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Multivariate event detection

Spatial time series data from 

spatial locations si (e.g. zip codes)

Time series of counts 

ci,m
t for each zip code si

for each data stream dm.

Our goals: detect any emerging events (e.g. disease outbreaks), 

characterize the type of event, and pinpoint the affected locations.

d1 = respiratory ED

d2 = constitutional ED

d3 = OTC cough/cold

d4 = OTC anti-fever

Outbreak detection

(etc.)

Possible hypotheses

H1(S, Ek) – event of type Ek has 

occurred in space-time region S.

H0 – null hypothesis that no 

events have occurred.

Simplifying assumptions

Univariate, purely spatial case   

(single event type, single data 

stream, and single time step)

H1(S) vs. H0, S     {s1..sN}
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Expectation-based scan statistics
(Kulldorff, 1997; Neill and Moore, 2005)

To detect and localize events, we 

can search for spatial regions 

where the observed counts are 

significantly higher than expected.

Imagine moving a spatial 

window around the scan 

area, allowing the window 

size and shape to vary.
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Expectation-based scan statistics
(Kulldorff, 1997; Neill and Moore, 2005)

To detect and localize events, we 

can search for spatial regions 

where the observed counts are 

significantly higher than expected.

Imagine moving a spatial 

window around the scan 

area, allowing the window 

size and shape to vary.

For each of these regions, we 

compare the current counts for 

each location to the time series of 

historical counts for that location. 

Historical 

counts

Current counts 

(3 day duration)
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Expected 

counts

Historical 

counts

Current counts 

(3 day duration)For each of these regions, we 

compare the current counts for 

each location to the time series of 

historical counts for that location. 

For the standard scan statistic 

approach, we assume that each 

count is drawn from a Poisson 

distribution with unknown mean.

We perform time series analysis 

to find the expected counts for 

each recent day, then compare 

actual to expected counts.

Expectation-based scan statistics
(Kulldorff, 1997; Neill and Moore, 2005)
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Expected 

counts

Historical 

counts

Current counts 

(3 day duration)For each of these regions, we 

compare the current counts for 

each location to the time series of 

historical counts for that location. 

For the standard scan statistic 

approach, we assume that each 

count is drawn from a Poisson 

distribution with unknown mean.

Similarly, we can compute a 

Gaussian scan statistic by 

obtaining the expectations and 

variances from historical data.

Expectation-based scan statistics
(Kulldorff, 1997; Neill and Moore, 2005)
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We find the regions with highest 

values of a likelihood ratio statistic, 

and compute the p-value of each 

region by randomization testing.

)| DataPr(

))(| DataPr(
)(F
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SH
S

Null hypothesis: 

no outbreak

Alternative hypothesis: 

outbreak in region S

Maximum region 

score = 9.8

2nd highest 

score = 8.4

Significant! (p = .013)

Not significant 

(p = .098)

…

F1* = 2.4 F2* = 9.1 F999* = 7.0To compute p-value

Compare region score 

to maximum region 

scores of simulated 

datasets under H0.

Expectation-based scan statistics
(Kulldorff, 1997; Neill and Moore, 2005)
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H0: qi = 1 everywhere       

(counts = expected)

Counts are Poisson distributed: ci ~ Poisson(qibi)
qi is relative risk, 

bi is expected 

count under H0

qin = 1.2

H1(S): qi = qin in S and qi = 1 

outside, for some qin > 1. 

(counts > expected in S)

Poisson scan statistic models

Expectation-based Poisson (EBP) Population-based Poisson (PBP)

(Neill and Moore, 2005) (Kulldorff, 1997, 2001)

H0: qi = qall everywhere 

(inside = outside)

H1(S): qi = qin in S and qi = qout 

outside, for some qin > qout. 

(inside > outside)

qin = 1.3

qout = 1.1



2010 Carnegie Mellon University 1111

H0: qi = 1 everywhere       

(counts = expected)

Counts are Poisson distributed: ci ~ Poisson(qibi)
qi is relative risk, 

bi is expected 

count under H0

H1(S): qi = qin in S and qi = 1 

outside, for some qin > 1. 

(counts > expected in S)

Poisson scan statistic models

Expectation-based Poisson (EBP) Population-based Poisson (PBP)

(Neill and Moore, 2005) (Kulldorff, 1997, 2001)

H0: qi = qall everywhere 

(inside = outside)

H1(S): qi = qin in S and qi = qout 

outside, for some qin > qout. 

(inside > outside)
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H0: qi = 1 everywhere       

(counts = expected)

Counts are Gaussian distributed: ci ~ Gaussian(qibi, i)

H1(S): qi = qin in S and qi = 1 

outside, for some qin > 1. 

(counts > expected in S)

Gaussian scan statistic models

Expectation-based Gaussian (EBG) Population-based Gaussian (PBG)

H0: qi = qall everywhere 

(inside = outside)

H1(S): qi = qin in S and qi = qout 

outside, for some qin > qout. 

(inside > outside)
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(Neill, 2006) (Neill, 2006)

Let C’ = ci’ = cibi / i
2 and B’ = bi’ = bi

2 / i
2.
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Which regions to search?
• Typical approach: each search region S is a 

subregion of the search space.
• Choose some region shape (e.g. circles, rectangles) and 

consider all regions of that shape and varying size.

• Low power for true events that do not correspond well to 
the chosen set of search regions (e.g. irregular shapes).

• Heuristic search over irregularly-shaped regions does 
not guarantee finding the highest-scoring region.

• Alternate approach: each search region S 
represents a distinct subset of the locations.
• Exponentially many possible regions: computationally 

infeasible for naïve search.

• Some regions may be impossible or very unlikely; may 
need to constrain search to a subset of feasible regions.
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The LTSS property

• In certain cases, we can search over the 

exponentially many subsets in linear time!

• Many commonly used scan statistics have 

the property of linear-time subset scanning:

• Just sort the data records from highest priority to 

lowest priority according to some criterion…

• … then search over groups consisting of the 

top-k highest priority records, for k = 1..N.

The highest scoring subset is 

guaranteed to be one of these!
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The LTSS property

• Example: Poisson statistics (Kulldorff, EBP)

• F(S) = F(C, B), where C = ci and B = bi are 

the aggregate count and baseline of region S.

• Sort locations si by the ratio of observed to 

expected count, ci / bi. 

• Given the ordering s(1) … s(N), we can prove that 

the top-scoring subset consists of the locations 

s(1) … s(k) for some k, 1 ≤ k ≤ N.

• This follows from the facts that F(S) is convex, 

increasing with C and decreasing with B.

• Also holds for Gaussian, nonparametric, …
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How to use LTSS in practice?
• Simplest case: assume all subsets are equally 

likely (e.g. outbreak that does not cluster spatially)
• LTSS gives highest-scoring subset by evaluating N

subsets instead of 2N for naïve search.

• Sample result: we can find the most anomalous subset 
of 97 western PA zip codes in .03 sec vs. 1024 years.

• But what if we want to use spatial information to 
constrain our search over subsets?
• Hard constraints: some subsets of locations are not 

allowed (e.g. non-contiguous or highly irregular regions).

• Soft constraints: some subsets of locations are more 
likely than others.  Maximize penalized likelihood ratio.

• In most cases, we cannot use LTSS directly to find 
the optimal subset subject to these constraints.
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Fast localized scan
• Maximize the spatial scan statistic over regions 

consisting of a “center” location si and any subset 

of its k-nearest neighbors, for a fixed constant k 

(or fixed radius r).

• This is similar to Tango and Takahashi’s flexible 

scan statistic, but may find a disconnected region.

• Naïve search requires O(N · 2k) time and is 

computationally infeasible for k > 25.

• For each center, we can search over all subsets 

of its k-nearest neighbors in O(k) time using 

LTSS, thus requiring a total time complexity of 

O(Nk) + O(N log N) for sorting the locations.
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Fast localized multiscan
• Allow, but penalize, large neighborhoods.

• Perform separate “fast localized scans” for each 

neighborhood size k = 1…kmax.

• Choose the region which optimizes some function 

of likelihood ratio score F(S) and neighborhood 

size (or radius), e.g., F(S) – Lk.

• Computational complexity is O(Nkmax
2 + N log N).

• Timing results for 97 western PA zip codes:

• Fast localized scan required up to 50 ms / day of data.

• Fast multiscan required up to 1 sec / day of data.

• Without LTSS, localized scan with k ≥ 40 would require 

over two years per day of data.
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Evaluation of detection power

We compared the methods’ average time to detect 2,000 

simulated respiratory outbreaks (various sizes/shapes) injected 

into the real-world Emergency Department data from western PA.

Searching over all subsets,              

without proximity constraints,             

had poor detection power                          

(0.8 days slower than circles).

All four proximity-constrained LTSS 

methods detected up to 1.8 days 

faster than circles, with less than 

half as many missed outbreaks.
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Extensions of LTSS
LTSS can be easily extended to space-time scans:                        

we must separately prioritize the locations and                             

evaluate O(N) subsets for each temporal window size          

W = 1…Wmax, with total run time O(Wmax N log N).

We have recently developed a fast graph scan(1) which              

maximizes F(S) over all connected clusters, with or 

without proximity constraints.  It can also be used for non-

spatial graph data (e.g. contact tracing, social networks).

We can use LTSS to accelerate multivariate space-time scans(2):

Burkom et al. (2005): add counts across the multiple streams,                     

then apply the univariate statistic to the aggregate count.

Kulldorff et al. (2007): compute univariate LLR scores                                

for each stream, then add scores across streams. 

(1)  S. Speakman & D.B. Neill, ISDS 2009.

(2)  D.B. Neill & E. McFowland III, in preparation.
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Guaranteed to 

find the highest 

scoring subset!

21

Fast multivariate scans
Burkom’s multivariate method loses detection power 

because high-count streams can “drown out” the signal: 

better is to search over all possible subsets of streams.

Option 1 (fast/naïve, or FN): for each of 

the 2M subsets of streams, aggregate 

counts and apply LTSS to efficiently 

search over subsets of locations.

For a fixed number of streams, 

FN fast localized scan scales 

linearly (not exponentially)                         

with neighborhood size.

8 streams: <1 sec/day of data.

647 days of data, 

8 data streams
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Fast multivariate scans
Burkom’s multivariate method loses detection power 

because high-count streams can “drown out” the signal: 

better is to search over all possible subsets of streams.

Option 2 (naïve/fast, or NF): 

exhaustively search over spatial 

regions.  For each, perform efficient               

LTSS search over subsets of streams.

Guaranteed to 

find the highest 

scoring subset!

For a fixed neighborhood size k, 

NF fast localized scan scales 

linearly (not exponentially)                         

with number of streams.

For k = 10: <1 sec/day of data

647 days of 

data, 

neighborhood 

size = 10
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Fast multivariate scans

What if we have a large set of search regions and many data streams?  

Option 3 (fast/fast, or FF):

1. Start with a randomly         

chosen subset of streams.

Data streams D1..DM
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Fast multivariate scans

What if we have a large set of search regions and many data streams?  

Option 3 (fast/fast, or FF):

1. Start with a randomly         

chosen subset of streams.

2. Use LTSS to efficiently find 

the highest-scoring subset of 

locations for the given streams.

(Score = 7.5)

Data streams D1..DM

S
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Fast multivariate scans

What if we have a large set of search regions and many data streams?  

Option 3 (fast/fast, or FF):

1. Start with a randomly         

chosen subset of streams.

2. Use LTSS to efficiently find 

the highest-scoring subset of 

locations for the given streams.

3. Use LTSS to efficiently find 

the highest-scoring subset of 

streams for the given locations.

(Score = 8.1)
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Data streams D1..DM
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Fast multivariate scans

What if we have a large set of search regions and many data streams?  

Option 3 (fast/fast, or FF):

1. Start with a randomly         

chosen subset of streams.

2. Use LTSS to efficiently find 

the highest-scoring subset of 

locations for the given streams.

3. Use LTSS to efficiently find 

the highest-scoring subset of 

streams for the given locations.

4. Iterate steps 2-3                             

until convergence. (Score = 9.0)
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Fast multivariate scans

What if we have a large set of search regions and many data streams?  

Option 3 (fast/fast, or FF):

1. Start with a randomly         

chosen subset of streams.

2. Use LTSS to efficiently find 

the highest-scoring subset of 

locations for the given streams.

3. Use LTSS to efficiently find 

the highest-scoring subset of 

streams for the given locations.

4. Iterate steps 2-3                             

until convergence. (Score = 9.3)
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Fast multivariate scans

What if we have a large set of search regions and many data streams?  

Option 3 (fast/fast, or FF):

1. Start with a randomly         

chosen subset of streams.

2. Use LTSS to efficiently find 

the highest-scoring subset of 

locations for the given streams.

3. Use LTSS to efficiently find 

the highest-scoring subset of 

streams for the given locations.

4. Iterate steps 2-3                             

until convergence.

5. Repeat steps 1-4 for                             

100 random restarts.

(Score = 11.0)

S
p
a
ti
a
l 
lo

c
a
ti
o
n
s
  
s

1
..

s
N

Data streams D1..DM



2010 Carnegie Mellon University 29

Fast multivariate scans

What if we have a large set of search regions and many data streams?  

Option 3 (fast/fast, or FF):

1. Start with a randomly         

chosen subset of streams.

2. Use LTSS to efficiently find 

the highest-scoring subset of 

locations for the given streams.

3. Use LTSS to efficiently find 

the highest-scoring subset of 

streams for the given locations.

4. Iterate steps 2-3                             

until convergence.

5. Repeat steps 1-4 for                             

100 random restarts.

GOOD NEWS:            

Run time is linear in 

number of locations & 

number of streams.

BAD NEWS:                                       

Not guaranteed to find 

global maximum of the 

score function.
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Fast multivariate scans

What if we have a large set of search regions and many data streams?  

For neighborhood size = 15, number of streams = 16:

FF run time = 3.3 minutes for 647 days of data

42x speedup vs. NF; 88x speedup vs. FN

Accuracy: 65% exact, 90% within 5%, 97% within 10%.

For neighborhood size = 30, number of streams = 16:

FF run time = 4.0 minutes for 647 days of data 

141x speedup vs. FN; NF infeasible

Accuracy: 57% exact, 89% within 5%, 98% within 10%.
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Our recent extensions of LTSS to the multivariate and space-time      

scan statistics further increase the range of problems for which                                    

we can perform computationally efficient and fast event detection.

31

Conclusions

Linear-time subset scanning is a powerful and useful tool that enables 

us to speed up a wide variety of spatial event detection methods.

The Poisson, Gaussian, and nonparametric spatial scan statistics all 

satisfy the LTSS property, as do many other possible statistics.

LTSS makes “all subsets” search, as well as proximity-constrained and 

graph-constrained scans, computationally feasible.  The resulting 

methods significantly improve detection power and spatial accuracy.


