

Learning Beam Search Policies via Imitation Learning

Renato Negrinho, Matthew R. Gormley, Geoffrey J. Gordon Machine Learning Department, Carnegie Mellon University

Overview

Motivation:

- Beam search is commonly used for structured prediction, e.g., speech recognition, machine translation, syntatic parsing, ...
- Key shortcomings of existing learning algorithms:
- a. Unaware of beam search
- Not exposed to its own mistakes

Contributions:

- Imitation learning algorithm for learning beam search policies that addresses both issues.
- . Meta-algorithm that suggests new beam-aware algorithms and captures existing ones.
- Regret guarantees for new and existing algorithms inspired by the analysis of DAgger.

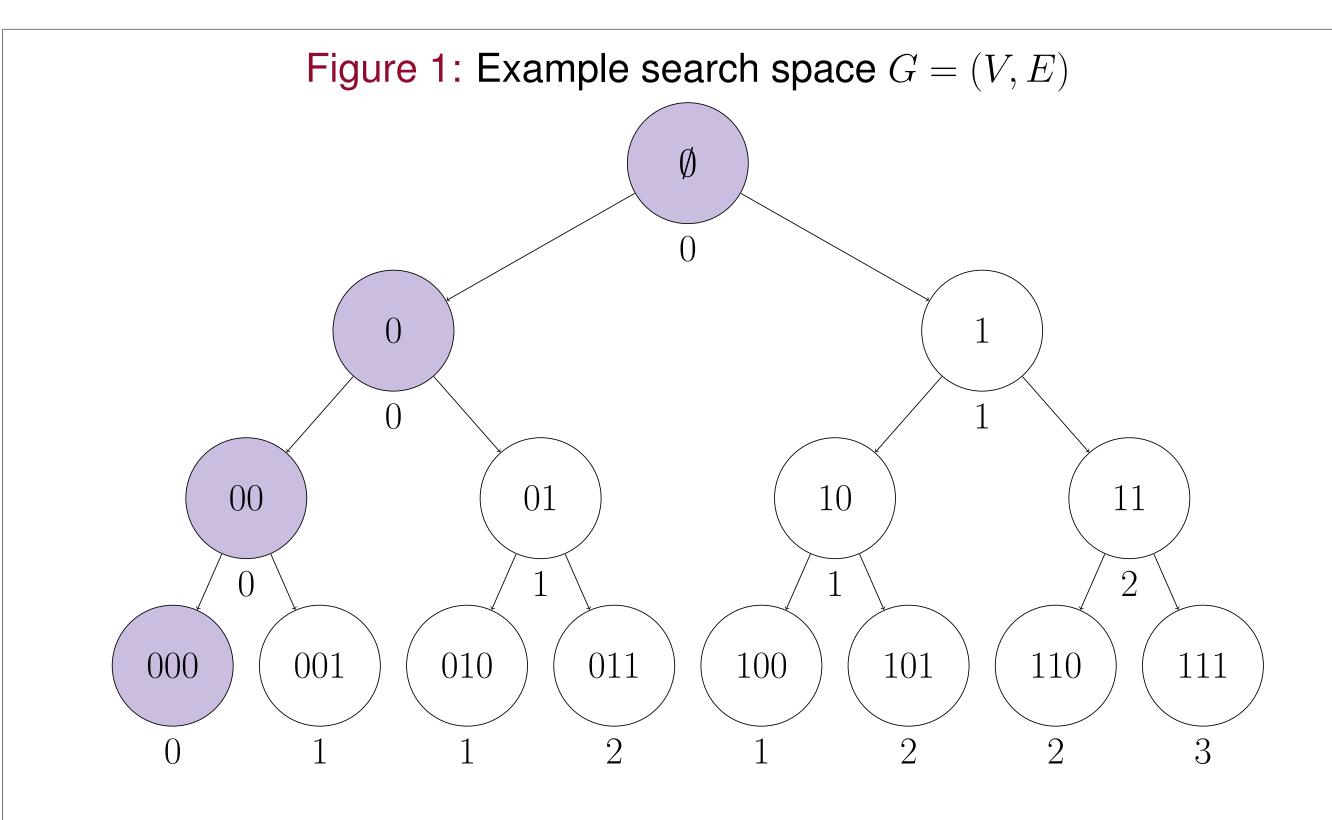
Key Idea:

Beam trajectories are collected with the learned model at train time, exposing the model to non-optimal beams resulting from its own mistakes, allowing the model to learn how to score neighbors of these beams.

Background

Learning to search for structured prediction:

- Recast structured prediction as sequential prediction.
- Example: speech recognition
- ▶ leaf nodes: transcription of full sentence
- internal nodes: partial transcription
- cost function: word error rate

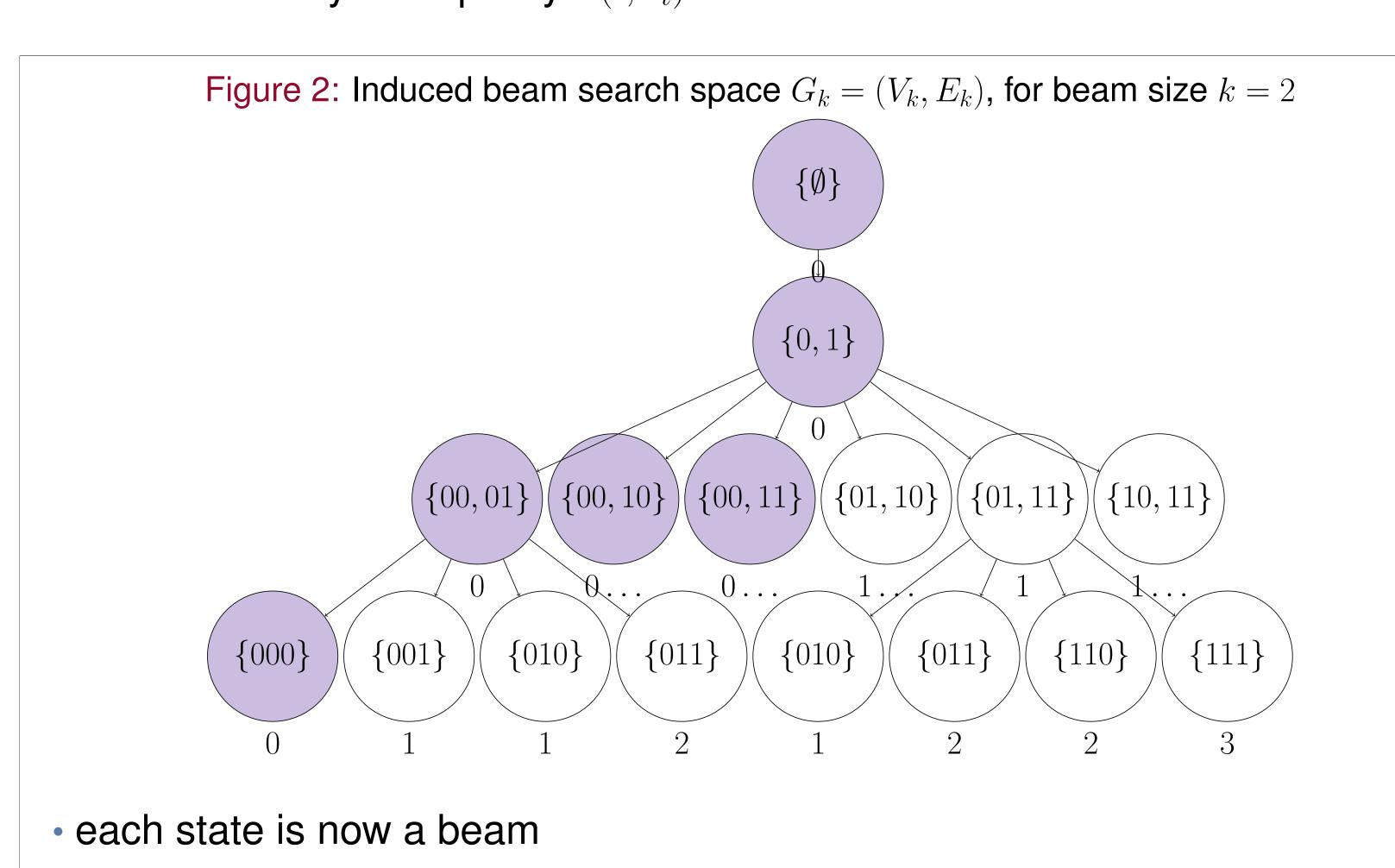


- gold sequence is 000
- leaf nodes annotated with Hamming cost
- internal nodes annotated with cost of best reachable leaf

Data collection strategies

How to collect a beam trajectory b_1, \ldots, b_j used to induce local beam losses?

- oracle use policy π^* induced by $c^*:V\to\mathbb{R}$.
- **stop** use $\pi(\cdot, \theta_t)$; if c(b, b') > 0, stop the beam trajectory at b'.
- reset use $\pi(\cdot, \theta_t)$; if c(b, b') > 0, reset to a beam with gold sequence.
- continue always use policy $\pi(\cdot, \theta_t)$.



highlighted beams can reach gold sequence

Key Ideas:

 Best action is to score lowest cost neighbors such that they stay in the beam upon transitioning.

Surrogate losses

Large surrogate loss when scores discard desired neighbors

Additional notation for losses:

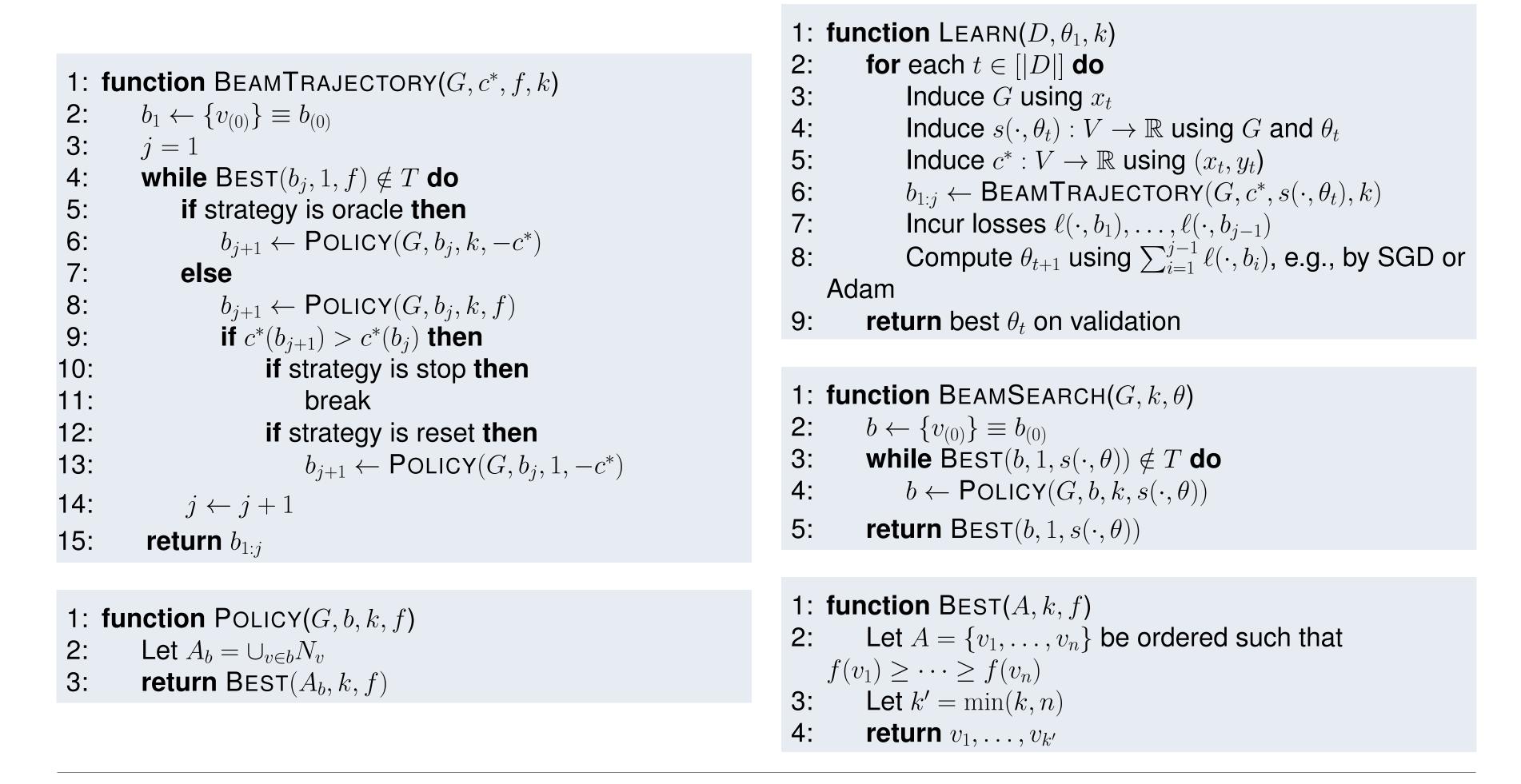
- Set of neighbors of $b \in V_k$: $A_b = \{v_1, \dots, v_n\}$.
- Costs $c=c_1,\ldots,c_n$, with $c_i=c^*(v_i)$ for $i\in[n]$ and $c^*:V\to\mathbb{R}$.
- Scores: $s=s_1,\ldots,s_n$, with $s_i=s(v_i,\theta)$ for $i\in[n]$, $s(\cdot,\theta):V\to\mathbb{R}$, and $\theta\in\Theta$.
- Permutation $\sigma^*:[n] \to [n]$ such that $c_{\sigma^*(1)} \leq \ldots \leq c_{\sigma^*(n)}$.
- Permutation $\hat{\sigma}:[n] \to [n]$ such that $s_{\hat{\sigma}(1)} \geq \ldots \geq s_{\hat{\sigma}(n)}$.

Example surrogate losses:

- log loss (neighbors): $\ell(s,c) = -s_{\sigma^*(1)} + \log\left(\sum_{i=1}^n \exp(s_i)\right)$.
- perceptron (first): $\ell(s,c) = \max\left(0, s_{\hat{\sigma}(1)} s_{\sigma^*(1)}\right)$.
- cost-sensitive margin (last): $\ell(s,c)=(c_{\hat{\sigma}(k)}-c_{\sigma^*(1)})\max\left(0,1+s_{\hat{\sigma}(k)}-s_{\sigma^*(1)}\right)$.
- upper bound: $\ell(s,c) = \max(0,\delta_{k+1},\ldots,\delta_n)$, where $\delta_j = (c_{\sigma^*(j)} - c_{\sigma^*(1)})(s_{\sigma^*(j)} - s_{\sigma^*(1)} + 1)$ for $j \in \{k+1, \ldots, n\}$. This loss is a convex upper bound to the expected beam transition cost, $\mathbb{E}_{b' \sim \pi(b,\cdot)} c(b,b') : \Theta \to \mathbb{R}$, where b' results by transitioning with scores $s \in \mathbb{R}^n$.

Meta-algorithm

New and existing beam-aware algorithms can be seen as resulting from specific choices of surrogate loss, data collection strategy, and beam size.



Meta-algorithm is *expressive*:

- Captures many existing algorithms
- Suggests new beam-aware algorithms

Algorithm	Meta-algorithm choices		
	data collection	surrogate loss	k
log-likelihood	oracle	log loss (neighbors)	1
DAgger	continue	log loss (neighbors)	1
early update	stop	perceptron (first)	>
LaSO (perceptron)	reset	perceptron (first)	>
LaSO (large-margin)	reset	margin (last)	>
BSO	reset	cost-sensitive margin (last)	>
globally normalized	stop	log loss (beam)	>
Ours	continue	[choose a surrogate loss]	>

Regret Guarantees

Thm. 1: no-regret guarantees when no-regret algorithm uses explicit loss expectations for beam search policy

Let $\ell(\theta, \theta') = \mathbb{E}_{(x,y) \sim \mathcal{D}} \mathbb{E}_{b_{1:h} \sim \pi(\cdot, \theta')} \left(\sum_{i=1}^{h-1} \ell(\theta, b_i) \right)$. If $\theta_1, \dots, \theta_m$ is chosen by a deterministic no-regret online learning algorithm, then

$$\frac{1}{m} \sum_{t=1}^{m} \ell(\theta_t, \theta_t) - \min_{\theta \in \Theta} \frac{1}{m} \sum_{t=1}^{m} \ell(\theta, \theta_t) = \gamma_m,$$

with $\gamma_m \to 0$ when $m \to \infty$.

Thm. 2: no-regret high probability bounds with only access to empirical expectations

Let $\hat{\ell}(\cdot, heta') = \sum_{i=1}^{h-1} \ell(\cdot, b_i)$ generated by sampling (x, y) from $\mathcal D$ and sampling $b_{1:h}$ with $\pi(\cdot,\theta')$. Let $|\sum_{i=1}^{h-1}\ell(\theta,b_i)|\leq u$. Let no-regret algorithm be as in *Thm. 1*. then

$$\mathbb{P}\left(\frac{1}{m}\sum_{t=1}^{m}\ell(\theta_t,\theta_t) \leq \frac{1}{m}\sum_{t=1}^{m}\hat{\ell}(\theta_t,\theta_t) + \eta(\delta,m)\right) \geq 1 - \delta,$$

where $\delta \in (0,1]$ and $\eta(\delta,m) = u\sqrt{2\log(1/\delta)}/m$.

Thm. 3: regret guarantees for stop and reset data collection policies

See paper for details!

NeurIPS 2018 negrinho@cs.cmu.edu