Overview

Motivation:

- Beam search is commonly used for structured prediction,
e.g., speech recognition, machine translation, syntatic
parsing, ...

- Key shortcomings of existing learning algorithms:

a. Unaware of beam search
0. Not exposed to its own mistakes

Contributions:

1. Imitation learning algorithm for learning beam search
policies that addresses both issues.

2. Meta-algorithm that suggests new beam-aware algorithms
and captures existing ones.

3. Regret guarantees for new and existing algorithms inspired
by the analysis of DAgger.

Key Ildea:

Beam trajectories are collected with the learned model at train
time, exposing the model to non-optimal beams resulting from
its own mistakes, allowing the model to learn how to score
neighbors of these beams.

Background

Learning to search for structured prediction:

- Recast structured prediction as sequential prediction.

- Example: speech recognition
» leaf nodes: transcription of full sentence
» Internal nodes: partial transcription
» cost function: word error rate

Learning Beam Search Policies via Imitation Learning

Renato Negrinho, Matthew R. Gormley, Geoffrey J. Gordon
Machine Learning Department, Carnegie Mellon University

Data collection strategies

How to collect a beam trajectory b, ..., b; used to induce local beam losses?

- oracle use policy 7* induced by ¢* : V' — R.

- stop use « (-, 6;); if ¢(b, V') > 0, stop the beam trajectory at ¥'.

- reset use 7 (-, 60;); if c¢(b, V") > 0, reset to a beam with gold sequence.
- continue always use policy = (-, 6;).

Figure 2: Induced beam search space G = (Vi, Ey), for beam size k = 2

0
/ 0
0 1 1 2 1 2 2 3
- each state is now a beam
- highlighted beams can reach gold sequence

Meta-algorithm

New and existing beam-aware algorithms can be seen as resulting from specific
choices of surrogate loss, data collection strategy, and beam size.

1. function LEARN(D, 04, k)
1. function BEAMTRAJECTORY(G, ¢*, f, k) g for en?ﬂ;é Z[Lls)i&;g
. — . s
g: ?1: o)} = by 4: nduce s(-,6;) : V — R using G and 6,
j . 5: nduce ¢* : V — R using (x, y¢)
4: wh|_Ie BEST(bJ.’ L) & e 6: b1.; < BEAMTRAJECTORY(G, c*, s(+,6;), k)
5: if strategy is oracle then 2. Incur losses £(-, by), .. ., £(-,b;_1)
g: elssz PoLIcY(G, by, k, —¢') 8: Compute 6, using S7" ¢(-, b;), e.g., by SGD or
' Adam
8. bj—H — POL|CY(G, bj,k,f) _ : :
9 if ¢*(b;.,) > c*(b;) then 9: return best 6, on validation
10: If strategy is stop then
11: break 1: function BEAMSEARCH(G, k, 0)
12: if strategy is reset then 20 b1 = b
13: bis1 < POLICY(G, b, 1, —c*) 3: while BEST(b,1,s(-,0)) ¢ T'do
14- e i1 4: b < POLICY(G, b, k,s(-,0))
15: return b, 5! return BEST(b, 1, s(-,0))

1. function BEST(A, k, f)
2: Let A= {vy,..., v, } be ordered such that

fv) > > flu)
3: Let &’ = min(k,n)

1: function POLICY(G, b, k, f)
3: return BEST(A,, k, f)

Figure 1: Example search space G = (V, F)

- gold sequence is 000
- leaf nodes annotated with Hamming cost
- Internal nodes annotated with cost of best reachable leaf

Surrogate losses

Key Ideas:

- Best action is to score lowest cost neighbors such that they stay in the beam
upon transitioning.

- Large surrogate loss when scores discard desired neighbors

NeurlPS 2018

Additional notation for losses:

- Set of neighbors of b € Vi Ay =A{vy,...,v,}.

- Costsc=cy,...,c,, With ¢; = ¢*(v;) fori € [nJand ¢ : V — R.

- Scores: s = sy,...,8,, With s; = s(v;,0) fori € [n], s(-,0) : V — R, and 0 € ©.
- Permutation o* : [n] — |n] such that ¢,y < ... < ¢

- Permutation 6 : [n] — [n| such that s;) > ... > s50,).

Example surrogate losses:

- log loss (neighbors): /(s,c) = —s,«1) + log (XL exp(s;)) -
- perceptron (first): /(s,c) = max (O, S&(1) — sg*m) .

- cost-sensitive margin (last): /(s,c) = (csx) — Co+(1)) max (O, L+ 8500) — sg*m) .

- upper bound: /(s,c) = max (0, dx.1,...,0,), Where
5]' — (CO*(]-) — Ca*(l))(sa*(j) — Sgx(1) T 1) for j € {]C +1,... ,n}. This loss is a
convex upper bound to the expected beam transition cost,

Cy~n(b)C(0,0) - © — R, where 0 results by transitioning with scores s € R".

4. return v, .. ., Vi
Algorithm Meta-algorithm choices

Meta_a|gori’[hm IS expressive: data collection surrogate loss k

Capt it log-likelihood oracle log loss (neighbors) 1

» Laptures many existing DAgger continue log loss (neighbors) 1
algorith ms early update stop perceptron (first) > 1
LaSO (perceptron) | reset perceptron (first) > 1
: SuggeStS new LaSO (large-margin) | reset margin (last) > 1
beam-aware algorith ms BSO reset cost-sensitive margin (last) > 1
globally normalized | stop log loss (beam) > 1
Ours continue [choose a surrogate loss] > 1

Regret Guarantees

Thm. 1: no-regret guarantees when no-regret algorithm uses explicit loss expecta-
tions for beam search policy

Let €(6,0') = E(, By, ni.0n (i €(0,5;)). If 61, ..., 6, is chosen by a deterministic
no-regret online learning algorithm, then

— > U(6,,60;) — min— >~ 0(6,6;) = Y,

m = ved m 1=

with ~,, — 0 when m — oc.

Thm. 2: no-regret high probability bounds with only access to empirical expectations

Let /(-,0') = == ¢(-, b;) generated by sampling (x,y) from D and sampling b, with
(-, 0"). Let |Z?;11€(9, b;)| < u. Let no-regret algorithm be as in Thm. 1. then

| L | RN
P (Zé(et, et) S - Zé(@t, et) T 77(57 m)) Z 1 — 57
T =1 T =1

where § € (0,1] and n(d,m) = uy/2log(1/8)/m.

Thm. 3: regret guarantees for stop and reset data collection policies

See paper for details!

negrinho@cs.cmu.edu

