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Multivariate event detection

Daily health data from 

thousands of hospitals and 

pharmacies nationwide.

Time series of counts 

ci,m
t for each zip code si

for each data stream dm.

d1 = respiratory ED

d2 = constitutional ED

d3 = OTC cough/cold

d4 = OTC anti-fever

etc.

Given all of this nationwide health data on a daily basis, 

we want to obtain a complete situational awareness by 

integrating information from the multiple data streams.

More precisely, we have three main goals: to detect any 

emerging events (i.e. outbreaks of disease), characterize

the type of event, and pinpoint the affected areas.
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Expectation-based scan statistics

To detect and localize events,   

we can search for space-time 

regions where the number of 

cases is higher than expected.

Imagine moving a window 

around the scan area, allowing 

the window size, shape, and 

temporal duration to vary.

(Kulldorff, 1997; Neill and Moore, 2005)
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For each subset of locations, 

we examine the aggregated 

time series, and compare 

actual to expected counts.

Time series of 

past counts

Expected counts 

of last 3 days

Actual counts 

of last 3 days

Expectation-based scan statistics
(Kulldorff, 1997; Neill and Moore, 2005)

To detect and localize events,   

we can search for space-time 

regions where the number of 

cases is higher than expected.

Imagine moving a window 

around the scan area, allowing 

the window size, shape, and 

temporal duration to vary.
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We must provide the prior probability Pr(H1(S, Ek)) of each event type Ek

in each region S, as well as the prior probability of no event, Pr(H0). 

MBSS uses Bayesô Theoremto combine the data likelihood given each hypothesis 

with the prior probability of that hypothesis: Pr(H | D) = Pr(D | H) Pr(H) / Pr(D).

Given a set of event types Ek, a set of space-time regions S, and the multivariate 

dataset D, MBSS outputs the posterior probability Pr(H1(S, Ek) | D) of each type    

of event in each region, as well as the probability of no event, Pr(H0 | D).

Priors

Overview of the MBSS method

Dataset

Multivariate 

Bayesian 

Scan 

StatisticModels

Outputs
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The Bayesian hierarchical model
Type of event

Effects on each 

data stream

Space-time 

region affected

Observed counts

Expected counts

Relative risks

Effects of 

event
Parameter priors

qi,m
t ~ Gamma(xm m, m) inside S, 

qi,m
t ~ Gamma( m, m) elsewhere

ci,m
t ~ Poisson(qi,m

tbi,m
t)

xm = 1 + ɗ(xkm,avgï1)
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Interpretation and visualization

Posterior probability map

Total posterior probability of a 

respiratory outbreak in each 

Allegheny County zip code. 

Darker shading = higher probability.

MBSS gives the total posterior probability of 

each event type Ek, and the distribution of 

this probability over space-time regions S.

Visualization: Pr(H1(si, Ek)) = × Pr(H1(S, Ek)) 

for all regions S containing location si.
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MBSS: advantages and limitations
MBSS can model and 

differentiate between multiple 

potential causes of an event.

MBSS can detect faster and 

more accurately by integrating 

multiple data streams.

How can we extend 

MBSS to efficiently

detect irregular clusters? 

MBSS assumes a uniform prior for circular regions and zero prior for non-

circular regions, resulting in low power for elongated or irregular clusters.

There are too many subsets 

of the data (2N) to compute 

likelihoods for all of them!
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Hierarchical prior distribution

This prior has hierarchical structure: 

We define a non-uniform prior Pr(H1(S, Ek)) over all 2N subsets of the data. 
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Hierarchical prior distribution

This prior has hierarchical structure: 

1. Choose the center location sc

uniformly at random from {s1ésN}.

2. Choose the neighborhood size n 

uniformly at random from {1énmax}.  

We define a non-uniform prior Pr(H1(S, Ek)) over all 2N subsets of the data. 
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Hierarchical prior distribution

This prior has hierarchical structure: 

1. Choose the center location sc

uniformly at random from {s1ésN}.

2. Choose the neighborhood size n 

uniformly at random from {1énmax}.  

3. Choose region S uniformly at 

random from the 2n subsets of Scn = 

{sc and its n ï1 nearest neighbors}.

This prior distribution has non-zero prior probabilities for any 

given subset  S, but more compact clusters have larger priors.

We define a non-uniform prior Pr(H1(S, Ek)) over all 2N subsets of the data. 
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Fast Subset Sums (FSS)

In FSS, the average likelihood ratio of the 2n subsets for a given 

center sc and neighborhood size n can be found by multiplying the 

quantities ((1 + LR(si | Ek, ɗ)) / 2) for all locations si in S.

Naïve computation of posterior probabilities using this prior requires 

summing over an exponential number of regions, which is infeasible.

However, the total posterior probability of an outbreak, Pr(H1(Ek) | D), 

and the posterior probability map, Pr(H1(si, Ek) | D), can be calculated 

efficiently without computing the probability of each region S.

In the original MBSS method, the likelihood ratio of spatial region S 

for a given event type Ekand event severity ɗ can be found by 

multiplying the likelihood ratios LR(si | Ek, ɗ) for all locations si in S. 

Since the prior is uniform for a given center and neighborhood, we can 

compute the posteriors for each sc and n, and marginalize over them.
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Fast Subset Sums (FSS)

Proof sketch: For a given center sc, neighborhood size n, 

event type Ek, severity ɗ, and temporal window W, we can 

compute the summed posterior probability of all subsets Scn.

×S Ṗ Scn
Pr(S | D) ᶿ×S Ṗ Scn

Pr(S) LR(S) 

= (1 / 2n) ×S Ṗ Scn
LR(S)

= (1 / 2n) ×S Ṗ Scn
Б siᶰ S LR(si).

Key step: write sum of 2n products as product of n sums.

= (1 / 2n) Б siᶰ Scn
(1 + LR(si))

= Б siᶰ Scn
((1 + LR(si)) / 2)
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Fast Subset Sums (FSS)

Proof sketch: To compute the posterior probability map, 

we must compute the summed posterior probability of 

all subsets Scn containing each location sj.

×S Ṗ Scn: sjᶰ S Pr(S | D) ᶿ×S Ṗ Scn: sjᶰ S Pr(S) LR(S) 

= (1 / 2n) ×S Ṗ Scn: sjᶰ S LR(S)

= (1 / 2n) ×S Ṗ Scn : sjᶰ SБ siᶰ S LR(si).

Key step: write sum of 2n-1 products as product of n-1 sums.

= (1 / 2n) LR(sj) Б siᶰ Scn-{sj} (1 + LR(si))

= LR(sj) / (1 + LR(sj)) * ×S Ṗ Scn
Pr(S | D) 
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Evaluation
ÅWe injected simulated disease outbreaks into two 

streams of Emergency Department data (cough, 

nausea) from 97 Allegheny County zip codes.

ÅResults were computed for ten different outbreak 

shapes, including compact, elongated, and 

irregularly-shaped, with 200 injects of each type.

ÅWe compared FSS to the original MBSS method 

(searching over circles) in terms of run time, 

timeliness of detection, proportion of outbreaks 

detected, and spatial accuracy.
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Computation time

Run time of MBSS increased 

gradually with increasing nmax, up 

to 1.2 seconds per day of data.

Run time of Naïve Subset Sums 

increased exponentially, making 

it infeasible for nmaxÓ 25. 

Run time of FSS scaled 

quadratically with nmax, up to          

8.8 seconds per day of data.

Thus, while FSS is approximately 7.5x slower than the original 

MBSS method, it is still extremely fast, computing the posterior 

probability map for each day of data in under nine seconds.

We compared the run times of MBSS, FSS, and a naïve subset sums 

implementation as a function of the maximum neighborhood size nmax.
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Timeliness of detection

FSS detected an average of one day earlier than MBSS for                        

maximum temporal window W = 3, and 0.54 days earlier                                              

for W = 7, with less than half as many missed outbreaks.

Both methods achieve similar detection times for compact outbreak 

regions.  For highly elongated outbreaks, FSS detects 1.3 to 2.2 days 

earlier, and for irregular regions, FSS detects 0.3 to 1.2 days earlier.
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Spatial accuracy

As measured by the average overlap coefficient between true 

and detected clusters, FSS outperformed MBSS by 10-15%.

For elongated and irregular clusters, FSS had much                   

higher precision and recall.  For compact clusters, FSS                        

had higher precision, and MBSS had higher recall.
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Posterior probability maps

True outbreak region MBSS Fast Subset Sums

Spatial accuracy of FSS was similar to MBSS for compact clusters.

64% 59%

63% 55%

36% 43%
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Posterior probability maps
FSS had much higher spatial accuracy than MBSS for elongated clusters.

True outbreak region MBSS Fast Subset Sums

19% 41%

41% 71%

29% 51%


