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Recent research has highlighted the need for upstream planning in healthcare service delivery systems, patient
scheduling, and resource allocation in the hospital inpatient setting. This study examines the value of upstream

planning within hospital-wide resource allocation decisions based on machine learning (ML) and mixed-integer
programming (MIP), focusing on prediction of diagnosis-related groups (DRGs) and the use of these predictions
for allocating scarce hospital resources. DRGs are a payment scheme employed at patients’ discharge, where the
DRG and length of stay determine the revenue that the hospital obtains. We show that early and accurate DRG
classification using ML methods, incorporated into an MIP-based resource allocation model, can increase the
hospital’s contribution margin, the number of admitted patients, and the utilization of resources such as operating
rooms and beds. We test these methods on hospital data containing more than 16,000 inpatient records and
demonstrate improved DRG classification accuracy as compared to the hospital’s current approach. The largest
improvements were observed at and before admission, when information such as procedures and diagnoses is
typically incomplete, but performance was improved even after a substantial portion of the patient’s length of stay,
and under multiple scenarios making different assumptions about the available information. Using the improved
DRG predictions within our resource allocation model improves contribution margin by 2.9% and the utilization of
scarce resources such as operating rooms and beds from 66.3% to 67.3% and from 70.7% to 71.7%, respectively.
This enables 9.0% more nonurgent elective patients to be admitted as compared to the baseline.
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1. Introduction
The introduction of diagnosis-related groups (DRGs)
in prospective payment systems has put pressure on
hospitals to use resources efficiently (see Sharma and
Yu 2009 and Schreyögg et al. 2006b). In the DRG system,
patients admitted to the hospital are classified into
groups with similar clinical and demographic charac-
teristics, and thus are expected to use similar amounts
of hospital resources. Reimbursement to a hospital for
inpatient care is based on the DRG assigned at the time
of discharge. Moreover, the decision regarding which
resources have to be allocated, when and for which
inpatient, is often made under uncertainty and should
depend on DRG-information (see Roth and Dierdonck
1995). In hospitals, and in general in the service indus-
try, there are fixed costs so that the maximization of
profit can only be achieved by maximizing revenue,

which in turn is linked to DRGs. By accurately classi-
fying an inpatient’s DRG in the early stages of their
visit, estimates of the revenues, costs, and recovery
times can be obtained, allowing hospital resources to
be managed effectively and efficiently (see Gartner and
Kolisch 2014).

Diagnosis-related groups can be used by hospi-
tals in two ways: for accounting and for operations
management. The goal of the accounting-driven DRG
classification is to group inpatients by DRG for billing
and reimbursement purposes, using all clinical and
demographic information available once the inpatient
is discharged from the hospital. Typically, a simple
flowchart-based method is used for this task, which
is implemented in a commercial software and called
“DRG grouper.” Figure 1 illustrates the DRG-grouping.
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DRG grouper

Error DRG

Implausibility of, e.g., the

primary diagnosis, medical

procedures, or demographic

characteristics
MDC assignment
(MDC 1, . . . ,23)

Surgical DRGs

At least one surgical
procedure

Other DRGs

No surgical procedure,
and at least one

MDC-relevant procedure

Medical DRGs

No MDC-relevant
procedure

Primary diagnosis

Pre-MDC

Transplantation, ventilation,
HIV, etc.

Figure 1 Hierarchical DRG-Grouping Process (see Schreyögg et al. 2006a)

Before the execution of the DRG grouper, parameter
values, such as the primary diagnosis, secondary diag-
noses, clinical procedures, age, gender as well as weight
in the case of newborns have to be entered into the soft-
ware. Diagnoses are coded by using the International
Statistical Classification of Diseases and Related Health
Problems (ICD). The first three levels of ICD codes
correspond to DRGs. The algorithm first determines
one of 23 major diagnostic categories (MDC). Those
are, in particular, defined by the primary diagnosis
(i.e., the reason for the hospitalization). However, if the
primary diagnosis is imprecisely documented, an error
DRG will be returned. On the contrary, if the patient
has, e.g., a transplantation, a pre-MDC (a DRG with
high-cost procedures; see Busse et al. 2011) is returned.
After determining the MDC, clinical procedures and
comorbidities lead to the patient’s DRG, which can be
categorized into surgical, medical, and other DRGs.
Finally, within these categories, the age of the patient,
or the weight in the case of newborns, may lead to a
different DRG subtype.

Operations-driven DRG classification is performed at
earlier stages of care in order to facilitate the planning
of healthcare operations. For example, the current
approach of the hospital where we undertook this
study is to classify the DRG of the inpatient not earlier
than one day after admission. It is assumed that, after
the first day, the hospital’s information about the inpa-
tient is sufficiently complete to accurately compute
the DRG, and thus the DRG grouper is used to consoli-
date the available information to a “working DRG.”
Based on this DRG, further information such as costs,
revenue, and the patient’s clinical pathway can be
derived and used for planning purposes. However, the
existing DRG grouper is ill-suited for the operations-
driven DRG prediction task, because it assumes that
the inpatient’s current lists of diagnoses and treatments
are complete and will not change over the remainder
of the inpatient’s hospital stay. In fact, new health con-
ditions may arise or be identified during the stay, and

additional procedures may be performed in response,
necessitating a change in the inpatient’s DRG and
substantially affecting the hospital’s revenues, costs,
and resource allocations. We argue that many such
changes follow regular patterns, and that these patterns
can be learned from inpatient data, thus improving the
prediction of the inpatient’s DRG in the early stages of
their hospital visit.

In this paper, we investigate whether early identifica-
tion of the appropriate DRG using machine learning
methods can lead to higher contribution margins, better
allocation of scarce hospital resources such as operating
rooms and beds, and potential improvements in the
number of admitted nonurgent elective patients as
compared to the current approach of the hospital using
a DRG grouper. We focus on achieving accurate DRG
classification at the time when the patient seeks admis-
sion, and subsequently, from admission to discharge.
We analyze one year of inpatient data consisting of
more than 16,000 records from a 350-bed hospital near
Munich, Germany. Our results show that, in general,
machine learning approaches can substantially increase
early DRG classification accuracy, especially for elective
patients who contact the hospital before admission.
Moreover, we demonstrate that machine learning tech-
niques combined with mathematical programming
can lead to higher contribution margins and better
allocation of scarce resources.

The remainder of the paper is structured as follows.
Section 2 provides a survey of relevant literature.
Section 3 introduces the methods that are evaluated in
this study. The analysis of the performance of these
methods is given in §4, followed by concluding remarks
in §5.

2. Related Work
To classify a patient’s DRG effectively and efficiently, it
is necessary to select a concise set of relevant attributes
at all stages of care. As the patient’s length of stay and
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the number of treatments in the hospital increases, the
number of attributes to be considered for accurate DRG
classification increases as well. Since we select attributes
in a first stage and employ the selected attributes for
DRG classification afterward, the following two streams
of literature are relevant for this paper: attribute ranking
and selection techniques, particularly for inpatient
planning and classification techniques successfully
employed in healthcare. Textbooks that cover both
streams are, e.g., Bishop (2006) and Mackay (2003).

2.1. Attribute Ranking and Selection Techniques
Yu and Liu (2004) divide the attribute selection pro-
cess into three parts: searching for irrelevant, weakly
relevant, and strongly relevant features. Irrelevant fea-
tures are not informative with respect to the class, and
can safely be ignored. The set of weakly relevant fea-
tures comprises redundant and nonredundant features.
Strongly relevant features, however, are always neces-
sary for an optimal subset of features, because removing
a strongly relevant feature would always affect the
original conditional class distribution. The optimal
subset of features is therefore the use of strongly rel-
evant features and features that are weakly relevant
but nonredundant. Saeys et al. (2007) provide a litera-
ture review, which covers several attribute selection
methods employed in bioinformatics. They find out
that attribute ranking techniques such as information
gain (IG) and relief algorithms are very popular. More
recently, IG is evaluated by Ambert and Cohen (2009),
Bai et al. (2008), and Fiol and Haug (2009), and relief
algorithms are studied in Cho et al. (2008a, b) and Fiol
and Haug (2009). Attribute selection techniques such
as Markov blanket attribute selection are studied by
Bai et al. (2008), and principal component analysis is
studied by Arizmendi et al. (2012), Lee et al. (2008),
and Li and Liu (2010).

2.2. Classification Techniques
Since we deal with the DRG as a discrete attribute,
we limit our search for relevant work to classification
problems. Applications of both attribute selection and
classification in medical informatics include Bai et al.
(2008), Fan and Chaovalitwongse (2010), and Miettinen
and Juhola (2010). Herein, among others, support
vector machines and Bayesian models are used in
order to preprocess data or to perform classification of
medical diagnoses. The application of machine learning
methods in the study of Roumani et al. (2013) has
some similarities with our study. The authors classify
patients with an imbalanced class distribution using a
variety of standard machine learning techniques on a
variety of measures. The difference, however, is that
we have a multiple class distribution, not binary, which
comes from the large number of categories of the DRG
system. Although the authors use misclassification

costs as an evaluation measure, they do not incorporate
their results into a resource allocation setting. As a
consequence, the economic impact of their reduction in
misclassification costs with respect to allocating scarce
resources remains unclear. Another relevant study is
the one of Meyer et al. (2014). Similar to our hospital
setting, they have a dynamic decision making process in
which they evaluate the effectiveness of a decision tree
learner to improve diabetes care. The major differences
are that they focus on one disease instead of a set
of DRGs as we do. Also in contrast to our work, their
simulation environment does not take into account
scarce hospital resources such as operating rooms.
Moreover, our objective is to maximize contribution
margin as compared to their quality-oriented objective.
Finally, we evaluate a variety of attribute selection
and classification techniques on different performance
measures such as misclassification costs. Thus, our
study can be considered to be the first to employ
attribute selection and classification methods in a
resource allocation setting with different types of scarce
clinical resources leading to increased contribution
margin and resource allocation improvements.

3. Methods
We provide a formal description of the early DRG
classification problem before we introduce the different
approaches. Let I denote a set of individuals (hospi-
tal inpatients) and let D denote the set of DRGs to
which these individuals will be classified. For each
inpatient i ∈I, we observe a set of attributes A at the
time the patient contacts the hospital for admission,
and the inpatient’s true DRG, di ∈D, is computed once
the inpatient is discharged. Let Va denote the set of
possible values for attribute a ∈ A and let vi1 a ∈ Va

denote the value of attribute a for inpatient i. We
wish to predict di when inpatient i is admitted to
the hospital, given the inpatient’s values vi1 a for each
attribute a ∈A. Some attribute values vi1 a may be miss-
ing before admission or at the time of admission. In
the computational study, we briefly discuss how we
handle these missing values (i.e., treating “unknown”
as a separate value). In this supervised learning problem
we assume the availability of labeled training data
from many other inpatients j ∈I\i whose attribute
values vj1 a and DRGs dj are known. These training
data are used to learn a classification model that is
then used for DRG prediction.

3.1. Attribute Ranking and Selection Techniques
As indicated by the name, attribute ranking techniques
provide a ranking of available attributes by employing
a quality measure of each attribute. In contrast, attribute
selection techniques select a subset of attributes that
are relevant for classification. In our study, we evaluate
information gain (IG) and relief-F as attribute ranking
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methods since they usually provide a quick estimate on
relevant attributes. Moreover, Markov blanket as well
as correlation-based feature selection (CFS) are studied
since they can be employed to model dependencies
between attributes (see, e.g., Saeys et al. 2007). Finally,
wrapper subset evaluation is employed for evaluat-
ing the contribution of attribute subsets to study the
interaction with the different classification approaches.

3.1.1. Information Gain Attribute Ranking. To
describe the IG attribute ranking technique, we employ
the concept of information entropy that is known from
information theory and that measures the uncertainty
associated with an attribute (see Sharma and Yu 2009).
Given the prior probability p4d5 for each DRG d ∈D,
we can compute the information entropy H4D5 and the
conditional information entropy H4D � a5 of D given
an attribute a ∈ A. This information is sufficient to
compute the information gain IG4a5 of each attribute
a ∈A. A detailed description of the computation steps
is given in Appendix D in the online supplement (avail-
able as supplemental material at http://dx.doi.org/
10.1287/ijoc.2015.0655). The higher the information
gain IG4a5 of an attribute a ∈A, the more valuable the
attribute is assumed to be for classifying D. Note that
IG considers each attribute individually, and thus is
ill-suited for examining the potential contribution of
attribute combinations.

3.1.2. Relief-F Attribute Ranking. Relief algo-
rithms are known as fast feature selection algorithms
(see Aliferis et al. 2010). Kira and Rendell (1992) have
developed this class of algorithms, which has shown
to be very efficient for binary classification problems
(see Robnik-Šikonja and Kononenko 2003). The original
algorithm has been refined by Robnik-Šikonja and
Kononenko (2003). Their relief-F variant is employed in
our study because, compared to relief, it is not limited
to two class problems and can deal with incomplete
and noisy data (see Robnik-Šikonja and Kononenko
2003). For a description of the computation steps, see
Appendix D in the online supplement.

The two methods presented thus far basically com-
pute a weight for each attribute with respect to the
class D. We can now rank the IG4a5 and Qa values and
select the attributes with highest weights. As stated
by Yu and Liu (2004), these methods are not capable
of detecting redundant attributes. This can be done
with the Markov blanket attribute selection, which is
introduced next.

3.1.3. Markov Blanket Attribute Selection. Using
conditional independence relations between the DRG
and all other attributes in our data, we can learn a
probabilistic graphical model, called Markov blanket,
which is a specific Bayesian network (see Appendix D
in the online supplement). Many methods have been
developed to obtain the Markov blanket of a variable

from data and in our study, we want to evaluate two
of them: The so-called grow-shrink approach (GS)
devised by Margaritis (2003) and the incremental-
association search (IA) devised by Tsamardinos et al.
(2003). Furthermore, we evaluate the impact of whitelist-
ing, i.e., fixing arcs in the Markov blanket DAG, on
the number of selected attributes. The reason to do
so is because we want to control these attributes for
which there exists a functional relationship to DRG, as
required by the DRG system (see Figure 1 in §1), and
should not be considered redundant.

3.1.4. Correlation-Based Feature Selection. Another
way to select attributes is to select the ones that indi-
vidually correlate well with the class (DRG) and have
low intercorrelation with other individual attributes. To
compute the intercorrelation of two nominal attributes a
and b we have to compute the symmetrical uncertainty
between two attributes using conditional entropies.
Then, the attribute subset A∗

i is selected, which maxi-
mizes the normalized sum of conditional symmetrical
uncertainties between each attribute and the class DRG.
A description of the necessary computation steps is
provided in Appendix D of the online supplement.

3.1.5. Wrapper Attribute Subset Evaluation. A
method that “wraps” a classification scheme into the
attribute selection procedure is called wrapper attribute
subset evaluation. For this, we have to choose a classi-
fication scheme as well as an evaluation measure such
as accuracy (Acc.) that will be optimized. Starting with
an empty subset of attributes, in each iteration one
(best) single attribute is added to the list of attributes.
An example is provided in Appendix D of the online
supplement. Usually, this greedy search goes along
with high computational effort, which depends on the
complexity of the classification scheme and on the
number of attributes, among others.

3.2. Classification Techniques
In the following, we summarize three basic classification
methods: naive Bayes (NB), Bayesian networks (BN),
and classification trees (also called decision trees), as
well as a fourth method that combines the three basic
classifiers by voting. A fifth approach is described
that combines the DRG-grouper with BN and classifi-
cation trees by probability averaging. We develop a
decomposition-based classification approach that classi-
fies each patient’s diagnosis and that is inserted, besides
other patient attributes, into the DRG grouper. Finally,
we outline decision rules and a random DRG assign-
ment. For each method, except the random assignment,
the classifier is learned from a data set of labeled
training examples. This means that the true DRG of
each inpatient is known to the classification method.
Afterward, the classifier is applied to a separate data set
of unlabeled test examples. Here, the true DRG of each
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inpatient is unknown to the classification method and
must be predicted. The NB and BN methods learn a
probabilistic model from the training data, compute the
posterior probability that the inpatient belongs to each
DRG d given the inpatient’s attributes A, and assign
the inpatient to the DRG with highest posterior proba-
bility. The classification tree method, instead, learns a
tree-structured set of decision rules from the training
data and uses these rules to predict the inpatient’s
DRG. Each method is described in more detail next.

3.2.1. Naive Bayes. The naive Bayes classifier
assumes that all of an inpatient’s attributes a ∈A are
conditionally independent given the inpatient’s DRG d.
Under this assumption, the prior probability p4d5 of
each DRG d is learned from the training data by max-
imum likelihood estimation, i.e., p4d5 is set equal to
the proportion of training examples that belong to
class d. Similarly, the conditional likelihood of each
attribute value vi1 a given each DRG d is learned from
the training data by maximum likelihood estimation,
i.e., p4vi1 a � d5 is set equal to the proportion of training
examples of class d that have value vi1 a for attribute a.
Afterward, the classifier assigns the DRG d∗

i to the test
instance i, which maximizes the likelihood function.
A mathematical description is provided in Appendix D
of the online supplement.

3.2.2. Bayesian Networks. The naive Bayes ap-
proach assumes that each attribute is only dependent
on the DRG but not dependent on other attributes,
which is rarely true. Thus, we extend the naive Bayes
classifier to a Bayesian network classifier, where the set
of conditional independence assumptions is encoded in
a Bayesian network as described above. As in the naive
Bayes approach, we learn the conditional probabilities
from the training data, but now we must condition not
only on the DRG, but also on any other parents ça

of the given attribute a in the Markov blanket graph.
Finally, we assign the instance to that DRG d∗

i that has
the highest posterior probability, as in the naive Bayes
approach.

3.2.3. Classification Trees. As previously stated,
the hospital currently employs a DRG grouper to
determine the DRG of an inpatient from the second
day after admission.

Instead of using a pre-existing set of decision rules as
employed by the DRG grouper, we learn a classification
tree automatically from labeled training data. There are
various methods to learn the structure of a classification
tree from data: we use the algorithm of Quinlan (1992),
which has also been investigated by Hall and Holmes
(2003) with respect to attribute selection. We employ
this algorithm because we can control the overfitting
of the classification tree as well as the tree size during
the learning process. A description of the necessary
computation steps is provided in Appendix D of the
online supplement.

3.2.4. Voting-Based Combined Classification.
Another approach is to combine classifiers to take
advantage of each individual classifier’s strengths.
Different methods to combine classifiers in order to
increase classification accuracy are described in Kittler
et al. (1998). In our study, we combine classifiers as
follows. Given the input vector of attribute values for
an instance, for each DRG we count the number of
classifiers that lead to the selection of a respective DRG.
The DRG that receives the largest number of votes
is then chosen, and ties are resolved by employing a
uniform random distribution.

3.2.5. Probability Averaging to Combine the DRG
Grouper with Machine Learning Approaches. We
developed the following approach in order to combine
a DRG grouper with machine learning-based classifica-
tion approaches. We employ the DRG grouper as a
classifier and combine it with the decision tree and
the Bayesian network approach. In a first step, we
use a DRG grouper to create the artificial attribute
“DRG calculated by using the DRG grouper.” For our
study, we used the publicly available DRG grouper
GetDRG (2015); Internet-based DRG groupers such as
Webgrouper (2015) are also available. Hospitals may
use their own DRG grouper (e.g., 3M™ Core Grouping
Software) or any other commercial DRG grouper. We
denote the new attribute dg and add it to the set of
attributes A∪ dg . Using the WEKA application pro-
gramming interface (API) (see Witten and Frank (2011))
we implement a Java class that classifies instance i
by using the DRG from the DRG grouper, formally
described by d∗

i = d
g
i .

In a second step, using the WEKA data structures of
a voting classifier, we now combine the WEKA-based
DRG grouper, the decision tree learner, and the BN
approach in an array of classifiers C. We classify a new
instance i employing the rule d∗

i = arg maxd∈D41/�C�5 ·
∑

c∈C pc1d, where pc1d is the probability distribution of
all DRGs for classifier c. For the DRG grouper, the
probability for DRG d is pc1d ∈ 80119. In contrast, in
the probability distribution of the Bayesian network
classifier and the decision tree, the probability distri-
bution is pc1d ∈ 60117. More precisely for the decision
tree, we count the number of instances of each type at
the chosen leaf node. For example, when we reach a
leaf node with nine examples of “DRG d1” and one
example of “DRG d2,” we set pc11 = 009 and pc12 = 001.

3.2.6. Decomposition-Based DRG Classification
(DDC). We developed another approach that decom-
poses the DRG classification task into (i) classifying
each patient’s primary diagnosis (ICD code), (ii) insert-
ing this code besides demographic information into
the DRG grouper, and (iii) adjusting the DRG using a
clinical complexity level (CCL) classifier. Algorithm 1
provides the pseudocode of our approach. Lines start-
ing with † and ∗ will be evaluated separately; see

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

2.
82

.8
2]

 o
n 

23
 D

ec
em

be
r 

20
15

, a
t 1

4:
08

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Gartner et al.: Approaches for Early DRG Classification and Resource Allocation
INFORMS Journal on Computing 27(4), pp. 718–734, © 2015 INFORMS 723

Tables 20–21 in Appendix E.6 of the online supplement.
In line 1 we create a look-up table that includes all
relevant DRGs in the DRG system. This is necessary
because in line 11 of the algorithm, we may come up
with a DRG that simply does not exist. Next, we split
our set of instances I into training and test instances
for each fold in the cross validation. Afterward, and
similarly to the study of Pakhomov et al. (2006), we
train a naive Bayes classifier to classify ICD codes. Next,
we train a CCL classifier using again a naive Bayes
classifier. In lines 6–12, each instance is assigned to an
ICD code, which is, besides the patient’s demographic
information, inserted into the DRG grouper. Next, the
last character of the DRG is adjusted based on the
classified CCL, and in line 11 the CCL is adjusted if
the DRG is found in the look-up table (see line 1).

Algorithm 1 (Decomposition-based DRG classification)
1: †Fill look-up table with relevant DRGs
2: for all fold f = 11 0 0 0 1 F do
3: Create Itrain

f ⊂I and Itest
f ⊂I

4: Train primary diagnosis classifier based on
Itrain

f

5: ∗Train CCL classifier based on Itrain
f

6: for all i ∈Itest
f do

7: Classify primary diagnosis using NB
8: Insert primary diagnosis and demographic

information into DRG grouper
9: Classify DRG using DRG grouper

10: ∗Classify CCL using NB and replace last
DRG character

11: †If adjusted DRG is not in the look-up
table, undo adjustment

12: end for
13: end for.

3.2.7. Decision Rule-Based Mapping of Attribute
Values to DRGs. Holte (1993) examines the perfor-
mance of simple decision rules where attribute values
are mapped directly to class values. For our problem,
the rules are determined as follows: In the training set,
we count how often an attribute value of the primary
diagnosis occurred with respect to each DRG. For
each attribute value we create a mapping to the most
frequent DRG. Now, for each instance in the testing set,
we first observe the value of the primary diagnosis and
assign the instance to the DRG that is described by the
decision rule. If the primary diagnosis has not yet been
observed in the training set, the most frequent DRG in
the training set is assigned.

3.2.8. Random Assignment of DRGs (RND).
Another baseline approach is to classify each instance
uniformly at random to a DRG based on the set of
available DRGs. We implemented this approach by
using a discrete uniform distribution U411 �D�5.

3.3. Improving Resource Allocation Through
Early DRG Classification

To evaluate how the classification approaches can
improve resource allocation decisions in hospitals, we
propose a model for DRG-based resource assignment,
hospital-wide. The model decides on a day-by-day
basis if patients are admitted or kept in the hospital
and how scarce clinical resources are allocated to the
patients in order to maximize hospital contribution
margin. Our model has similarities with the approach
of Hosseinifard et al. (2014). Using mathematical pro-
gramming combined with simulation, the authors
evaluate costs for demand-driven discharge decisions
of patients, also called “bumping.” Prior to their study,
empirical evidence of this phenomenon was found by
Anderson et al. (2011) who have shown that surgeons
discharge patients earlier when there are relatively few
downstream beds available. In contrast, using a Markov
chain approach, Dobson et al. (2010) model the problem
based on the Green (2002) observation in a New York
City hospital: patients are discharged early to make
room for new admissions. Our model differs from the
previous approaches because we take into account
hospital beds in general and uncertain contribution
margins based on DRGs. For our model, we distinguish
between four types of patients: emergency patients Pem

and urgent elective patients Pu-el have to be admitted to
the hospital, whereas nonurgent elective patients Pnu-el

may be admitted, and dischargeable patients Pdis are
in the hospital but, because of their improved health
status, can be discharged. Since the revenue and thus
the contribution margin of patients depends on their
DRG as well as on their length of stay (see Gartner
and Kolisch 2014), precise information of the DRG
of patients helps to allocate clinical resources using a
contribution margin-maximizing approach. The model
is inspired from practice. In the hospital where the data
from this study is obtained, each day a ward round
decides from a contribution margin-based perspective
on the discharge of patients in sufficiently good health
condition. Independently from the ward round, the cen-
tral bed management makes daily resource assignment
decisions for incoming elective and emergency patients.
For emergency and urgent elective patients, who are
required to be admitted, only a decision on the ward
assignment is undertaken. The decision of the ward
round and the central bed management are linked
by scarce clinical resources such as beds, operating
rooms, intensive care units, and radiology resources.
Hence, although this is not yet done in the hospital’s
current operation, we integrate both problems into an
optimization model, which assigns clinical resources to
patients in an integrated way. We categorize medical
resources into overnight resources (beds) Ro, which
are required by patients during the night, and day
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resources (all other clinical resources) Rd, which are
required by patients during the day.

To model the problem, let P=Pem ∪Pu-el ∪Pnu-el ∪

Pdis be the set of all patients and let R=Ro ∪Rd denote
the set of all clinical resources. For each patient p ∈

P there is a subset of required resources, denoted
by Rp. More specifically, we have a patient-specific
subset for day and overnight resources, denoted by
Rd

p ⊂ Rd and Ro
p ⊂ Ro, respectively. Assuming that

we know the DRG for each patient and assuming
the average length of stay, we have for each patient
p ∈P the contribution margin �p1k when the patient
is assigned to overnight resource k ∈Ro

p. Overnight
resource-dependent contribution margin reflects differ-
ent revenue for patients with private health insurance
if, for example, a patient desires increased comfort
or chief physician treatment. Overtime costs such as
overtime pay, which is incurred when resource k ∈R is
utilized beyond regular capacity, is denoted with ck.
Let Rk be the regular capacity of resource k ∈R, for
example 100 beds on the surgical specialty or, in the
case of day resources, eight hours for a surgical team
shift. Let further R̄k be the maximum overtime capac-
ity of resource k ∈ R, for example 10 beds for the
surgical specialty or two hours for a surgical team
shift. We denote with rp1k the resource requirement of
patient p ∈P for resource k ∈R. Resource capacity and
demand are measured in minutes and beds for day
resources and overnight resources, respectively. We
employ binary variables xp1k, which are 1 if patient p is
assigned to resource k and 0 otherwise. We now can
model the resource assignment problem as follows:

Maximize z=
∑

p∈P

∑

k∈Ro
p

�p1k · xp1k −
∑

k∈R

ck · ok (1)

subject to
∑

k∈Rd
p

xp1k ≥ 11 ∀p ∈Pem
∪Pu-el1 (2)

∑

k∈Ro
p

xp1k = 11 ∀p ∈Pem
∪Pu-el1 (3)

∑

k∈Ro
p

xp1k ≤ 11 ∀p ∈Pdis
∪Pnu-el1 (4)

∑

k∈Rd
p

xp1k −
∑

k∈Ro
p

xp1k ≥ 01 ∀p ∈Pnu-el1 (5)

∑

p∈P2 rp1k>0

rp1k · xp1k − ok ≤Rk1 ∀k ∈R1 (6)

0 ≤ ok ≤ R̄k1 ∀k ∈R1 (7)

xp1k ∈ 801191 ∀p ∈P1 k ∈Rp0 (8)

The objective function (1) maximizes the contribution
margin of the patients that are admitted to or kept in
the hospital minus the cost for resource overutilization.
Constraints (2) and (3) take into account emergency
and urgent elective patients by enforcing treatment (2)

and assigning a bed (3). Dischargeable and nonurgent
elective patients only require a bed if kept in or admit-
ted to the hospital, which is depicted in constraints (4).
Furthermore, with constraints (5), we ensure that in
case of admission, the treatment of nonurgent elective
patients starts at the first day to avoid unnecessary
waiting time and thus lengths of stay. The resource
capacity is taken into account in constraints (6). The
decision variables and their domains are depicted
in (7)–(8).

4. Experimental Investigation
In the following, we provide an experimental inves-
tigation of the presented methods. We first give an
overview and descriptive statistics of the data employed
for our study, followed by a presentation of the results
from the attribute selection part and an evaluation of
the classification techniques, broken down by different
metrics and levels of detail.

4.1. Data
We tested the attribute selection and classification
techniques experimentally on data from a 350-bed
sized hospital in the vicinity of Munich, Germany.
Similarities between the U.S. DRG system and other
developed-world countries, for example, are that a
similar flow-chart based method is used to determine
the DRG; see Schreyögg et al. (2006b). Differences,
however, are in the computation of the length of stay
dependent revenue; see, e.g., Gartner and Kolisch (2014).
Since we classify the DRG and not the revenue function,
we expect similar results in other DRG systems such as
the United States and developed-world countries that
employ DRG systems.

4.1.1. Data from Patients That Contact the Hos-
pital Before Admission (Elective Patients). We ob-
serve 3,458 elective patients that contact the hospital
before admission and were assigned to 413 different
DRGs. For a DRG frequency distribution as well as a
detailed description and a summary of the attributes
used in this study, see Figure 2 and Table 4 in the
online supplement. When we looked at the frequency
distribution of the 50 most frequent DRGs for the group
of elective patients, we observed a quick DRG fre-
quency drop-off. Moreover, the 35 most frequent DRGs
account for more than 50.4% of all elective inpatients.

For some elective patients, there exist free-text diag-
noses and clinical procedures. To employ this infor-
mation, we proceeded as follows: first, we converted
all strings to lowercase. Afterward, we employed a
word tokenizer and stopwords to filter out irrelevant
characters and words, respectively. Then, we restricted
the term frequency in order to obtain a sufficiently
large representation of relevant strings. Finally, in the
case of free-text diagnoses, we employed word stem-
ming. Although the patients’ gender is not documented
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Table 1 Data Sets Generated for the DRG Classification
Before Admission

Procedure codes Admission diagnoses Data set

All codes All 1
“Admission diagnosis 1” only 2

None 3

All codes documented within All 4
the first two days “Admission diagnosis 1” only 5

None 6

None All 7
“Admission diagnosis 1” only 8

None 9

before admission, we assume that it is available for the
DRG grouper and for the machine learning methods
because the name of the patient usually informs the
admitting nurse of the patient’s gender and, if unclear,
the gender could be reported over the telephone.

We want to evaluate scenarios when more informa-
tion could be available before admission, in particu-
lar, diagnoses and clinical procedures. Diagnoses are
documented before admission using free-text, and at
admission, ICD codes are employed for documentation.
Clinical procedures are coded using the International
Classification of Procedures in Medicine. We there-
fore generate data sets that represent scenarios about
the availability of further information as presented in
Table 1.

For example, employing data set 2, our hypothesis
is that, in addition to the attributes available at first
contact, all procedure codes of the episode documented
after admission and the “admission diagnosis 1” are
available for each patient in the data set. Accordingly,
the corresponding medical partition and category code
of “admission diagnosis 1” are available as well since
they can be derived directly from the ICD code. None
of these scenarios are unrealistic since, for example, if
a referring physician contacts the hospital because of

Index of primary diagnosis documented
at admission
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Figure 2 Assignment of Admission Diagnoses to DRGs Determined at Discharge (a) vs. Assignment of Admission DRG and Discharge DRG (b)

a necessary hernia repair for his patient, structured
information about the patient could directly be trans-
mitted to the hospital. However, in the most common
scenarios, we would not expect procedure codes to be
available before admission, and thus data sets 7–9 are
most representative of typical patients.

4.1.2. Data from All Patients Available at Admis-
sion (Elective and Nonelective Patients). We observe
that all (elective and nonelective) patients repre-
sent 16,601 patients who were admitted during the
year 2011 and were assigned to 680 different DRGs,
which is considerably more than the 413 DRGs asso-
ciated with elective patients. Looking at the DRG
frequency distribution, we observed a quick DRG fre-
quency drop-off. In contrast to the group of elective
patients, the three most frequent DRGs are “esophagi-
tis” (n= 688), which is a disorder of the esophagus,
“childbirth” (n= 441), and “collapse or heart disease”
(n= 321). Moreover, the 50 most frequent DRGs account
for more than 50.1% of all inpatients.

To evaluate the accuracy of the assignment of the
primary diagnosis to the DRG, Figure 2(a) presents
for each patient a matching of the primary diagnosis
assigned at admission, which is “admission diagno-
sis 1,” versus the DRG determined at discharge. The
figure reveals that solely assigning the DRG based
on the primary diagnosis is difficult since there is no
structure visible. Also note that the number of primary
diagnoses is higher than the number of DRGs assigned
to the patients at discharge. Figure 2(b) presents for
each patient a matching of the DRG determined at
admission and the DRG determined at discharge. The
figure reveals an accumulation of dots in the diagonal,
which implies that many working DRGs determined at
admission turn out to be the true DRG determined at
discharge.

Similar to the DRG classification before admission,
we generate three data sets that represent data scenarios

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

2.
82

.8
2]

 o
n 

23
 D

ec
em

be
r 

20
15

, a
t 1

4:
08

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Gartner et al.: Approaches for Early DRG Classification and Resource Allocation
726 INFORMS Journal on Computing 27(4), pp. 718–734, © 2015 INFORMS

Table 2 Data Sets Generated for the
DRG Classification at Admission

Procedure codes Data set

All codes 10
All codes documented within 11

the first two days
None 12

that could be made available at admission and that
are presented in Table 2. Naturally, since admission
diagnoses are available at that time, we only focus on a
variation of clinical procedures. For example, employing
data set 11, our hypothesis is that all procedure codes
that are documented within the first two days would
be available for each patient in the data set. Similar
to the data sets generated before admission, none
of these scenarios are unrealistic because when an
emergency patient is to be treated at the hospital,
the preparation of some procedures (e.g., surgeries)
is already performed prior to the patient’s arrival,
for example, when emergency physicians contact the
hospital from the ambulance vehicle.

In the most common scenarios, procedure codes
would not be available at admission, and thus data
set 12 is most representative of typical patients.

4.2. Results of the Attribute Ranking and Selection
In what follows, we provide the results of the attribute
ranking and selection before and at admission where
the nearest-neighbor parameter of the relief-F algorithm
is set to k= 10, as suggested by Robnik-Šikonja and
Kononenko (2003).

4.2.1. Results of the Attribute Ranking and Selec-
tion Before Admission. Both attribute rankings, IG
and relief-F, show that attributes that are related to
“admission diagnosis 1” such as “category code of
admission diagnosis 1” are among the top three ranks
(see Appendix E of the online supplement). This result
is not surprising because we are classifying “diagnosis-
related” groups. The “department of admission” also
influences the DRG, as can be seen by the results
of both algorithms. Moreover, for most of the data
sets, the DRG grouper-related attributes (e.g., “DRG
calculated by using the DRG grouper at 1st contact”)
are highly relevant, which is, however, not true, e.g., for
data set 3, 6, and 9. One explanation for this is that
we artificially generated a DRG attribute using the
DRG grouper and inserted it into the data set. This
attribute is highly inaccurate since for the three data
sets, no admission diagnosis codes are available (see
Table 1 in §4.1.1) and therefore the DRG grouper cannot
classify the DRG accurately. Also, we observed that the
attribute “5” (see Appendix E of the online supplement)
is relevant where “5” is the first digit of a surgical
procedure code. Accordingly, in the case of data set 3,

Table 3 Original Number of Attributes and Number of Selected
Attributes for the Different Attribute Selection Techniques
Before Admission

Markov blanket Wrapper
Original no. of

Data set attributes GS IA GSWL IAWL NB PA CFS

1 21049 1 1 161 161 6 14 44
2 21034 1 1 156 156 6 10 45
3 21031 1 1 155 155 30 36 65
4 11678 1 1 152 152 4 9 59
5 11663 1 1 147 147 4 7 62
6 11660 1 1 146 146 24 37 78
7 251 1 1 10 10 13 20 20
8 236 1 1 5 5 13 28 20
9 233 1 1 4 4 26 30 37

this attribute can be considered more relevant than the
DRG calculated by using the DRG grouper.

Next, we examine two Markov blanket attribute
selection techniques and the wrapper subset evalua-
tion. For the Markov blanket attribute selection, we
employed the �2-test with 0.05% confidence level. We
evaluated the influence of whitelisting, i.e., fixing arcs
in the Markov blanket DAG when attributes have a
functional relationship with the DRG. We employed
the GS algorithm with (GSWL) and without (GS)
whitelisting and the IA algorithm with (IAWL) and
without whitelisting (IA). For the wrapper approach,
we employed accuracy as an evaluation measure. Due
to the computational time of this approach, we focused
exclusively on the first 50 attributes ranked relief-F.
Moreover, we used naive Bayes (NB) and probability
averaging (PA) as classification schemes for the wrap-
per approach. The original number of attributes and
the number of selected attributes by employing the
different approaches are shown in Table 3. It reveals
that the Markov blanket attribute selection without
whitelisting (see columns GS and IA) selects for each
data set only one attribute no matter which algorithm
is employed. One explanation that the Markov blanket
contains only one attribute besides DRG is because,
based on conditional independence, attribute diag-
noses and the patients admission department shield
the actual DRG from other potentially nonredundant
attributes. However, using whitelisting, the number of
attributes is substantially higher.

Taking into consideration the other attribute selection
techniques, we observe that the NB wrapper approach
selects in most of the cases less attributes than the
PA wrapper approach. One explanation for this is that
the probability averaging approach combines different
classification methods and each of these can poten-
tially combine more attributes to increase classification
accuracy.

4.2.2. Results of the Attribute Ranking and Selec-
tion at Admission. In both attribute rankings, IG and
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Table 4 Original Number of Attributes and Number of Selected
Attributes for the Different Attribute Selection Techniques
at Admission

Markov blanket Wrapper
Original no. of

Data set attributes GS IA GSWL IAWL NB PA CFS

10 21908 1 1 146 146 14 29 76
11 21393 1 1 134 134 12 31 109
12 265 1 1 12 12 12 20 11

relief-F, at least one DRG grouper-related attribute
is among the top three ranks. For data sets 10–12,
the IG attribute ranking sets the attribute “admission
diagnosis 1” on the top two ranks (see Appendix E
of the online supplement). In contrast, the results of
the relief-F attribute ranking reveal that no admission
diagnosis-related attribute is among the top three ranks.
Instead, DRG grouper-related attributes are among the
top three ranked attributes.

Similar to the data available before admission, we
turn to the two Markov blanket attribute selection
techniques and the wrapper subset evaluation. We
employ a 10% sample stratified by DRG for each data
set. This means that the probability distribution of
DRGs in the sample is equal to that in the original
data set. The results are shown in Table 4. Similar to
the results obtained by GS and IA before admission,
only one attribute is selected using Markov blanket
attribute selection without whitelisting. However, when
incorporating structural information into the learning
process of the Markov blanket, the number of attributes
is substantially increased.

4.3. Evaluation Metrics for Classification
All classifiers and the DRG grouper are assessed using
the same performance indicators. The overall perfor-
mance is measured in terms of classification accuracy
(proportion of correctly classified DRGs) as well as
classification accuracy within each of the five most fre-
quently occurring major diagnostic categories (MDCs)
before admission and eight most frequent MDCs at
admission. Each of the MDCs represents broad cate-
gories of diagnoses (e.g., respiratory, gastrointestinal).
For a selection of the eight most frequently occurring
DRGs such as esophagitis, we measure the true positive
rate and false positive rate. As described in §4.8, we
also evaluate how well each classifier predicts the
expected revenue for each inpatient. The DRG’s base
revenue rate is used, and we compute the mean abso-
lute difference between true and predicted revenue.
All performance indicators are measured using 10-fold
cross validation.

We also employ the learning curve of a classifier as
a quality measure. Learning curves show the accuracy
of a classifier as a function of the size of the training
set (see Perlich et al. 2003). To obtain a learning curve

for the classifiers, we draw a sample from the data that
is stratified by DRG. We test and train the classifiers
on this small data set using 10-fold cross validation.
Afterward, we store the classification accuracy as a
function of the sample size. We repeat these steps
(sampling and cross validation) by increasing the
sample size until it is equal to the size of the original
data set. Finally, we evaluate the performance of the
early DRG classification in a resource allocation setting,
as described in §4.9.

4.4. Computation Times and
Parameter Optimization

All computations were performed on a 3.16 GHz PC
(Intel Core2 Duo E8500) with 8GB RAM, running
Windows 7 64 bit operating system. For the Markov
blanket searches we employ the “bnlearn” package
(see Scutari 2010). For carrying out the attribute rank-
ing, the CFS and the classification tasks, we employ
the Java-based WEKA machine learning API from
Witten and Frank (2011), which we extended in order
to incorporate the DRG grouper-related probability
averaging approach. Comparing the computation times
of the attribute ranking techniques, relief-F requires
considerably more computation time than IG (see
Appendix E of the online supplement) and the Markov
blanket attribute selection with whitelisting requires
considerably more computation time than without
whitelisting.

We performed a two-stage parameter optimization
for the decision tree approach and vary the minimum
number of instances per leaf (MI) within the inter-
val 6111007 and 61011007, for the data sets before and
at admission, respectively. The confidence factor (CF)
is varied using the values 0.001, 0.005, 0.01, 0.05, 0.1,
and 0.5, and the parameter combination that results in
the maximum accuracy is selected. Then, after attribute
selection, a second-stage parameter optimization is
performed. The results reveal that for data sets 3, 6, 9,
and 12, low confidence factors and low numbers of
instances per leaf are best. One explanation for this is
that for these data sets only free-text information about
admission diagnoses is available and, because of the
pruning strategy, even a small number of instances per
leaf can substantially increase classification accuracy.

4.5. Results of the Classification Techniques
We now compare the performance of the different
classifiers and the DRG grouper with and without
attribute selection.

4.5.1. Results of the Classification Techniques
Before Admission. The large-sample results (10-fold
cross validation accuracy for each data set) before
attribute selection and before admission are given in
Table 5, which reveals that the PA approach, which
combines machine learning techniques with the DRG
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Table 5 Overall Accuracy (%) of the Different Classification Techniques Before Admission and Attribute Selection

k RND BN Grouper DDC PA NB Rules Tree Vote

1 001 (0.0) 7000 (1.8) 7709 (2.9) 1000 (5.7) 7807∗ (3.3) 3505 (1.3) 7508 (1.7) 7508 (1.7) 7509 (1.2)
2 001 (0.0) 7002 (2.2) 7702 (2.5) 1003 (6.1) 7709† (3.3) 3704 (1.1) 7502 (1.8) 7503 (2.0) 7505 (1.4)
3 001 (0.0) 5509∗ (5.2) 008∗ (0.4) 908∗ (5.3) 5803∗ (4.6) 3005∗ (1.9) 2001∗ (0.3) 6201∗ (3.1) 5201∗ (1.9)
4 001 (0.0) 6604 (2.2) 7109 (3.3) 1001 (5.7) 7208∗ (3.1) 3501 (2.8) 7002 (2.3) 7002 (2.3) 7004 (2.7)
5 001 (0.0) 6605 (2.5) 7103 (3.4) 1100 (4.9) 7200∗ (3.3) 3802 (2.0) 6907 (2.4) 6907 (2.4) 6909 (2.6)
6 001 (0.0) 5200∗ (7.8) 008 (0.4) 908∗ (5.3) 5305∗ (5.7) 3101∗ (1.9) 2001∗ (0.3) 5605∗ (1.8) 4804∗ (1.0)
7 001 (0.0) 5203∗ (5.2) 1803 (0.5) 1109 (4.3) 5205∗ (3.9) 3905∗ (0.5) 4502∗ (3.3) 5209∗ (4.1) 5402∗ (5.4)
8 001 (0.0) 5105∗ (3.3) 1803 (0.5) 1309 (5.7) 5203∗ (4.8) 4404∗ (1.5) 4502∗ (3.3) 5207∗ (6.6) 5306∗ (4.7)
9 001† (0.0) 3101∗ (6.0) 001 (0.0) 1006∗ (5.2) 2803∗ (3.6) 3304∗ (1.7) 2001∗ (0.3) 3807∗ (4.4) 3503∗ (2.7)
Avg. 001 (0.0) 5703 (4.0) 3704 (1.5) 1008 (5.4) 6007 (4.0) 3601 (1.6) 4901 (1.7) 6105 (3.2) 5905 (2.6)

Notes. The best performance figures for each data set are in bold.
∗ Significant improvements (at 5% significance level) over the DRG grouper; † nonsignificant differences.

grouper, always outperforms the current approach
employed in the hospital (DRG grouper). Moreover,
compared to the other machine learning approaches,
the PA approach can outperform them in four of the
nine data sets. None of the other approaches (BN, NB,
decision rules, classification trees, or voting) outper-
forms the current approach of the hospital for all data
sets. However, machine learning methods tend to con-
sistently outperform the DRG grouper on data sets 7–9,
which represent the most common scenarios, where
procedure codes and/or diagnoses are not available at
the time when the DRG classification is performed.
Two machine learning methods did not perform well:
the NB approach always has a poor accuracy with a
maximum of 44.4% (see data set 8) and obtains a lower
average performance as compared to the DRG grouper;
similarly, the DDC approach performs poorly, only
outperforming the DRG grouper for three of nine data
sets. We believe that redundant features contribute
to the low performance of NB, noting that its perfor-
mance results are improved substantially by attribute
selection. The poor performance of DDC is attributed
to the difficulty of accurately predicting diagnoses
and its failure to anticipate future procedures that will
be performed. Results for DDC∗ and DDC†, shown

Table 6 Overall Accuracy (%) of the Different Classification Techniques Before Admission and After Attribute Selection

k RND BN PA NB Rules Tree Vote

1 001 (0.0) 7208 (1.4) 7905∗ (2.1) 6000 (1.3) 7508 (1.7) 7603 (1.8) 7603 (1.6)
2 001 (0.0) 7305 (3.1) 7809∗ (3.5) 6506 (1.6) 7502 (1.8) 7600 (1.8) 7600 (2.4)
3 001 (0.0) 3807∗ (4.0) 3305∗ (2.2) 4308∗ (2.8) 2001∗ (0.3) 4504∗ (2.9) 4303∗ (3.7)
4 001 (0.0) 6904 (1.4) 7302∗ (4.0) 6103 (2.0) 7002 (2.3) 7008 (3.1) 7009† (3.8)
5 001 (0.0) 6809 (3.0) 7204∗ (3.0) 6205 (2.2) 6907 (2.4) 7005† (3.3) 7001 (2.9)
6 001 (0.0) 3701∗ (4.7) 3101∗ (1.3) 4102∗ (2.3) 2001∗ (0.3) 4400∗ (2.5) 4106∗ (2.8)
7 001 (0.0) 5302∗ (6.1) 5304∗ (3.8) 4801∗ (3.7) 4502∗ (3.3) 5305∗ (1.8) 5405∗ (3.0)
8 001 (0.0) 5207∗ (5.2) 5206∗ (4.2) 4907∗ (3.1) 4502∗ (3.3) 5209∗ (1.8) 5404∗ (5.0)
9 001† (0.0) 3201∗ (2.2) 2206∗ (2.1) 3703∗ (5.2) 2001∗ (0.3) 3601∗ (2.1) 3606∗ (2.7)
Avg. 001 (0.0) 5504 (4.0) 5502 (2.9) 5202 (2.7) 4901 (1.7) 5804 (2.3) 5802 (3.1)

Notes. The best performance figures for each data set are in bold.
∗ Significant improvements (at 5% significance level) over the DRG grouper; †nonsignificant differences.

in Table 20 of the online supplement, are similarly
poor. Since the results of the DDC approaches are not
convincing and do not outperform any of the other
machine learning methods, we will not pursue this
approach any further.

The classification results after the PA wrapper
attribute selection are shown in Table 6 and further
results are given in the online supplement. Table 6
reveals that the PA wrapper approach can increase clas-
sification accuracy as compared to the results obtained
without attribute selection. However, for some data
sets, the maximum obtained classification accuracy
over all classifiers does not improve. This is particularly
true for data sets that contain free-text attributes rather
than structured data, for example, data sets 3 and 6.

4.5.2. Results of the Classification Techniques
at Admission. The results before attribute selection
and at admission are given in Table 7. Similar to the
classification before admission, the trivial baseline
classifier (decision rules) outperforms the DRG grouper.
Moreover, the PA approach, decision trees, and voting
outperform the DRG grouper for each of the three data
sets. Again, we observe that the DDC results are not
convincing and are excluded from further evaluation.
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Table 7 Overall Accuracy (%) of the Different Classification Techniques at Admission and Before Attribute Selection

k RND BN Grouper DDC PA NB Rules Tree Vote

10 002 (0.0) 6008† (2.1) 6008 (1.2) 2004 (2.4) 6505∗ (1.7) 3201 (0.3) 6107∗ (1.2) 6307∗ (1.5) 6308∗ (1.2)
11 002 (0.0) 5605† (0.9) 5606 (1.5) 2008 (2.7) 5907∗ (1.2) 3207 (0.2) 5703∗ (1.4) 5804∗ (1.4) 5806∗ (1.2)
12 002 (0.0) 4901∗ (1.7) 3701 (0.6) 2600 (2.3) 4907∗ (1.4) 3907∗ (0.8) 4502∗ (0.9) 4903∗ (0.9) 5004∗ (0.9)
Avg. 002 (0.0) 5505 (1.6) 5105 (1.1) 2204 (2.5) 5803 (1.4) 3408 (0.4) 5407 (1.2) 5701 (1.3) 5706 (1.1)

Notes. The best performance figures for each data set are in bold.
∗ Significant improvements (at 5% significance level) over the DRG grouper; † nonsignificant differences.

Table 8 Overall Accuracy (%) of the Different Classification Techniques at Admission and After Attribute Selection

k RND BN PA NB Rules Tree Vote

10 002 (0.0) 5908† (3.2) 6409∗ (2.1) 5505 (2.2) 6107∗ (1.2) 6405∗ (2.0) 6401∗ (2.4)
11 002 (0.0) 5507† (1.2) 6000∗ (1.5) 5207 (1.7) 5703∗ (1.4) 5907∗ (2.0) 5904∗ (1.9)
12 002 (0.0) 5007∗ (1.0) 4908∗ (1.2) 4705∗ (0.9) 4502∗ (1.5) 5002∗ (2.1) 5100∗ (1.8)
Avg. 002 (0.0) 5504 (1.8) 5802 (1.6) 5109 (1.6) 5407 (1.4) 5801 (2.0) 5802 (2.0)

Notes. The best performance figures for each data set are in bold.
∗ Significant improvements (at 5% significance level) over the DRG grouper; † nonsignificant differences.

The results for DDC∗ and DDC† are shown in Table 21
in the online supplement.

The results for the PA wrapper attribute selection are
shown in Table 8, which reveals that, compared to the
results without attribute selection, overall classification
accuracy can be improved only slightly when using the
PA wrapper approach for the three data sets. Similar
to data sets 7–9 before admission, machine learning
methods tend to consistently outperform the DRG
grouper on data set 12, which represents the most
common scenario, where procedure codes are not
available at the time when the DRG classification is
performed.

4.5.3. Learning Curves for the DRG Classification
Before and at Admission. We next evaluate the learn-
ing curves of the classifiers in order to examine how
the number of training cases influences classification
accuracy. We selected data sets 1 and 12 because the
first data set refers to elective patients who contact the
hospital before admission assuming that information
about all clinical procedures is available. In contrast,
data set 12 refers to the current situation at the hospital
where at admission, the DRG grouper is employed. We
select the attributes based on the PA wrapper approach
since PA achieves highest classification accuracy for
these two data sets. Moreover, we compare the six clas-
sification methods with the DRG grouper as benchmark
and implemented a simulation environment to test the
performance of the classifiers. The results for data set 1
and 12 are shown in Figures 3(a) and 3(b), respectively.
The PA approach, when applied to data set 1, requires
approximately 100 samples for reaching the accuracy of
the DRG grouper. However, one can observe that this
level slightly decreases with more samples but then
increases again by outperforming the DRG grouper

as soon as the sample size exceeds 2,351 cases. For
data set 12, the DRG grouper is outperformed by all
machine learning approaches when the sample size is
more than 2,656 cases.

4.6. Investigation on Major Diagnostic Categories
In the DRG systems of many first-world countries, such
as the United States and Germany, MDCs are used to
group DRGs into 23 different major categories that are
closely linked to medical specialties or clinical care cen-
ters. In what follows, we investigate how classification
techniques and the DRG grouper perform with respect
to MDCs before admission and focus on data set 1. We
selected the five most common MDCs that are each rep-
resented in the data set by more than 100 instances, see
Appendix E of the online supplement. From the results
in §4.5, we match the correctly classified DRGs to the
correct MDC and calculated the classification accuracy
for each MDC. Figure 4(a) shows the performance of
the different classification methods. The figure reveals
that for MDC 4 (respiratory system), the DRG grouper
outperforms all machine learning methods. In contrast,
for MDCs 5, 6, 8, and 11, the classification accuracy of
the machine learning methods is greater than or equal
to that of the DRG grouper.

For the data available at admission, we focus on data
set 12 and extend the list of MDCs before admission by
the MDCs 1, 14, and 15. The latter two MDCs usually
do not represent patients that contact the hospital
before admission. Figure 4(b) shows the performance
of the different classification methods employed at
admission. The figure reveals that for each MDC, the
DRG grouper is outperformed by at least one machine
learning method. A comparison of which classification
approaches significantly improve on the DRG grouper’s
results for which MDCs is provided in the online
supplement.
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Figure 3 Accuracy as a Function of the Number of Labeled Training Examples (a) Before and (b) at Admission

B

s

s

Figure 4 Classification Accuracy for Different Diagnostic Categories (a) Before and (b) at Admission

4.7. Investigation on Selected DRGs
We next compare the classification performance of the
DRG grouper and the machine learning algorithms at
a detailed level on specific, frequently occurring DRGs.

4.7.1. Investigation on Selected DRGs Before
Admission. For the investigation on selected DRGs
before admission, we focus on data set 1 and con-
sider the eight most frequent DRGs observed before
admission. For each DRG, we report the true positive
rate (TP, proportion of cases of that DRG that are
correctly classified as belonging to that DRG), the false
positive rate (FP, proportion of cases of other DRGs
that are incorrectly classified as belonging to that DRG),

and precision (Prec., proportion of cases classified as
belonging to that DRG that are correctly classified).
Table 9 shows the class-dependent performance results
of the six classification algorithms as compared with
the use of the DRG grouper. The table reveals that
for DRGs G24Z and I68C, the TP rate of the DRG
grouper is equal to the TP rate of the machine learning
methods. For the other six DRGs, the DRG grouper
is outperformed by at least one machine learning
approach.

4.7.2. Investigation on Selected DRGs at Admis-
sion. For the investigation on selected DRGs at admis-
sion, we focus on data set 12. The eight most frequent
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Table 9 TP and FP Rates (%) of the Classifiers Before Admission,
Broken Down by DRG

DRG

Algorithm F59B G24Z I21Z I53B I68C I68D L20C L64A

Naive Bayes
TP 10000 9505 9301 10000 9809 9705 9609 10000
FP 006 205 204 007 005 005 009 106
Prec. 7707 4206 3800 7503 9104 8709 6805 5907

Bayesian networks
TP 9602 9505 8907 9703 9405 9500 9609 9705
FP 003 003 003 001 003 004 002 006
Prec. 8808 8209 8502 9703 9401 9101 9000 7806

Classification trees
TP 9705 9505 8907 9806 9809 9705 9008 9705
FP 004 001 000 001 305 004 004 008
Prec. 8102 9609 9801 9600 6007 8909 8401 7502

Vote
TP 10000 9505 8907 9806 9809 9606 9609 9808
FP 005 005 008 002 100 003 003 009
Prec. 8000 7106 6705 8809 8602 9103 8509 7201

Decision rule
TP 9602 9505 8907 9509 9809 9508 9008 8808
FP 105 001 000 001 003 004 003 100
Prec. 5602 9609 9801 9702 9403 9005 8401 6003

Probability averaging
TP 9705 9505 8907 9806 9809 9606 8902 9500
FP 004 001 001 001 004 003 001 005
Prec. 8607 9609 9603 9600 9308 9200 9305 8206

DRG grouper
TP 9603 9505 8907 9509 9809 9508 8902 7808
FP 003 000 000 001 003 002 001 001
Prec. 8705 9804 9801 9702 9403 9207 9501 9206

Note. The best performance figures for each classification approach are in bold.

DRGs observed at admission are compared, again, with
TP, FP, and precision as evaluation measures. Table 10
shows the class-dependent performance results. In all
cases, the TP rates of the machine learning methods are
substantially higher than the ones of the DRG grouper,
but FP rates are also typically higher for the machine
learning methods. For three of the eight DRGs (B04D,
F39B, and I44B), each machine learning method is
able to correctly classify over 75% of the cases of the
given category, whereas the DRG grouper does not
correctly classify any of these cases. For example, in
the case of B04D (“extra-cranial surgery,” the DRG
grouper requires the procedure code that leads to
DRG B04D. Otherwise, as observed in most of the
cases, the alternative DRG B69E (transient ischemic
attack or extra-cranial occlusion) is selected by the
DRG grouper. In practice, detailed procedure code
documentation takes place after the patients’ procedure
(e.g., after a surgery) and therefore after the allocation
of scarce resources; thus early prediction of DRGs
using machine learning approaches has the potential to
dramatically improve both prediction accuracy and
resource allocation.

Table 10 TP and FP Rates (%) of the Classifiers at Admission,
Broken Down by DRG

DRG

Algorithm B04D B77Z B80Z F39B F62C F73Z G67D I44B

Naive Bayes
TP 8307 8106 8908 9602 7406 8408 7602 8806
FP 001 003 005 001 307 008 500 003
Prec. 7803 5608 7206 7806 2209 6606 3906 4700

Bayesian networks
TP 8307 8005 8708 9705 3508 8308 6100 8806
FP 001 003 002 001 009 007 109 002
Prec. 8000 6003 8701 8806 3702 7102 5705 5304

Classification trees
TP 8307 7903 8500 9705 6504 8404 7609 8108
FP 001 003 002 001 201 008 402 002
Prec. 7606 6101 8607 8408 3105 6707 4402 5202

Vote
TP 8307 8106 8700 9602 7308 8404 7201 8806
FP 001 003 002 001 305 007 402 003
Prec. 7803 6102 8603 8705 2307 6809 4203 4801

Decision rule
TP 8307 8005 8606 9500 6701 8308 7502 8806
FP 001 003 002 001 304 008 406 002
Prec. 7200 5908 8503 8504 2206 6603 4103 5006

Probability averaging
TP 8307 8106 8500 9705 4008 8404 6407 7703
FP 001 003 002 001 008 007 204 001
Prec. 8000 6102 8903 8907 4104 6901 5306 6108

DRG grouper
TP 000 5108 6109 000 5104 6304 4507 000
FP 000 001 001 000 003 004 009 000
Prec. 000 6102 8902 000 4104 6901 5300 000

Note. The best performance figures for each classification approach are in bold.

4.8. Evaluation of Expected Revenue Estimates
Next, we evaluate the error rates of the classifiers with
respect to prediction of the expected revenue for each
inpatient, computing the average absolute deviation of
the actual and the predicted DRG base rate divided by
the actual DRG base rate assuming mean lengths of
stay. For example, if the true DRG-specific base rate
is 2,000 USD for a given case and the (incorrectly)
predicted DRG has a base rate of 2,500 USD, this
corresponds to a mean absolute difference of 0.25.

4.8.1. Evaluation of Expected Revenue Estimates
Before Admission. The results before admission are
given in Table 11 and show that when using the DRG
grouper, the deviations of the classified revenues are
higher than using machine learning methods. Using the
probability averaging approach (which always outper-
forms the DRG grouper for expected revenue estimates),
the mean absolute error for revenue estimation can be
reduced from 1.4% for data set 4 to 71.9% for data set 3
compared to the results of the DRG grouper. Other
machine learning approaches may underperform the
DRG grouper in cases when a large amount of informa-
tion about the patient’s procedures and diagnoses are
known, but consistently outperform the DRG grouper
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Table 11 Mean Absolute Differences of the Expected Revenue for
Each Method Before Admission

Data set Rule NB BN Tree Vote PA DRG grouper

1 00229 00349 00234 00210 00208 00172∗ 00185
2 00237 00310 00231 00207 00212 00181† 00192
3 00642∗ 00392∗ 00421∗ 00395∗ 00393∗ 00834∗ 10433
4 00331 00394 00330 00331 00344 00316† 00320
5 00356 00393 00364 00352 00355 00321† 00327
6 00642∗ 00520∗ 00560∗ 00506∗ 00507∗ 00930∗ 10433
7 00593∗ 00511∗ 00465∗ 00475∗ 00474∗ 00507∗ 00783
8 00593∗ 00492∗ 00519∗ 00497∗ 00477∗ 00534∗ 00784
9 00642 00541∗ 00633∗ 00555∗ 00541∗ 10076∗ 10433
Avg. 00474 00434 00417 00392 00390 00541 00766

Notes. The best performance figures for each data set are in bold.
∗ Significant improvements (at 5% significance level) over the DRG grouper;

† nonsignificant differences.

in the most common scenarios where this information
is missing or incomplete.

4.8.2. Evaluation of Expected Revenue Estimates
at Admission. The results at admission are given in
Table 12, which reveals, similar to the results observed
before admission, that at admission the average mis-
classification costs of each machine learning approach
are less than that of the DRG grouper.

4.9. Evaluation of the Resource Allocation Model
We trained our classifiers using data from the first
half of 2011. We used two classification approaches
(NB and PA) to classify patients and to run the model
for each day in the second half of 2011. Based on the
solution, we calculated the actual objective function
value under perfect information, which is obtained
when the true DRG of each patient is inserted into
the resource assignment. The results of the resource
allocation study are presented in Table 13, which
compares the NB and PA approaches to the DRG
grouper. We report the mean absolute deviation (MAD)
between the contribution margin using perfect DRG
information and each classification approach as well
as the overall value of the resource assignment. The
impact of early DRG classification and subsequent
resource assignment is also measured in terms of
the average number of admitted nonurgent elective
patients, the average number of discharged patients,
and utilization of resources such as beds and ORs.

Table 12 Mean Absolute Differences of the Expected Revenue for
Each Method at Admission

Data set Rule NB BN Tree Vote PA DRG grouper

10 00180† 00251 00223 00171† 00174† 00167∗ 00178
11 00276† 00300 00305 00269† 00267† 00260∗ 00270
12 00366∗ 00346∗ 00343∗ 00352∗ 00338∗ 00368∗ 00435
Avg. 00274 00299 00290 00264 00260 00265 00294

Notes. The best performance figures for each data set are in bold.
∗ Significant improvements (at 5% significance level) over the DRG grouper;

† nonsignificant differences.

Table 13 Mean Absolute Deviation and Overall Value of the
Resource Assignment (in Euros) for the Different Approaches

Evaluation measure DRG grouper NB PA

MAD 31222081 31096006 21866080
Overall assignment value 651068012 661128045 661978001
Avg. no. of admitted

nonurgent elective patients 4046 4081 4086
Avg. no. of discharged 43006 43006 43007

patients
OR utilization [%] 6603 6703 6703
Bed utilization [%] 7007 7106 7107

We observe that the resource assignment based on
the PA approach leads to the lowest MAD values.
By using the PA classifier instead of the currently
employed DRG grouper, the hospital can improve
the contribution margin by 2.9% and the allocation
of ORs and beds from 66.3% to 67.3% and 70.7%
to 71.7%, respectively. Another observation is that,
on average, using PA leads to more admissions of
nonurgent elective patients (and thus total patients,
since we assume a fixed number of emergency and
urgent-elective patients who must be admitted) as
compared to the NB approach and the DRG grouper.
One explanation for this phenomenon is that the DRG
grouper underestimates the contribution margin of
elective patients by assigning these patients to an
error DRG with, on average, lower contribution margins
as compared to the actual, more severe DRGs. For
example, we observed that DRG F56B—high complexity
coronary angioplasty—has a 58% lower precision when
classified with a DRG grouper as compared to the use
of the PA approach. As a consequence, these patients
were much less likely to be admitted using the DRG
grouper: we observed a five times higher rejection rate
as compared to the use of the PA approach.

4.10. Temporal DRG classification
We now evaluate the convergence of the DRG classifi-
cation accuracy as the patients’ length of stay in the
hospital develops. We employed data sets 9 and 12
before and at admission, respectively, because these
data sets represent the most prevalent situation in the
collaborating hospital in which structured procedure
information is not available at the beginning of the
patient’s stay. In addition, we have chosen 25%, 50%,
75%, and 100% of the patient’s length of stay (LOS).
Details about attribute selection and assumptions on
the availability of information are described in the
online supplement, §E.9. The results are shown in
Figure 5.

The DRG grouper’s classification accuracy is 0.1%,
37.0%, 78.1%, 82.3%, 95.3%, and 99.5%; and the accuracy
of the probability averaging approach is 20.8%, 50.0%,
80.7%, 84.3%, 96.3%, and 99.4% for the before, at
admission, 25%, 50%, 75%, and 100% LOS, respectively.
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Figure 5 Temporal Classification Accuracy for the Different
Approaches After Attribute Selection and Parameter
Optimization

Thus, although the largest improvements in accuracy
are observed before and at admission, improvements
are noted throughout the majority of the patient’s
stay. We note that the DRG grouper has less than
100% accuracy at discharge; one explanation is that
approximately 1% of patients are readmitted, which
can lead to a different DRG if additional procedures or
artificial respiration take place after the readmission.
The graphs also reveal that the classification process
converges to the correct DRG as the patient’s time in
the hospital develops. These observations hold true
for all classification approaches. Confusion matrices
broken down by LOS are shown in §5.9 of the online
supplement.

4.11. Generalizability of the Approaches
Our results have demonstrated that early DRG classifi-
cation using machine learning methods combined with
a resource allocation model can increase contribution
margin of hospitals. We argue that our approaches
can be generalized to similar DRG systems in other
developed-world countries, such as the U.S. healthcare
system. In the U.S. system, the DRG structure is similar
to the one used in Germany because it is also sever-
ity adjusted: patients with similar primary diagnoses
are grouped in the same set of DRGs, and between
the DRGs that start with the same three characters,
the presence of comorbidities and additional clinical
complexity can lead to higher contribution margins.

5. Summary and Conclusions
In this paper, we have introduced attribute selection
and classification techniques in order to perform early

classification of diagnosis-related groups for hospi-
tal inpatients. We have shown that the set of patient
attributes can be reduced to a set of highly relevant
attributes and redundant attributes can be filtered out.
Using the selected subset of attributes, we have com-
pared eight different classification techniques including
a random classifier and employed five different mea-
sures to evaluate their performance. First, we consider
the aggregate performance of each classifier, and we
show the learning curves of the different classifiers as
compared to the use of a DRG grouper. Our probabil-
ity averaging approach achieves up to 79.5% overall
classification accuracy before admission, i.e., when
elective patients contact the hospital for admission. At
admission, i.e., when elective and nonelective patients
are to be admitted, a maximum of 65.5% overall classi-
fication accuracy can be achieved. The learning curves
reveal that even with the worst performing classifica-
tion approach and a minimum of information, data of
less than 2,500 inpatients are necessary to outperform
the DRG grouper at admission. Second, on a very
detailed level, we have demonstrated the performance
of machine learning techniques for the classification
of frequently occurring DRGs. Third, we have evalu-
ated the performance of the techniques with respect
to classifying inpatients into major diagnostic cate-
gories. Fourth, the performance of the classification
techniques has been evaluated with respect to the pre-
diction of expected revenue. The proposed classification
techniques demonstrate substantial improvements as
compared to the existing DRG grouper on each of these
measures. Finally, plugging the DRG information from
the machine learning methods into a resource assign-
ment model revealed two major results: contribution
margin can be increased and scarce hospital resources
such as operating rooms and beds can be allocated
more effectively as compared to using the information
of a DRG grouper. In a temporal analysis, we demon-
strate that machine learning methods also outperform
the hospital’s current approach until a substantial part
of the patient’s length of stay is reached.

One of the main findings of our research is that the
classification accuracy of a currently used DRG grouper
at admission can be increased by using machine learn-
ing methods. We also show that in many cases, for
example, extra cranial surgery (DRG B04D), the DRG
grouper is outperformed by a huge margin for all
machine learning methods considered. One reason that
the DRG grouper frequently assigns inpatients to the
wrong DRG is that many surgeries are not documented
or planned in advance. Thus, our results suggest that
machine learning methods can dramatically improve
prediction performance, especially at the beginning
of the patient’s stay when information about diag-
noses and planned clinical procedures are likely to be
incomplete. We have shown that these improvements
in prediction accuracy, when incorporated into an
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optimization approach for resource allocation, leads to
higher contribution margins, increased efficiency of
resource utilization, and ability to accommodate larger
numbers of (nonurgent elective) patients under the
same resource constraints. The increased availability
of detailed inpatient data via the use of electronic
health records at the point of care argues for the use
of real-time machine learning methods for attribute
selection and classification. This can facilitate accurate
and timely prediction of DRGs at every stage of the
patient’s hospital stay and thus lead to better utilization
of resources and, as a consequence, improve upstream
planning in healthcare service delivery systems.
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