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Multivariate event detection
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thousands of hospitals and
pharmacies nationwide.

Given all of this nationwide health data on a daily basis,
we want to obtain a complete situational awareness by
Integrating information from the multiple data streams.

More precisely, we have three main goals: to detect any
emerging events (i.e. outbreaks of disease), characterize
the type of event, and pinpoint the affected areas.
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Expectation-based scan statistics

(Kulldorff, 1997; Neill and Moore, 2005)

To detect and localize events,
we can search for space-time
regions where the number of
cases is higher than expected.

Imagine moving a window
around the scan area, allowing
the window size, shape, and
temporal duration to vary.
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Expectation-based scan statistics
(Kulldorff, 1997; Neill and Moore, 2005)
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Overview of the MBSS method
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Given a set of event types E,, a set of space-time regions S, and the multivariate
dataset D, MBSS outputs the posterior probability Pr(H,(S, E,) | D) of each type

of event in each region, as well as the probability of no event, Pr(H, | D).

MBSS uses Bayes’ Theorem to combine the data likelihood given each hypothesis
with the prior probability of that hypothesis: Pr(H | D) = Pr(D | H) Pr(H) / Pr(D).
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The Bayesian hierarchical model
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Interpretation and visualization

MBSS gives the total posterior probability of
each event type E,, and the distribution of
this probability over space-time regions S.

Visualization: Pr(H,(s;, E,)) = > Pr(H(S, E)))
for all regions S containing location s;.

Posterior probability map

Total posterior probability of a
respiratory outbreak in each
Allegheny County zip code.

Darker shading = higher probability.
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MBSS: advantages and limitations

MBSS can detect faster and MBSS can model and
more accurately by integrating differentiate between multiple
multiple data streams. potential causes of an event.

MBSS assumes a uniform prior for circular regions and zero prior for non-
circular regions, resulting in low power for elongated or irregular clusters.

There are too many subsets
of the data (2N) to compute
likelihoods for all of them!
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Hierarchical prior distribution
We define a non-uniform prior Pr(Hy(S, E)) over all 2" subsets of the data.

This prior has hierarchical structure:
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Hierarchical prior distribution
We define a non-uniform prior Pr(Hy(S, E)) over all 2" subsets of the data.

This prior has hierarchical structure:

1. Choose the center location s,
uniformly at random from {s,...S\}-

2. Choose the neighborhood size n

uniformly at random from {1...n_..}.
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Hierarchical prior distribution
We define a non-uniform prior Pr(Hy(S, E)) over all 2" subsets of the data.

This prior has hierarchical structure:

1. Choose the center location s,
uniformly at random from {s,...S\}-

2. Choose the neighborhood size n

uniformly at random from {1...n_..}.

3. Choose region S uniformly at
random from the 2" subsets of S, =
{s. and its n — 1 nearest neighbors}.
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Fast Subset Sums (FSS)

Naive computation of posterior probabilities using this prior requires
summing over an exponential number of regions, which is infeasible.

However, the total posterior probability of an outbreak, Pr(H,(E,) | D),
and the posterior probability map, Pr(H,(s;, E,) | D), can be calculated
efficiently without computing the probability of each region S.

In the original MBSS method, the likelihood ratio of spatial region S
for a given event type E, and event severity 6 can be found by
multiplying the likelihood ratios LR(s; | E,, 0) for all locations s; in S.

In FSS, the average likelihood ratio of the 2" subsets for a given
center s, and neighborhood size n can be found by multiplying the
quantities ((1 + LR(s, | E,, 8)) / 2) for all locations s; in S.

Since the prior is uniform for a given center and neighborhood, we can
compute the posteriors for each s, and n, and marginalize over them.
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Evaluation

* We Injected simulated disease outbreaks into two
streams of Emergency Department data (cough,
nausea) from 97 Allegheny County zip codes.

* Results were computed for ten different outbreak
shapes, including compact, elongated, and
Irregularly-shaped, with 200 injects of each type.

 We compared FSS to the original MBSS method
(searching over circles) in terms of run time,
timeliness of detection, proportion of outbreaks
detected, and spatial accuracy.

©2009 Carnegie Mellon University

15



Computation time

We compared the run times of MBSS, FSS, and a naive subset sums
implementation as a function of the maximum neighborhood size n,.

Run time of MBSS increased Run time for 100 days of data
gradually with increasing n,.,, up ] — v
—— 55
to 1.2 seconds per day of data. 1200 Narve

1000 4

Run time of Naive Subset Sums
increased exponentially, making
it infeasible for n_.., = 25.

Run time of FSS scaled PP
quadratically with n_.,, up to T 4 7 D 15 1 0 45 7
aximum neighborhood size (k_max
8.8 seconds per day of data. ! ° feme

800 4

&00 4
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max <00

Thus, while FSS is approximately 7.5x slower than the original
MBSS method, it is still extremely fast, computing the posterior
probability map for each day of data in under nine seconds.
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Timeliness of detection

Comparison of detection times (W = 3) Comparison of detection times (W = 7)
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FSS detected an average of one day earlier than MBSS for
maximum temporal window W = 3, and 0.54 days earlier
for W =7, with less than half as many missed outbreaks.

Both methods achieve similar detection times for compact outbreak
regions. For highly elongated outbreaks, FSS detects 1.3 to 2.2 days
earlier, and for irregular regions, FSS detects 0.3 to 1.2 days eatrlier.

©2009 Carnegie Mellon University

17



Spatial accuracy

Spatial accuracy by outbreak day (W = 3) Spatial accuracy by outbreak day (W = 7)
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As measured by the average overlap coefficient between true
and detected clusters, FSS outperformed MBSS by 10-15%.

For elongated and irregular clusters, FSS had much
higher precision and recall. For compact clusters, FSS
had higher precision, and MBSS had higher recall.
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Posterior probability maps

Spatial accuracy of FSS was similar to MBSS for compact clusters.

True outbreak region
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Posterior probability maps

FSS had much higher spatial accuracy than MBSS for elongated clusters.
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Posterior probability maps

True outbreak region
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Conclusions

FSS shares the essential advantages of MBSS: it can
Integrate information from multiple data streams, and can
accurately distinguish between multiple outbreak types.

As compared to the original MBSS method, FSS substantially
Improves accuracy and timeliness of detection for elongated or
irregular clusters, with similar performance for compact clusters.

While a naive computation over the exponentially many
subsets of the data is computationally infeasible, FSS can
efficiently and exactly compute the posterior probability map.

Future work includes generalizing the hierarchical prior
for FSS while maintaining efficient computation.

We can also learn the prior distribution from a small amount
of labeled training data, as in Makatchev and Neill (2008).
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