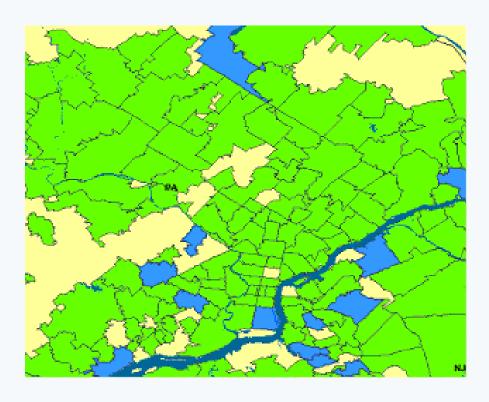

Fast Graph Scan for Scalable Detection of Arbitrary Connected Clusters


Skyler Speakman & Daniel B. Neill Carnegie Mellon University, Heinz College ISDS Annual Conference

This work was partially supported by NSF grants IIS-0916345, IIS-0911032, and IIS-0325581

Detect any emerging events (i.e. outbreaks of disease) Pinpoint the affected areas

Biosurveillance

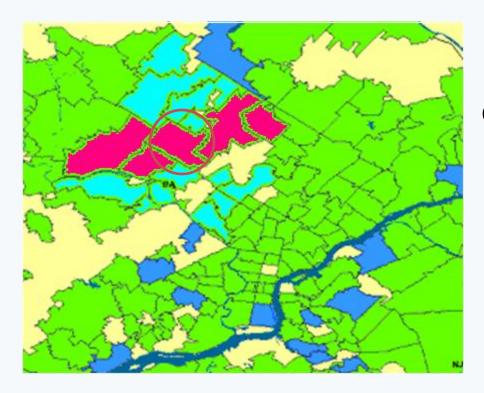
Scan over multiple regions to detect where counts are higher than expected.

Aggregate the individual counts from each location within a region.

Circles

Choose a center location s_c and its k nearest neighbors.

Find the circle that maximizes a given score function of the aggregated counts and baselines.

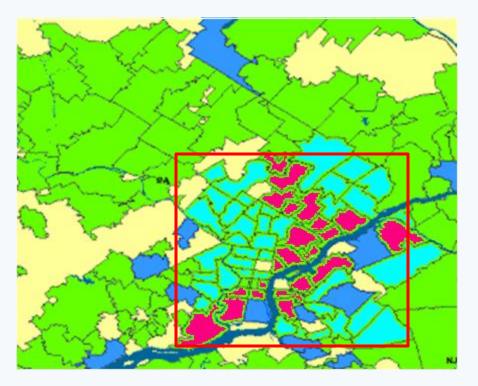


Scan over multiple regions to detect where counts are higher than expected.

Aggregate the individual counts from each location within a region.

Rectangles

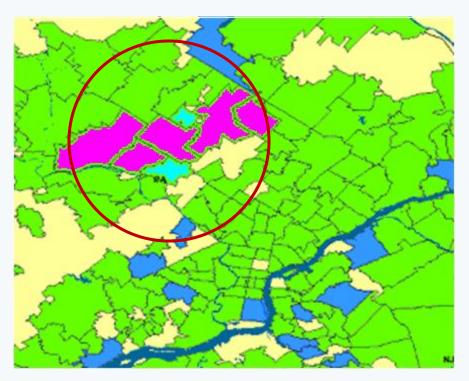
Find the rectangle that maximizes a given score function of the aggregated counts and baselines.


Power to Detect

Circles are useful for detecting tightly clustered outbreaks

However, they lose power to detect abnormally shaped clusters

Un-affected locations contributing to region score



Power to Detect

There are similar issues with rectangles for some outbreaks

Un-affected locations contributing to region score

An alternative to scanning over shapes of regions is to find the **subset of locations** for a given region that has the highest score

Un-affected locations contributing to region score

Pattern Detection through Subset Scanning

PROBLEM:

The number of subsets grows exponentially with the size of the region (2ⁿ)

This makes it computationally infeasible for regions with more than ~30 locations

SOLUTION:

Exploit a property of scoring functions to rule out subsets that cannot obtain the highest score

This reduction in the search space allows for exact and efficient calculation of the highest scoring subset

Subset Scanning

(Neill, 2008)

We wish to maximize a scoring function

$$F \triangleleft F \left(\sum_{s_i \in S} c_i, \sum_{s_i \in S} b_i \right)$$

over all possible subsets, S

We sort the locations according to a relevance criteria

For example,

$$G(s_i) = \frac{c_i}{b_i}$$

works for Kulldorff's Statistic and Expectation-based Poisson

Linear Time Subset Scanning

(Neill, 2008)

We wish to maximize a scoring function

$$F \triangleleft F = F \left(\sum_{s_i \in S} c_i, \sum_{s_i \in S} b_i \right)$$

over all possible subsets, S

We sort the locations according to a relevance criteria

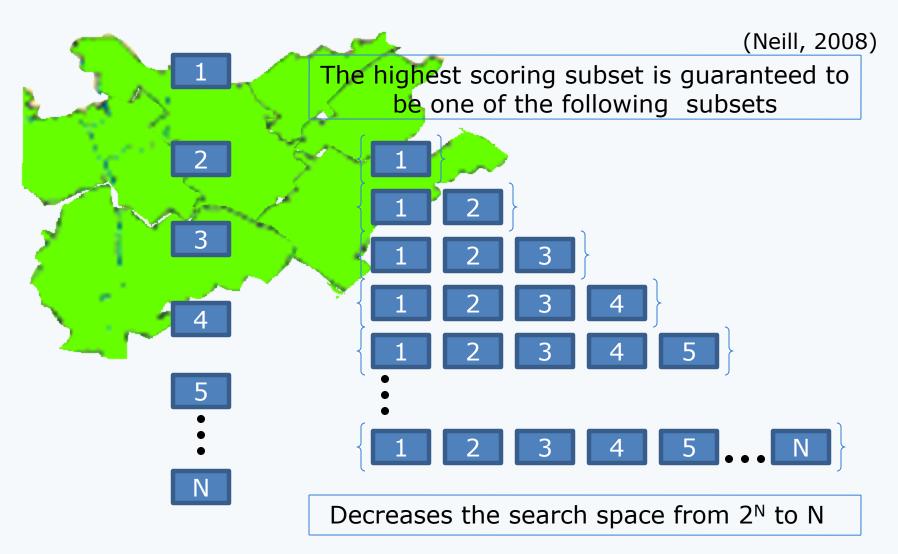
For example,

$$G(s_i) = \frac{c_i}{b_i}$$

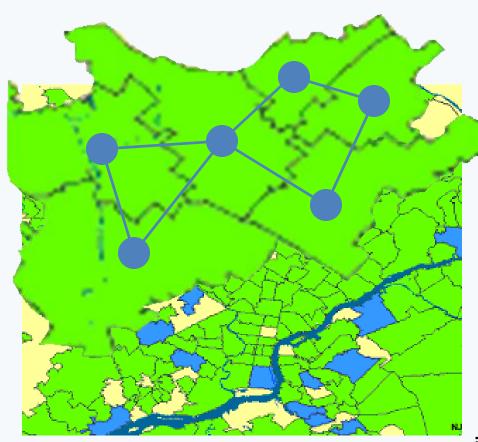
works for Kulldorff's Statistic and Expectation-based Poisson

Poisson

Linear Time Subset Scanning



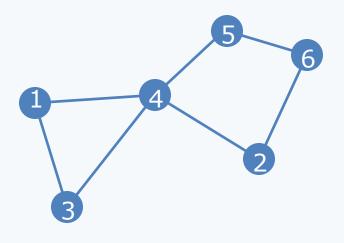
This ranking allows
LTSS to take advantage
of properties of a large
number of scoring
functions


5

•

This location has the lowest count-to-baseline ratio

Linear Time Subset Scanning


Use adjacency of locations to form a *flexible* scan statistic (Tango & Takahashi, 2005)

Create an adjacency graph of the locations and score **every connected subset**

Increase power to detect non-circular clusters

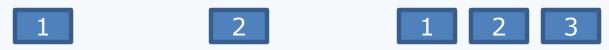
Number of connected subsets is exponential in size of region. Infeasible for regions of >30 locations

Connectivity Constraints

Graphscan:

If location s_i is contained in the optimal subset S* and ifeightbouring s_i whites not discounted the contained in S*.

Use property of LTSS to reduce the search space and rule out a large number of connected subsets


Rank the locations according to relevance critera

Only scan connected subsets that have *potential* for highest score

LTSS with Connectivity Constraints

The Graphscan algorithm would end up evaluating the sets:

Because these sets could include a higher ranked neighbor that would increase the set's score

Brief Example

The GraphScan method was evaluated using Emergency Department data from 91 Allegheny County zip codes

Original Graphscan

For k=25 **0.24 seconds**

For k=50 **41.0 seconds**

Single Region **87.9 seconds**

Runtimes

We can use LTSS to quickly determine the unconstrained bound of a given subset

If the subset's bound is less than the current high score, we do not have to include it

Branch & Bound GraphScan

For k=25 **0.08 seconds**

For k=50 **1.1 seconds**

Single Region

1.0 second

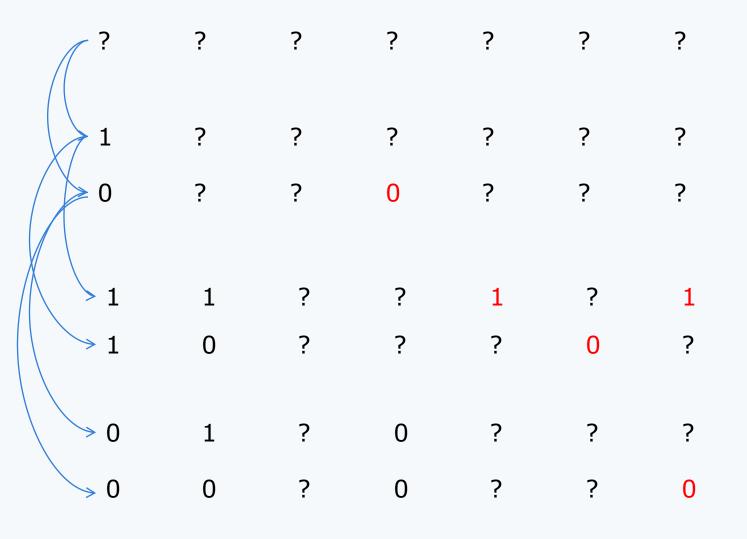
...for a single day of data

Average over all types of injects	% of Injects Detected	Days to detect
Circles	83.6%	8.6
GraphScan K=25	88.2%	8.2
GraphScan K=50	89.4%	8.1
GraphScan Single Region	88.6%	8.1

Compact Cluster	% Detected	Days to Detect
Circles	68%	10.4
Graphscan K=25	84%	9.3
Graphscan K=50	88%	8.3
Graphscan Single Region	88%	8.6

Elongated Cluster	% Detected	Days to Detect
Circles	66%	10.4
Graphscan K=25	87%	8.5
Graphscan K=50	92%	8.0
Graphscan Single Region	92%	8.2

Irregular Cluster	% Detected	Days to Detect
Circles	90%	8.7
Graphscan K=25	97%	7.6
Graphscan K=50	98%	7.5
Graphscan Single Region	96%	7.4



Thanks!

