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Regularized Empirical Risk Minimization

minimize L(w; D) + AR(w)
W —_——

Loss function  Regularizer

m Tradeoff between data fitting and model
complexity
m Model w in vector space V (typically RY or R™*" )

= R(w) can be designed to induce structure in the
model (sparsity, low rank, variable grouping, etc.)

Our Approach: Majorization Theory [1]

minimize L(w; D)

subject to w <¢ v

m Key ingredients: a group G and a prototype v
= Complexity is defined relative to v (via relation <)
m Group G captures desired complexity invariances

Groups and Group Actions

A group is a tuple (G, ) satisfying closure, associativity,
existence of identity and existence of inverses
m P, permutation matrices under multiplication
m P4, signed permutation matrices under multiplic.
= O(d), orthogonal matrices under multiplication

Examples of group actions ¢ : G x V — V-
m P acting on RY by permuting the coordinates
m O(d) acting on R? by left matrix multiplication

Orbits and Orbitopes

Orbit of v € V under the action of G:

Gv:={gv | g€ G}, where gv = ¢(g, v)
The convex hull of the orbit is called the orbitope:
O¢(v) := conv(Gv).
Orbitopes induce a pre-order:

Orbit Regularization
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Examples: Vector Case Two Key Concepts

m /> ball:
Oog)(v) = conv{Uv | U c O(d)}
=conv{w € R? | |w], = ||v]],}

All we need for optimizing with orbitopes (arbitrary G):
= Matching function:

mg(u,v) = sup{(u,w) | w € Gv}
= Region cone:
Ke(v)={ueV|mglu,v)=(uv)}

m Permutahedron:
Op(v) =conv{Pv | P € P}
={Mv |M1=1,M"1=1M >0}
m Signed permutahedron:
Op,(v) = conv {Diag(s)Pv | P € P,s € {+1}7}
Particular cases: /1-ball (v = ve;); {-ball (v = 1)

Examples: Matrix Case

. . . . Frank Wolfe and Projected Gradient
m Symmetric matrices with majorized

eigenvalues:
Oo(a)(A) = conv {UAU" | U € O(d)}
— {B €S| \(B) =<9 \(A)}

m Squared matrices with majorized singular
values:

Oo(a)x0(a)(A) = conv {UAV' | U € O(d), V € O(d)
= {B € R | o(B) <9 o(A)}

Particular cases: spectral norm ball (A = ~/,);
nuclear norm ball (A = v Diag(e;))

The two ingredients above are all we need from G to
train with Frank Wolfe or projected gradient:

evaluate
matching function
Frank Wolfe v
Projected Grad. v v

project onto
region cone

m Both steps are easy and efficient for the
permutahedron and signed permutahedron
cases

Example: Atomic Norms [2] Continuation Algorithm

Proposition:

| . Given G, how to choose a good prototype v?
—v € Og(v) = 0Og(v) is an atomic norm ball

Answer: search in the space of all prototypes!

Corollaries: Continuation algorithm: gradually increase the ball

= Op,(v) is an atomic norm ball for any v (as homotopy methods), but also shapes it along the way

= Op(v) is an atomic norm ball for v of the form

Require: Factor ¢ > 0, interpolation parameter a € [0, 1]
(V+7V—)

- Initialize prototype v randomly and set ||vo|| = €
- repeat {fort =0,1,...}
Solve w; = arg min, <_,, L(w; D)

1
2
Duality: Permutahedra & Sorted /; |3, 4] &
4 Pick v, € Gv;N Kg(wy)
5
6
I

Sorted /; norm:

d
21 vilwlgyy, (nz...=v=0)
Proposition: the two norms are dual

Set next prototype v;i1 = (1 + €)(av) + (1 — a)wy)
: Until HWtHGVt < 1
. Choose the best w € {w1, wy, ...} with C/V

HWHslope,v =

15y =1+ [lsiopev m Depends on prototype initialization

Corollary: evaluating the prox of || - ||sLopk.v is all we m Guaranteed to stop after a finite number of iterations

need to project onto Oy, (v) (Moreau decomposition).
In the paper: similar result for unsigned permutahedron
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Simulation Results
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Conclusions and Future Work

Conclusions:
m New group-based regularization scheme via orbitopes
= Relation with atomic norms and sorted ¢;-norms

m Continuation algorithm for exploring regularization
paths

Future work:
m Analysis for reflection groups
m Theoretical analysis of the continuation algorithm
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