

(4, 3, 1, 0) payo! table if NRC
S
)4. We now pro-

pose a new standard for optimality under "nite
noise:

De5nition 10. A strategy X is ,nite noise optimal
if it is "nite noise resistant, totally D-unexploit-
able under in"nitesimal noise, and C-exploiting
under in"nitesimal noise.

Thus a "nite noise optimal strategy must meet
all the criteria for strong optimality under in"ni-
tesimal noise, as well as having a low noise resist-
ance coe$cient NRC

S
. Since no strategy of less

than 3-ply memory is even weakly optimal under
in"nitesimal noise, we know that none of these
strategies are "nite noise optimal.

A New Class of Strategies

Thus our main goal is to "nd a higher memory
strategy which is &&"nite noise optimal''. This
strategy must be totally D-unexploitable, totally
self-cooperating, and (at least weakly) C-exploit-
ing under in"nitesimal noise. In other words, it
must have p

S
"p

D
"1 and p

C
'0 for eP0. It

must also be &&"nite noise resistant'', having
NRC

S
)3 for the (5, 3, 1, 0) payo! table and

NRC
S
)4 for the (4, 3, 1, 0) payo! table.

FIRST DEFECTOR STRATEGIES

We now de"ne the &&"rst defector strategies'',
a class of in"nite memory strategies. An n-ply ,rst
defector strategy for the APD chooses to
cooperate or defect based on the n-move history
H, together with a &&memory bit'' b. This bit
records which player most recently made an un-
provoked defection: it is set to 1 whenever the
2-move history is Cd (opponent made an unpro-
voked defection) and set to 0 whenever the 3-
move history is cDc or cDd (player made an
unprovoked defection). The strategy is de"ned by
2n#1 numbers (a

1
,2, a

2n
`1

), where 0)a
i
)1

for all i. For i"122n!1, a
i
corresponds to the

probability of cooperation if H"H
i
. However, if

H"H
2n (the n-move history is all defections)

either a
2n or a

2n
`1

is used: the probability of
cooperation is a

2n if b"0, and a
2n
`1

if b"1. For
example, consider the 2-ply "rst defector strategy
(1 0 0 [1 0]). This strategy will defect if the 2-move
history is Cd or Dc, and cooperate if the 2-move
history is Cc. If the history is Dd, it will cooperate
if b"0 (the player's unprovoked defection
started the sequence of D's) and defect if b"1
(the opponent's unprovoked defection started the
sequence of D's). First defector strategies are de-
noted by FD

=
to distinguish them from their

"nite memory approximations FD
n
.

FINITE MEMORY APPROXIMATIONS TO

FD STRATEGIES

Given a k-ply "rst defector strategy FD
=
"

(a
1
,2, a

2k
`1

), an n-ply approximation FD
n
to the

"rst defector strategy is de"ned as follows. For
n"k, FD

n
"(a

1
,2, a

2k~1
, g), where g is the

strategy's &&generosity'' (probability of coopera-
tion after n defections). Thus a 2-ply approxima-
tion to (1 0 0 [1 0]) would be the 2-ply strategy (1
0 0 g). For n'k, we de"ne FD

n
recursively by

concatenating two copies of FD
n~1

: FD
n
"

FDH
n~1

=FD
n~1

, where = is the concatenation
operator and FD*

n~1
is de"ned as FD

n~1
with:

g"G
a
2k if n is odd,

a
2k
`1

if n is even.

Thus a 3-ply approximation to (1 0 0 [1 0]) would
be (1 0 0 1)= (1 0 0 g)"(1 0 0 1, 1 0 0 g). A 4-ply
approximation would be (1 0 0 1, 1 0 0 0)= (1
0 0 1, 1 0 0 g)"(1 0 0 1, 1 0 0 0, 1 0 0 1, 1 0 0 g).
Thus, we can approximate a k-ply "rst defector
strategy FD

=
with an n-ply strategy FD

n
for any

desired n*k.
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THE FIRM BUT FAIR STRATEGY CLASS

The Firm But Fair strategy class consists of the
FBF

=
"rst defector strategy, as well as its n-ply

approximations FBF
n
. FBF

=
is the 2-ply "rst

defector strategy (1 0 1 [1 0]), which behaves
equivalently to &&contrite TFT'' (Wu & Axelrod,
1995) and &&Reciprocity'' (Leimar, 1997). The 2-
ply approximation FBF

2
(g) is the standard Firm

But Fair strategy (1 0 1 g). The 3-ply and higher
approximations are de"ned as follows, where
= is the concatenation operator:

FBF
3
(g)"FBF

2
(g"1)=FBF

2
(g)

"(1 0 1 1, 1 0 1 g),

FBF
4
(g)"FBF

3
(g"0)=FBF

3
(g)

"(1 0 1 1, 1 0 1 0, 1 0 1 1, 1 0 1 g),

FBF
n
(g)

"G
FBF

n~1
(g"1)=FBF

n~1
if n is odd,

FBF
n~1

(g"0)=FBF
n~1

if n is even.

These strategies cooperate with a cooperating
opponent, and defect in response to an unpro-
voked defection by the opponent. In the event of
a sequence of defections, they will cooperate if
they were the "rst unprovoked defector (cDd,
cDdDd, etc.), defect if the opponent was the "rst
unprovoked defector (Cd, CdDd, etc.), or co-
operate with probability g if their memory capa-
city is exceeded (the "rst defection occurred at
least n turns ago, so they do not know who
defected "rst).

THE FIRM PAVLOV STRATEGY CLASS

The Firm Pavlov class of strategies is a vari-
ation of Firm But Fair which also can exploit an
unconditionally cooperating opponent. The
Firm Pavlov strategy class consists of the FP

=
"rst defector strategy, as well as its n-ply approxi-
mations FP

n
. FP

=
is the 3-ply "rst defector strat-

egy (1 0 0 1, 1 0 1 [1 0]). The 3-ply approximation
FP

3
(g) is the strategy (1 0 0 1, 1 0 1 g). The 4-ply

and higher approximations are de"ned as
follows, where = is the concatenation operator:

FP
4
(g)"FP

3
(g"0)=FP

3
(g)

"(1 0 0 1, 1 0 1 0, 1 0 0 1, 1 0 1 g),

FP
n
(g)"G

FP
n~1

(g"1)=FP
n~1

if n is odd,

FP
n~1

(g"0)=FP
n~1

if n is even.

These strategies are similar to FBF
n
, but defect

after they successfully exploit the opponent
(3-move history cDc). They do not defect after a
3-move history of dDc, because this would pre-
vent the strategy from breaking out of sequences
of mutual defection against itself.

We now examine the performance of various
FBF and FP strategies, searching for strategies
which meet the criteria for in"nitesimal noise
optimality, "nite noise optimality, and arbitrary
noise optimality.

Optimality of FBF and FP

OPTIMALITY UNDER NO NOISE AND

INFINITESIMAL NOISE

For the no-noise case, FBF
n
(g) has p

S
"1 and

p
C
"0, since it will cooperate continually against

its clone or A¸¸C. Its value of p
D

depends on
both n and g. Against A¸¸D, FBF

n
(g) will co-

operate with probability g if it has made at least
xn/2y straight defections, and defect otherwise.
Thus it cooperates once every xn/2y#1/g turns.
This gives us

p
D
"

(xn/2y!1)g#1
(xn/2y)g#1

.

Thus, FBF
n
(g) has p

D
"1 for g"0, and the

in"nite memory FBF
=

strategy also has p
D
"1.

FP
n
(g) with initial cooperation has p values iden-

tical to FBF
n
(g). However, FP

n
(g) with initial

defection will exploit A¸¸C continually, giving it
p
C
"1. Thus for all n, FP

n
(0) with initial defec-

tion has p
C
"p

D
"p

S
"1, and thus it is strongly

optimal for no noise. Similarly, the in"nite mem-
ory FP

=
with initial defection has p

C
"p

D
"

p
S
"1, and is strongly optimal for the no noise

APD.



TABLE 5
Noise resistance coe.cients of FP

n
(g) and FBF

n
(g),

¹"5

g FBF
2

FP
3

FBF
3

FP
5

FBF
5

0 R 5 5 3.01 3
0.01 201 4.86 4.82 3.01 3
0.02 101 4.73 4.65 3.01 3
0.05 41 4.36 4.19 3 3
0.10 21 3.83 3.59 3 3
0.20 11 3.21 3.04 3 3
0.50 5 3 3 3 3
1 3 3 3 3 3
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For in"nitesimal noise, we "rst note that an
FBF or FP strategy's value of p

D
will be un-

changed from the no noise case. The FBF strat-
egies have p

C
"0 as in the no noise case, but the

FP strategies have p
C
"1

3
. This results since, in

cooperation, only an error by FP will cause it to
start exploiting A¸¸C, but while exploiting, an
error by either player will cause it to resume
cooperation. Thus FP is twice as likely to leave
the exploiting rut as to enter, and it will spend
one-third of the time exploiting A¸¸C.

We now consider self-cooperation under in"ni-
tesimal noise, computing the proportion of time
that an FBF or FP strategy will be in mutual
cooperation with its clone. We "rst examine the
FP

3
(0) strategy (1 0 0 1, 1 0 1 0), demonstrating

that p
S
"1. But how can FP

3
(0) be totally self-

cooperating if its generosity (probability of co-
operation after dDd) is 0? It is possible for FP

3
(0)

to fall into a rut of mutual defection with its
clone, but it requires two errors to enter the rut
and only a single error to restore cooperation. It
thus enters the rut once every 1/e2 turns, and
leaves the rut every 1/e turns. Hence, in an in"-
nitely long game, we can expect FP

3
(0) to be in

the defection rut with probability:

1/e
1/e2#1/e

"

e
1#e

+0.

Thus FP
3
(0) has p

S
"1, p

D
"1, and p

C
"1

3
.

We have found a strategy that meets the criteria
for strong optimality in the in"nitesimal noise
case!

We now compute the proportion of time that
an FBF or FP strategy will be in a rut of mutual
defection with its clone in the in"nitesimal noise
APD. In general, it takes vn/2w errors to enter the
mutual defection rut, and the strategies can es-
cape the rut with probability g (g*e). Thus the
proportion of time spent in this state is

evn@2w

g#evn@2w
.

For e+0, this quantity is negligible unless n)2
and g is O(e). Thus for FBF and FP strategies of
3-ply or higher memory, p

S
"1. Similarly, p

S
"1

for FBF
=

and FP
=

. For the 2-ply FBF strategy,
p
S
"1

2
for g"e, and p

S
"1 for g<e.
A strategy which is strongly optimal for in"ni-
tesimal noise must have p

S
"p

D
"1 and p

C
'0.

Thus FP
n
(0) is strongly optimal for all n, and

FP
=

is also strongly optimal for the in"nitesimal
noise APD.

OPTIMALITY UNDER FINITE NOISE

For the "nite noise case, we "rst calculate the
noise resistance coe$cient NRC

S
for FP and

FBF strategies with various values of n and g.
Recall that for a strategy X with noise resistance
coe$cient NRC

S
, w(XDX)*R!(NRC

S
)e for all

e)0.2, and a strategy with NRC
S
)3 is noise

resistant (Table 5).
For ¹"5, all FBF strategies with n*5 are

noise resistant, as are all FP strategies with n*7.
FP

3
is noise resistant for g'0.4, FBF

3
is noise

resistant for g'0.25, and FP
5

is noise resistant
for g'0.047. Compare these strategies to FBF

2
,

which is noise resistant only for g"1.
For ¹"4, however, FP

5
is noise resistant for

all values of the generosity g. Thus the FP
5
(0)

strategy meets all the criteria for "nite noise
optimality: it is "nite noise resistant, and under
in"nitesimal noise, it is C-exploiting, totally
self-cooperating, and totally D-unexploitable.
We have thus accomplished the "rst part of our
goal, to "nd a "nite memory strategy which is
"nite noise optimal. FP

n
(0) is also "nite noise

optimal for n'5, as is FP
=

.
We also note that the FP

5
(0) and FBF

5
(0)

strategies are self-cooperating (p
S
*0.9) and D-

unexploitable (p
D
*0.9) for noise levels up to

approximately 0.09. Thus both strategies have
nearly maximum payo! against A¸¸D, and
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nearly maximum self-payo!, even for relatively
high noise levels.

Next, we examine the strategies' evolutionary
interaction with A¸¸D. At low noise levels,
only a small proportion of FP

3
(0) or FBF

3
(0)

is needed to invade a population of defectors:
for ¹"4 and e"0.01, these strategies can in-
vade A¸¸D as long as they make up 1

200
of the

population. This proportion increases (approx-
imately) linearly for increasing noise. The FP

3
and FBF

3
strategies can also resist an A¸¸D

invasion for ¹"4 and e)0.1. For e*0.1, some
very generous versions of these strategies will
allow A¸¸D to invade, but the 5-ply FP and
FBF strategies are immune to A¸¸D invasion for
all e)0.2.

OPTIMALITY UNDER ARBITRARY NOISE

We also note that the in"nite memory FBF
and FP strategies have another useful feature:
each strategy can recover from any "nite se-
quence of errors, and restore cooperation with its
clone, within two turns. Such a strategy can be
thought of as not merely &&noise resistant'', but
&&noise proof ''. This is in contrast to strategies
such as FP

3
(0). If two errors occur in quick

succession in a game between FP
3
(0) and its

clone, the players can get stuck in a &&Dd rut'',
unable to restore cooperation until another error
occurs. If the probability of an error is constant
over the course of a game, FP

3
(0) will be in the

rut of mutual defection with probability 0. If the
error probability varies widely, however, FP

3
(0)

can be permanently stuck in a rut of mutual
defection (for example, if errors occur on the "rst
and third turns of a game, then never again). This
argument applies to any non-generous, "nite
memory strategy. In fact, we can prove:

Proposition 4. No strategy X with ,nite memory
is noise proof and totally D-unexploitable.

See Appendix A for proof. Thus in a rapidly
changing environment, it may be essential for
strategies to be noise proof, and in"nite memory
strategies would be expected to evolve. In most
real life examples, however, the probability of
a long string of errors is low enough (ek for a
string of k errors) such that it is su$cient for
a strategy to be &&noise resistant'', and in"nite
memory is unnecessary.

Performance of FBF and FP

We have shown above that higher-memory
strategies of the FP and FBF strategy classes
meet many or all of our optimality criteria. In
particular, we have found that the FP

n
(0) strat-

egies are "nite noise optimal for n'5 (for ¹"4)
or n'7 (for ¹"5). The corresponding FBF
strategies meet almost all of the optimality cri-
teria, but are not C-exploiting.

We must now ask an essential question: do
strategies which meet these optimality criteria
perform well in (evolutionary and non-evolution-
ary) APD simulations? To answer this question,
we "rst ran several round-robin tournaments,
using a format similar to Axelrod's (1981). The
"rst four tournaments consisted of 63 strategies:
g1, g2, g3, PA<, RAND, A¸¸D, A¸¸C, 11 FBF

2
strategies (generosity 0-1), 10 FBF

3
strategies

(generosity 0-0.9), 11 FP
3

strategies (generosity
0-1), 11 FBF

5
strategies (generosity 0-1), 11 FP

5
strategies (generosity 0-1), FBF

=
, and FP

=
.

Tournaments were run at noise levels of 0.01 and
0.05, and with the payo! tables (4, 3, 1, 0) and
(5, 3, 1, 0). The FP

5
strategies won all four tourna-

ments: for the two tournaments with noise 0.01,
FP

5
(0.2) was the champion, and for the two tour-

naments with noise 0.05, FP
5
(1) was the cham-

pion. In general, FP strategies outperformed
FBF strategies: FP

n
(g) outscored FBF

n
(g) for any

given n and g. Also, for the "nite memory strat-
egies, performance improved with increasing n.
However, the in"nite memory strategies FBF

=
and FP

=
performed poorly in these tournaments.

We hypothesized that this resulted from poor
performance against the strategies with low
memory and low generosity. For example, con-
sider FBF

=
against the Tit for Tat strategy,

FBF
2
(0). An error by FBF

=
would be quickly

corrected, but an error by ¹F¹ would result in
a rut of mutual defection. To test this hypothesis,
a "fth tournament was run with 58 of the 63
strategies, excluding the "ve non-generous
(g"0) FBF/FP strategies. A 0.01 noise level, and
the (5, 3, 1, 0) payo! table, were used. As expected,
FP

=
was the champion. We also noted that the

optimum value of g varied with the memory n.
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While the 2-ply FBF strategy performed best for
g"1, the higher memory strategies performed
best for g"0.2 (e"0.01) or g"0.7 (e"0.05).

Next we selected 29 of the FBF and FP strat-
egies: 4 FBF

2
strategies, 5 FBF

3
strategies, 6 FP

3
,

6 FBF
5

strategies, and 6 FP
5

strategies with
varying generosities, as well as FBF

=
, and FP

=
.

Each of the strategies was run individually in
a 10-strategy round-robin tournament against
g1, g2, g3, PA<, RAND, A¸¸D, A¸¸C, ¹F¹

(FBF
2
(0)), and FBF (FBF

2
(1)). A 0.01 noise level

and (4, 3, 1, 0) payo! table were used. Of the 29
strategies tested, 28 won their tournament: the
only exception was FBF

3
(0), which "nished sec-

ond to FBF
2
(1). The FP

5
(0.2) strategy won its

tournament by the largest margin, and FP strat-
egies again outperformed FBF strategies.

From these results, it is clear that both the
FBF and FP strategies perform well in round-
robin tournaments, with FP performing signi"-
cantly better than FBF. The ability to exploit
unconditional cooperators (without signi"cantly
reducing the strategy's ability to cooperate with
conditional cooperators) is essential for success in
a round-robin tournament simulation. The
FP

5
(0.2) strategy was particularly successful in

the round-robin tournaments we conducted. It is
perfectly self-cooperating, mostly D-unexploit-
able, and somewhat C-exploiting; the non-zero
generosity value also allows it to cooperate with
low-memory/low-generosity conditional cooper-
ators such as ¹F¹.

Evolutionary Optimality Criteria

A BRIEF OVERVIEW OF STANDARD

EVOLUTIONARY MODELS

Theoretical biologists have proposed a number
of evolutionary models for population dynamics
in the iterated Prisoner's Dilemma. In all of these
models, evolution is driven by natural selection:
strategies which earn higher average payo!s have
higher &&evolutionary "tness'', and are able to
survive and reproduce. The &&Genetic Algorithm''
model used by Axelrod (1987) and others repres-
ents each strategy as a &&chromosome'', a collec-
tion of genes describing the strategy's behavior in
any given situation. This model creates genetic
variation in a strategy's o!spring by both
mutation (randomly occurring changes in an
individual's genes) and crossover (genetic recomb-
ination of features from two di!erent &&parent''
strategies). This approach enables continued
evolution of new strategies, but relies heavily on
chance: the evolution of a population is strongly
dependent on which random mutations or
recombinations occur, as well as the speci"c
parameters of the genetic model.

Nevertheless, one advantage of genetic algo-
rithm models is that they suggest methods
through which strategies may evolve. Lindgren
(1981) investigated the evolution of n-ply strat-
egies through a genetic algorithm model which
allowed for gene duplications and splits (increas-
ing or decreasing the memory n) as well as point
mutations. He found that higher memory strat-
egies can evolve in this model, and these longer
genomes can often be more successful than lower
memory players. Thus Lindgren's work comp-
lements the results presented here: he presents the
methods by which higher memory strategies can
evolve, while we focus on the conditions under
which higher memory is evolutionarily bene"cial
(and hence, likely to evolve). In particular, higher
memory that is likely to evolve when meeting all
three of the optimality criteria is important: when
an organism is likely to interact with others em-
ploying a wide range of di!erent strategies.

A second model is the invasion model pro-
posed by Nowak and Sigmund (1992, 1993). This
model assumes that a large homogeneous popu-
lation of a given stategy X is visited periodically
by mutant strains. In this model, a mutant strain >
is selected randomly from the hyperspace of all
possible n-ply strategies, then Maynard Smith's
invasion criteria (1982) are used to calculate
whether> can invade X. This invasion will occur
if w(>DX)'w(XDX), or w(>DX)"w(XDX) and
w(>D>)'w(XD>). The model assumes that if
> invades X, > will take over the population;
otherwise, the initial population will continue.
Invasion models of this sort tend to result in
cyclical or complex invasion behavior: for
example, A¸¸D is invaded by ¹F¹, which is
invaded by G¹F¹, which is invaded by A¸¸C,
which is invaded by A¸¸D. Though it is a fairly
realistic model of population dynamics, this
model is very dependent on which mutants are
chosen to invade, and its complex time-depen-
dent behavior makes it very di$cult to decide as
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to which strategy is in some sense &&optimal''. One
solution to this problem is given by the notion of
an &&evolutionarily stable strategy'' (ESS). An ESS
is a strategy X which cannot be invaded by any
other strategy: that is, for all strategies >,
w(>DX)(w (XDX), or w(>DX)"w(XDX) and
w(>D>))w (XD>). An ESS is in one sense an
&&evolutionarily optimal'' strategy: once it is es-
tablished in a population, no other single strategy
can invade. However, as shown by Boyd and
Lorberbaum (1987), an ESS may be invaded by
a combination of two mutant strategies. More
importantly, an ESS may have di$culty estab-
lishing itself in a population, because it has di$-
culty invading other strategies. In fact, some
evolutionarily stable strategies are &&inaccessible''
in the sense that they are unable to invade any
other homogeneous population (Nowak, 1990).

Thus, it is clear that a measure of evolutionary
&&optimality'' should take into account not only
a strategy's resistance to invasion (evolutionary
stability) but its ability to invade other strategies
(evolutionary potency). One model which con-
siders both of these factors is the &&Adaptive Dy-
namics''model used in Nowak & Sigmund (1989)
and Hofbauer & Sigmund (1990). This model
assumes that an initial homogeneous population
of strategy S has numerous o!spring X, each
slightly di!erent from S. Each of these o!spring
interacts with all other o!spring, and the variety
with the highest total payo! survives. Assuming
a symmetric distribution of o!spring around S,
the o!spring with the highest total payo! will be
the o!spring with the highest payo! against the
parent. We thus de"ne the "tness function F(X)
to be w (XDS). This leads to the adaptive dynamics
equation

dS
dt

"h+F,

where the gradient +F is evaluated at X"S,
and h is a constant corresponding to the rate of
variation (Kraines & Kraines, 2000). Thus the
population evolves in the direction which is most
advantageous for the single mutant (Nowak &
Sigmund, 1989). One use of this model is to
examine an individual strategy by allowing it
to evolve according to the adaptive dynamics
equation: this process of &&self-evolution'' gives
information about the stability of the strategy, as
well as its possible evolutionary path. We will
examine the self-evolution of FBF

2
, FBF

3
, and

FP
3

using this model. Again, the behavior of this
dynamical system is time-dependent and depen-
dent on the initial strategy chosen, making it
di$cult to argue that a given strategy is &&opti-
mal''. But, as in the Nowak}Sigmund model, we
can "nd strategies which are &&optimal'' in the
sense of resistance to invasion. A &&relative evolu-
tionarily stable strategy'' (RESS) is a strategy
which cannot be invaded (according to the
Maynard Smith criterion) by any nearby strat-
egy. In other words, strategy X is an RESS
in some space H of strategies if, for some d'0,
for all strategies Y with DX!>D(d, either
w(>DX)(w (XDX), or w(>DX)"w(XDX) and
w(>D>))w (XD>). Once we have found an RESS
X, we can also examine its &&basin of attraction'':
the set of strategies in H which evolve into X. An
RESS with a large basin of attraction is in some
sense &&optimal'', since it is resistant to (local)
invasion and can eventually take over many self-
evolving populations. As Kraines and Kraines
state, the adaptive dynamics model is &&consistent
with modern evolutionary theory for a popula-
tion with limited genetic diversity and frequent
minor mutations'' (2000). However, it excludes
the possibility of invasion by strategies which are
not similar to the original strategy, and thus does
not allow for major mutations, migrants, or inter-
actions of multiple populations. We will propose
another evolutionary model which addresses
these shortcomings, but "rst we examine the self-
evolution of various FBF and FP strategies.

SELF-EVOLUTION OF FBF AND FP

To examine the self-evolution of the FBF and
FP strategies, we use a discrete approximation to
the adaptive dynamics equation as in Kraines
& Kraines (2000). This algorithm takes three
parameters: the starting strategy S(0)"
[S

1
(0),2,S

2n(0)], the step size d, and the rate of
variation h. For each time step t, it modi"es
S using the following equations:

*S"S (t#1)!S (t)"h*F,

*F[i]"F (S#dxL
i
)!F (S)



174 D. B. NEILL
where xL
i
is the vector with a 1 in position i and

zeros elsewhere. For each simulation, we self-
evolve the strategy with ¹"4, e"0.01,
d"0.01, and h"0.1.

We "rst self-evolved the FBF
2
(0) strategy,

(1 0 1 0). Its probabilities of cooperation after Cd
and Dd quickly increased, leveling o! after
2]105 generations to (1 0.2607 1 0.6554). Next,
we self-evolved the FBF

3
(0) strategy, (1 0 1 1,

1 0 1 0). Its probability of cooperation after dDd
increased rapidly at "rst, then much more slowly,
leveling o! after 107 generations. The resulting
strategy was (1 0 1 1, 1 0 1 0.6566).

We note several interesting facts from the self-
evolution of these two strategies. Both strategies
increase in generosity, evolving toward increas-
ing self-cooperation and decreasing D-unex-
ploitability. Both generosity parameters seem to
level o! at approximately 2

3
, but the FBF

2
(0)

strategy also evolves some unconditional co-
operation (cooperating over 1

4
of the time after

Cd). Thus FBF
2
(0) evolves away from the FBF

family of strategies, but FBF
3
(0) remains an FBF

strategy under evolution. The FBF
3

strategy also
evolves much more slowly than FBF

2
, suggesting

a higher degree of evolutionary stability.
Finally, we self-evolved the FP

3
(0) strategy,

(1 0 0 1, 1 0 1 0). Its probability of cooperation
after dDd increased rapidly at "rst, then much
more slowly, leveling o! after 107 generations.
However, its probability of cooperation after cDc
also increased (slowly and at a fairly constant
rate), to 1!e after 5]106 generations. The
resulting strategy is (1 0 1 1, 1 0 1 0.6566).

Thus both the FP
3
(0) and FBF

3
(0) strategies

evolve to the relative evolutionarily stable strat-
egy FBF

3
(0.6566). We can conclude from this

that FBF
3

is much more stable than FP
3

under
self-evolution. This result is likely to apply in the
general case: there is no evolutionary advantage
to exploitation when all strategies are su$ciently
similar.

EVOLUTIONARY FITNESS AND THE

DOMINANCE CRITERION

We now consider the question of a general
measure of evolutionary performance. Are any of
the previously mentioned models suitable for this
measure? To answer this question, we consider
what properties the measure should have, and
apply these to the "ve models/techniques dis-
cussed above: genetic algorithms, Nowak}Sig-
mund invasion model, ESS theory, self-evolution,
and RESS theory. We argue that three properties
are essential. First, the measure must take into
account both a strategy's evolutionary stability
(resistance to invasion) and evolutionary potency
(ability to invade other strategies). Second, the
measure must be able to evaluate a strategy's
performance against a large number of di!erent
strategies, not only a carefully chosen few. In
particular, it must consider interactions with
strategies which are substantially di!erent from
the given strategy, not only its evolutionary kin.
Third, the measure must not be time-varying: it
should not depend on the current composition of
the population, but only on the set of strategies
which is initially present.

ESS theory violates the "rst property, since it
only takes evolutionary stability into account.
Self-evolution violates the second property, since
it evaluates only the given strategy, not its
relation to other strategies. The RESS theory
also violates the second property, since it
considers the interaction of a strategy only with
strategies very similar to it. Using the genetic
algorithm or Nowak}Sigmund invasion models,
the proportion of a strategy tends to vary signi"-
cantly (and possibly chaotically) over time, so it
is di$cult to postulate a non-time-varying
measure which accurately re#ects a strategy's
performance. Thus none of the commonly used
models of the evolutionary APD lend themselves
easily to a general measure of evolutionary per-
formance.

In order to derive our measure, we return to
the Maynard Smith invasion criteria (1982).
From Maynard Smith, strategy X invades strat-
egy > if w(XD>)'w(>D>), or w(XD>)"w (>D>)
and w (XDX)'w(>DX). If strategy X invades
strategy >, we write X'>. Otherwise, we write
X /'>. We must "rst observe that whether X in-
vades > and whether > invades X are indepen-
dent: thus there are four possibilities:

I. X'> and > /'X. In this case, any initial
proportion of strategy X can take over, and com-
pletely wipe out, strategy >. We say that X dom-
inates >, and write X<>.
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II. X /'> and >'X, In this case, any initial
proportion of strategy> can take over, and com-
pletely wipe out, strategy X. We say that > dom-
inates X, and write ><X.

III. X'> and >'X. In this case, no matter
what the initial proportions of strategies X and
>, the two strategies reach a balance in which the
population is a mix of X and >. We say that
X and > are stable, and write X%>. To be more
precise, we can calculate the proportion p of
strategy X at equilibrium

p"
w(XD>)!w(>D>)

w(XD>)!w(>D>)#w(>DX)!w (XDX)
.

Thus we write X p%>.

IV. X /'> and > /'X. In this case, either
strategy X or strategy > will take over the popu-
lation, driving the other strategy to extinction,
depending on the initial proportions of the two
strategies. We say that X and > are bistable, and
write XQ>. To be more precise, we can calculate
the minimum proportion m of strategy X needed
to take over the population

m"

w(>D>)!w(XD>)
w(XDX)!w (>DX)#w(>D>)!w(XD>)

.

Thus we write X mQ>. We must also deal with the
case w(XD>)"w(>D>) and w(>DX)"w(XDX), in
which case m is de"ned as 0.5.

We now de"ne the dominance measure
dom(XD>), which is a measure of the relative
evolutionary performance of strategies X and >.

dom(XD>)"G
1 if X<>,

0 if ><X,

p if X p%>,

1!m if X mQ>.

Thus the measure dom(XD>) is between 0 and 1,
with higher dominance scores corresponding
to a better evolutionary performance of
X against >. It should also be noted that
dom(XD>)#dom(>DX)"1, thus the dominance
score presents a &&constant-sum'' measure of
relative evolutionary performance (i.e. if X performs
well against >, > performs poorly against X).

The measure dom(XD>) measures evolution-
ary "tness in a substantively di!erent manner
than other models. Most evolutionary models
assume that a homogeneous population is
invaded by a small number of mutants: these
mutants can be nearly identical to the original
population (as in the adaptive dynamics model)
or very di!erent (as in the Nowak}Sigmund in-
vasion model). The dominance measure, on the
other hand, assumes the mixing of two large
homogeneous populations, and the evolution of
the resulting population until it reaches a stable
state.

Finally, we de"ne the dominance score of
a strategy X to be its average dominance score
against all strategies it interacts with. Assuming
a population of opponents >

i
with varying fre-

quencies f (>
i
), with +

i
f (>

i
)"1

dom(X)"+
i

f (>
i
) dom(XD>

i
).

Thus a strategy's dominance score is a measure of
its average relative evolutionary "tness. It has
several advantages over other "tness measures:
since it is time-invariant, we can compute a single
score (independent of the current proportions of
each strategy) for any two strategies. This allows
us to measure the evolutionary performance of
a strategy in a round-robin tournament format
similar to Axelrod's (1984), except that domi-
nance scores (rather than average payo!s) are
computed for each pair of strategies. Since the
dominance measure is a constant-sum, the per-
formance of a strategy is not a!ected as much by
the set of strategies it interacts with: we expect
successful strategies to have high dominance
scores against most other strategies, while in the
normal round-robin tournament format, even
&&successful'' strategies will have poor average
payo!s against strategies such as A¸¸D. The
disadvantage of the dominance measure is that it
does not take into account the more complex
interactions that result from the mixing of more
than two strategies: in a multi-strategy interac-
tion, a strategy's dominance score is essentially
its performance after the "rst round of evolution-
ary &&battles''. But once the system evolves and
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weaker strategies die o!, the strategy may be
interacting with a very di!erent set of strategies,
dramatically a!ecting its evolutionary perfor-
mance. However, there appears to be no way of
taking this evolutionary complexity into account
without sacri"cing our main objective: a simple
and useful measure of overall evolutionary "t-
ness. While a strategy with a very high domi-
nance score may not succeed in every
evolutionary interaction, it is likely to perform
well in the great majority of such interactions.
Thus we consider evolutionary dominance as an-
other criterion for optimality: an &&optimal'' strat-
egy must have a high dominance score against
a large and varied set of opponents. In particular,
we consider an n-ply strategy to satisfy this cri-
terion if it has a high dominance score against the
set of all n-ply strategies.

Evolutionary Performance of FBF and FP

We now examine the evolutionary perfor-
mance of the FBF and FP strategies through
several &&round-robin dominance tournaments''.
In a round-robin dominance tournament, we as-
sume that the frequency of each strategy is equal,
and compute dom(X) for each strategy X. We
then compare each strategy's dominance score;
the strategy with the highest dominance wins the
tournament.

ROUND-ROBIN DOMINANCE TOURNAMENTS

We "rst conducted round-robin dominance
tournaments among the same 63 strategies as for
our initial round-robin tournaments. The tour-
naments were run with the (4, 3, 1, 0) and (5, 3, 1, 0)
payo! tables, and a noise level of 0.01 was used.

Both tournaments were won by the FBF
=

strategy: this strategy dominated most of the
other 62 strategies, and had dom(XD>)'0.5
against every other strategy. FBF strategies out-
performed FP strategies: FBF

n
(g) outscored

FP
n
(g) for all n and g. Additionally, performance

improved with increasing memory: FBF
m
(g) out-

scored FBF
n
(g), and FP

m
(g) outscored FP

n
(g), for

m'n. In addition, strategies with relatively high
generosities tended to perform better. The opti-
mum value of g varied with the memory n: g"1
was optimal for 2-ply strategies, g"0.6 was
optimal for 3-ply strategies, and g"0.7 was opti-
mal for 5-ply strategies.

These results are not unexpected: since FP
evolves into FBF in the adaptive dynamics
model, we would expect that FBF strategies have
a higher dominance score than FP in a head-
to-head competition. That is, dom(FBFDFP)'
dom(FPDFBF), so dom(FBF)'dom(FP) in
tournaments consisting mainly of FBF and FP
strategies.

DOMINANCE VERSUS CORNER AND EDGE STRATEGIES

We now ask a more interesting question: how
do the FBF and FP strategies perform against
the set of all n-ply strategies? It is very di$cult to
compute the dominance score of a given strategy
against all n-ply strategies. An n-ply strategy has
2n parameters, each of which can vary continu-
ously from 0 to 1, so to compute this score we
must integrate w(XD>) over a continuous 2n-di-
mensional subspace of R2n. Rather than perform-
ing the integration, we approximate the strategy's
performance by considering only &&corner strat-
egies'' (n-ply strategies for which each parameter
is either 0 or 1), or &&edge strateges'' (n-ply strat-
egies for which each parameter is either 0, 1

2
, or 1).

There are 22n n-ply corner strategies, and 32n n-ply
edge strategies.

We considered the performance of each of the
63 strategies in the previous tournament: for
each, we calculated an average dominance score
against the 256 3-ply corner strategies, and the
6561 3-ply edge strategies. A 0.01 noise level was
used.

The FP
5
(0.1) strategy was the champion for

three of the four tournaments (vs. corner strat-
egies with ¹"5, vs. edge strategies with ¹"5
and 4). FPR won the other tournament (vs.
corner strategies with ¹"4). Both strategies per-
formed consistently well, with dominance scores
between 0.88 and 0.96 for all four tournaments.
In general, FP strategies outperformed FBF
strategies: all of the top 15 strategies or each
tournament were FP strategies. Performance
generally improved with increasing memory for
the "nite memory strategies, though in some
tournaments the 5-ply strategies (with generosity
0.1 or 0.2) could beat the in"nite-memory strat-
egies. The optimum values of g for each strategy
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were signi"cantly lower than for the previous
round-robin dominance tournaments: g"0.4 for
2-ply strategies, and g"0.1 for 3-ply memory
and higher.

It is clear from these results that the FP strat-
egies (particularly those with low but non-zero
generosities) perform extremely well on an aver-
age in evolutionary interactions against 3-ply
strategies. Though FBF strategies outperform
FP strategies in head-to-head dominance tourna-
ments, FP has a signi"cantly higher dominance
score when averaged over all strategies.

DOMINANCE OF 3-PLY CORNER AND

EDGE STRATEGIES

Next, we examine the space of 3-ply strategies
in more detail, comparing the dominance scores
of all corner and edge strategies rather than fo-
cusing on a speci"c group of strategies. Round-
robin dominance tournaments were run for the
256 3-ply corner strategies, and for the 6561 3-ply
edge strategies. The tournaments were run for
both ¹"4 and 5, and a 0.01 noise level was used.

Interestingly, the top performer out of all the
corner strategies for ¹"4 was (1 0 0 1, 1 0 1 0):
this is the FP

3
(0) strategy! Its average dominance

score was 0.9380, signi"cantly (0.04) higher than
any other strategy. The second place strategy was
FBF

3
(0). Since dominance score is a measure of

overall evolutionary "tness, this suggests that
FP

3
(0) is in some sense evolutionarily optimal

among the 3-ply corner strategies. Even more
interestingly, FP

3
(0) was also the top performer

among the 6561 3-ply edge strategies, with
a dominance score of 0.9514. This suggests that it
is also likely to have the highest dominance score
over the entire space of 3-ply strategies, implying
that FP

3
(0) is the evolutionarily optimal 3-ply

strategy for ¹"4.
For ¹"5, FP

3
(0) was again the top corner

strategy, "nishing signi"cantly (0.034) higher
than any other strategy with a dominance score
of 0.8910. The second place strategy was a slight-
ly more cooperative version of GRIM (1 0 0 0,
1 1 0 0). However, the top edge strategy was not
FP

3
(0) but a slightly more exploiting variant

(1 0 0 1, 1 0 0.5 0), with a dominance score of
0.9327. FP

3
(0) "nished eighth, with a dominance

score of 0.8796. This suggests that the 3-ply edge
strategy with the highest dominance score over
the entire space of 3-ply strategies is likely to be
of the form (1 0 0 1, 1 0 k 0), where 0.5(k(1. To
test this hypothesis, we next compared the domi-
nance scores of strategies (1 0 0 1, 1 0 k 0) against
all 3-ply edge strategies. The winner of this tour-
nament was k"0.59, with a dominance score of
0.9361. This strategy, (1 0 0 1, 1 0 0.59 0), is likely
to be evolutionarily optimal in the space of
all 3-ply strategies. Thus FP

3
(0) appears to be

optimal for ¹"4, but for ¹"5, strategies
which sometimes defect after dDc perform slightly
better.

Conclusions

When is a strategy &&optimal'' in the Alternating
Prisoner's Dilemma with noise? Since no strategy
can achieve a maximum score against every other
strategy, we search instead for optimality criteria
which are strongly correlated with a high average
performance in various Prisoner's Dilemma
models (including round-robin tournaments and
evolutionary invasion models). In order to per-
form well against a variety of other strategies, an
&&optimal'' strategy must be able to achieve mu-
tual cooperation with its clone, resist exploitation
by defectors, and exploit unconditional cooper-
ators. These three criteria (self-cooperating, D-
unexploitable, C-exploiting) were de"ned and
examined for Alternating Prisoner's Dilemma
games with no noise, in"nitesimal noise, "nite
noise, and arbitrary noise. Most of the strategies
commonly discussed in the Alternating
Prisoner's Dilemma literature are &&2-ply strat-
egies'' such as Pavlov and Firm But Fair, &&low
memory'' strategies which make decisions based
only on the last two turns. However, none of
these strategies can simultaneously meet all three
of the optimality criteria: a 2-ply strategy which is
totally unexploitable by defectors, and can ex-
ploit unconditional cooperators, cannot attain
any level of self-cooperation in the in"nitesimal
noise APD.

Higher memory strategies such as Firm Pavlov,
however, can meet all the three optimality cri-
teria: the FP

3
(0) strategy (1 0 0 1, 1 0 1 0) is

&&totally self-cooperating'', &&totally D-unexploit-
able'', and &&C-exploiting'', and thus is optimal for
the in"nitesimal noise APD. Other members of
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the Firm Pavlov strategy class (5-ply memory
and higher) can meet even more rigorous criteria
for "nite noise optimality.

These optimality criteria can be applied to
analyse other Prisoner's Dilemma games with or
without noise, including the simultaneous iter-
ated Prisoner's Dilemma. The strategies which
meet the criteria are likely to be successful in
a variety of other performance measures. The
Firm Pavlov and Firm But Fair strategy classes
were shown to perform well in standard round-
robin tournament simulations, adaptive dynam-
ics models, and evolutionary invasion models. In
addition to considering the standard models, we
also proposed the dominance criterion, a general
measure of evolutionary performance. This
measure takes into account both evolutionary
stability (ability to resist invasion) and evolution-
ary potency (ability to invade other strategies),
producing a combined measure which can be
used to examine the relative evolutionary perfor-
mance for any set of strategies. We conducted
a number of &&dominance tournaments'', a
round-robin tournament format similar to Axel-
rod's, except that dominance scores (instead of
average payo!s) are computed for each pair of
strategies. In particular, the Firm Pavlov strat-
egies achieved extremely high dominance scores
against the set of all 3-ply edge strategies, sugges-
ting that these strategies will be extremely
successful in a wide variety of evolutionary
interactions. In fact, when a round-robin domi-
nance tournament was conducted among all 3-
ply edge strategies, the winner was a 3-ply Firm
Pavlov strategy.

To succeed in the Prisoner's Dilemma, a strat-
egy must be &&friendly'' enough to cooperate with
its clone, &&pragmatic'' enough to exploit uncondi-
tional cooperators, and &&wary'' enough to resist
exploitation by defectors. The Firm Pavlov strat-
egy FP

3
(0) can be thought of as a model for this

type of behavior: it responds to cooperation with
cooperation, except when it can continue exploit-
ing an unconditional cooperator. Similarly, it re-
sponds to defection with defection, except when
the opponent's defection is in response to its
provocation. This 3-ply strategy combines the
advantages of several 2-ply strategies: like Firm
But Fair, it is self-cooperating under noise; like
Tit for Tat, it is unexploitable; and like Pavlov, it
can exploit unconditional cooperators. The Firm
Pavlov strategies not only meet our stringent
optimality criteria, but also achieve remark-
able success in round-robin tournaments and
evolutionary interactions: these higher memory
strategies are truly &&optimal under noise'' in the
Alternating Prisoner's Dilemma.

Many thanks to David and Vivian Kraines for their
helpful comments and suggestions.
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Appendix A: Proofs of Propositions 1+4

Proposition 1. No perfectly optimal strategy
exists.

Proof. Consider the GRIM strategy, which co-
operates until the opponent defects once, then
defects for the rest of the game. No strategy can
achieve the maximum possible score against both
GRIM and A¸¸C: if the strategy ever defects
after mutual cooperation, it will perform poorly
against GRIM (p

GRIM
(X)"0), and if it never

defects after mutual cooperation, it will have
a low relative performance against A¸¸C
(p

C
"0). Thus a strategy cannot be optimal

against both strategies, and hence cannot be per-
fectly optimal.

Lemma 1. No generous strategy is totally D-
unexploitable.

Proof. We consider an n-ply strategy X with
generosity g'0, and show that X has p

D
(1.

Recall that g is the probability of cooperation
after a sequence of n defections. We can compute
an upper bound on p

D
by assuming that the

strategy will defect against A¸¸D except after
a sequence of n defections (any additional co-
operation against A¸¸D will lower p

D
). Thus each

exploitation by A¸¸D results in xn/2y defections
by strategy X to return to the n defections state.
Once in the n defections state, strategy X will
cooperate with probability g, and thus there will
be an average of 1/g!1 defections before X co-
operates again. Thus X will cooperate once for
each xn/2y#1/g!1 defections, and therefore it
will defect against A¸¸D with probability

p
D
"

xn/2y!1#1/g
xn/2y#1/g

"
(xn/2y!1)g#1

xn/2yg#1
.

Thus if g'0, the strategy has p
D
(1, and is not

totally D-unexploitable.
Proposition 2. No 0, 1, or 2-ply strategy is
strongly optimal in the APD with no noise.

Proof. For any 0-ply strategy S0"(a), S0 is
equivalent to the 2-ply strategy (a a a a). For any
1-ply strategy S1"(a b), S1 is equivalent to the
2-ply strategy (a b a b). Now consider the 2-ply
strategy (a b c d ) with an initial cooperation
probability e. If b"1, A¸¸D can exploit the
strategy continually. Similarly, if dO0, we know
from Lemma 1 that p

D
)1/(1#d). Thus for

p
D
"1, we know b(1 and d"0. But how can

a strategy with b(1 and d"0 be totally self-
cooperating? Any defection has a non-zero prob-
ability 1!b of leading to an unending rut of
mutual defection, so we must ensure that no
defections occur: a"1 and e"1. But a strategy
with a"1 and e"1 cooperates continually
against A¸¸C, so no 2-ply strategy with p

D
"

p
S
"1 can have p

C
'0.

Proposition 3. No 0, 1, or 2-ply strategy is opti-
mal in the in,nitesimal noise APD.

Proof. As in the no-noise case, we consider the
2-ply strategy (a b c d). We will show that the
strategy cannot have p

D
"1, p

S
'0, and p

C
'0,

and hence is not even weakly optimal. For p
D
"1

to hold, the strategy's probability of entering the
Dd rut against A¸¸D must be greater than its
probability of leaving the Dd rut by O(e). Thus we
must have 1!b"O(1) and d"O(e), which im-
plies b(1 and d"0. For p

C
'0 to hold, the

strategy's probability of entering the Dc rut
against A¸¸C must not be less than its probabil-
ity of leaving the Dc rut by O(e). Thus we must
have 1!a"O(1) or c"O(e), which implies
a(1 or c"0. This gives us three possibilities for
p
D
"1 and p

C
'0:

1. a(1, b(1, c'0, d"0. Against its clone,
this strategy has probability O(1) of entering a Dd
rut and probability O(e) of leaving the Dd rut, so
p
S
"0.
2. a(1, b(1, c"0, d"0. Against its clone,

this strategy has probability O(1) of entering a Dd
rut and probability O(e2) of leaving the Dd rut, so
p
S
"0.
3. a"1, b(1, c"0, d"0. Against its clone,

this strategy has probability O(e) of entering a Dd
rut and probability O(e2) of leaving the Dd rut, so
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p
S
"0. Thus no totally D-unexploitable 2-ply

strategy can be both self-cooperating and
C-exploiting.

Proposition 4. No strategy X with ,nite memory
is noise proof and totally D-unexploitable.

Proof. Assume that strategy X has an n-ply
memory for some "nite n. Now consider the
strategy's generosity g, its probability of
cooperating after a sequence of n defections. If
g"0, then in a game against its clone, any se-
quence of n defections will result in a rut of
mutual defection. Thus some sequence of errors
with length X)n will result in a continued mu-
tual defection, and hence the strategy is not noise
proof. If g'0, we know by Lemma 1 that the
strategy is not totally D-unexploitable.
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