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Regularized Empirical Risk Minimization

minimize
w

L(w ;D)︸ ︷︷ ︸
Loss function

+ λR(w )︸ ︷︷ ︸
Regularizer

Tradeoff between data fitting and model
complexity

Model w in vector space V (typically Rd or Rm×n )

R(w ) can be designed to induce structure in the
model (sparsity, low rank, variable grouping, etc.)

Our Approach: Majorization Theory [1]

minimize
w

L(w ;D)

subject to w �G v

Key ingredients: a group G and a prototype v
Complexity is defined relative to v (via relation �G)

Group G captures desired complexity invariances

Groups and Group Actions

A group is a tuple (G , ·) satisfying closure, associativity,
existence of identity and existence of inverses

P, permutation matrices under multiplication

P±, signed permutation matrices under multiplic.

O(d), orthogonal matrices under multiplication

Examples of group actions φ : G × V → V :

P acting on Rd by permuting the coordinates

O(d) acting on Rd by left matrix multiplication

Orbits and Orbitopes

Orbit of v ∈ V under the action of G :

Gv := {gv | g ∈ G}, where gv ≡ φ(g , v )

The convex hull of the orbit is called the orbitope:

OG(v ) := conv(Gv ).

Orbitopes induce a pre-order:

w �G v ⇔ w ∈ OG(v )

Examples: Vector Case

`2 ball:

OO(d)(v ) = conv {Uv | U ∈ O(d)}
= conv {w ∈ Rd | ‖w‖2 = ‖v‖2}

Permutahedron:

OP(v ) = conv {Pv | P ∈ P}
= {Mv | M1 = 1,MT1 = 1,M ≥ 0}

Signed permutahedron:

OP±(v ) = conv {Diag(s)Pv | P ∈ P, s ∈ {±1}d}
Particular cases: `1-ball (v = γe1); `∞-ball (v = γ1)

Examples: Matrix Case

Symmetric matrices with majorized
eigenvalues:

OO(d)(A) = conv {UAUT | U ∈ O(d)}
= {B ∈ Sd | λ(B) �P λ(A)}

Squared matrices with majorized singular
values:

OO(d)×O(d)(A) = conv {UAV T | U ∈ O(d),V ∈ O(d)}
= {B ∈ Rd×d | σ(B) �P σ(A)}

Particular cases: spectral norm ball (A = γId);
nuclear norm ball (A = γDiag(e1))

Example: Atomic Norms [2]

Proposition:
−v ∈ OG(v ) ⇒ OG(v ) is an atomic norm ball

Corollaries:

OP±(v ) is an atomic norm ball for any v
OP(v ) is an atomic norm ball for v of the form
(v+, v−)

Duality: Permutahedra & Sorted `1 [3, 4]

Sorted `1 norm:

‖w‖slope,v :=
∑d

j=1 vj|w |(j), (v1 ≥ . . . ≥ vd ≥ 0)

Proposition: the two norms are dual!

‖ · ‖?P±v = ‖ · ‖slope,v
Corollary: evaluating the prox of ‖ · ‖slope,v is all we
need to project onto OP±(v ) (Moreau decomposition).
In the paper: similar result for unsigned permutahedron

Two Key Concepts

All we need for optimizing with orbitopes (arbitrary G ):

Matching function:

mG(u, v ) = sup{〈u,w〉 | w ∈ Gv}
Region cone:

KG(v ) = {u ∈ V | mG(u, v ) = 〈u, v〉}

Frank Wolfe and Projected Gradient

The two ingredients above are all we need from G to
train with Frank Wolfe or projected gradient:

evaluate project onto
matching function region cone

Frank Wolfe X
Projected Grad. X X

Both steps are easy and efficient for the
permutahedron and signed permutahedron
cases

Continuation Algorithm

Given G , how to choose a good prototype v?
Answer: search in the space of all prototypes!

Continuation algorithm: gradually increase the ball
(as homotopy methods), but also shapes it along the way

Require: Factor ε > 0, interpolation parameter α ∈ [0, 1]
1: Initialize prototype v 0 randomly and set ‖v 0‖ = ε
2: repeat {for t = 0, 1, . . .}
3: Solve w t = arg minw�Gv t

L(w ;D)
4: Pick v ′t ∈ Gv t ∩ KG(w t)
5: Set next prototype v t+1 = (1 + ε)(αv ′t + (1− α)w t)
6: until ‖w t‖Gv t

< 1.
7: Choose the best ŵ ∈ {w 1,w 2, . . .} with C/V

Depends on prototype initialization

Guaranteed to stop after a finite number of iterations

Simulation Results

Regularizing with true model’s orbitope:

Continuation algorithm with random prototypes:

Conclusions and Future Work

Conclusions:

New group-based regularization scheme via orbitopes

Relation with atomic norms and sorted `1-norms

Continuation algorithm for exploring regularization
paths

Future work:

Analysis for reflection groups

Theoretical analysis of the continuation algorithm
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