
Learning Beam Search Policies via Imitation Learning
Renato Negrinho, Matthew R. Gormley, Geoffrey J. Gordon
Machine Learning Department, Carnegie Mellon University

Overview

Motivation:

• Beam search is commonly used for structured prediction,
e.g., speech recognition, machine translation, syntatic
parsing, ...

• Key shortcomings of existing learning algorithms:
a. Unaware of beam search
b. Not exposed to its own mistakes

Contributions:

1. Imitation learning algorithm for learning beam search
policies that addresses both issues.

2. Meta-algorithm that suggests new beam-aware algorithms
and captures existing ones.

3. Regret guarantees for new and existing algorithms inspired
by the analysis of DAgger.

Key Idea:
Beam trajectories are collected with the learned model at train
time, exposing the model to non-optimal beams resulting from
its own mistakes, allowing the model to learn how to score
neighbors of these beams.

Background
Learning to search for structured prediction:

• Recast structured prediction as sequential prediction.
• Example: speech recognition

I leaf nodes: transcription of full sentence
I internal nodes: partial transcription
I cost function: word error rate

Figure 1: Example search space G = (V,E)

∅

0

00

000 001

01

010 011

1

10

100 101

11

110 111

0

0

0

0 1

1

1 2

1

1

1 2

2

2 3

• gold sequence is 000
• leaf nodes annotated with Hamming cost
• internal nodes annotated with cost of best reachable leaf

Data collection strategies
How to collect a beam trajectory b1, . . . , bj used to induce local beam losses?

• oracle use policy π∗ induced by c∗ : V → R.
• stop use π(·, θt); if c(b, b′) > 0, stop the beam trajectory at b′.
• reset use π(·, θt); if c(b, b′) > 0, reset to a beam with gold sequence.
• continue always use policy π(·, θt).

Figure 2: Induced beam search space Gk = (Vk, Ek), for beam size k = 2

{∅}

{0, 1}

{00, 01}

{000} {001} {010} {011}

{00, 10} {00, 11} {01, 10} {01, 11}

{010} {011} {110} {111}

{10, 11}

0

0

0

0 1 1 2

0 . . . 0 . . . 1 . . . 1

1 2 2 3

1 . . .

• each state is now a beam
• highlighted beams can reach gold sequence

Surrogate losses
Key Ideas:

• Best action is to score lowest cost neighbors such that they stay in the beam
upon transitioning.

• Large surrogate loss when scores discard desired neighbors

Additional notation for losses:

• Set of neighbors of b ∈ Vk: Ab = {v1, . . . , vn}.
• Costs c = c1, . . . , cn, with ci = c∗(vi) for i ∈ [n] and c∗ : V → R.
• Scores: s = s1, . . . , sn, with si = s(vi, θ) for i ∈ [n], s(·, θ) : V → R, and θ ∈ Θ.
• Permutation σ∗ : [n]→ [n] such that cσ∗(1) ≤ . . . ≤ cσ∗(n).
• Permutation σ̂ : [n]→ [n] such that sσ̂(1) ≥ . . . ≥ sσ̂(n).

Example surrogate losses:

• log loss (neighbors): `(s, c) = −sσ∗(1) + log (∑n
i=1 exp(si)) .

• perceptron (first): `(s, c) = max
(
0, sσ̂(1) − sσ∗(1)

)
.

• cost-sensitive margin (last): `(s, c) = (cσ̂(k)− cσ∗(1)) max
(
0, 1 + sσ̂(k) − sσ∗(1)

)
.

• upper bound: `(s, c) = max (0, δk+1, . . . , δn) , where
δj = (cσ∗(j) − cσ∗(1))(sσ∗(j) − sσ∗(1) + 1) for j ∈ {k + 1, . . . , n}. This loss is a
convex upper bound to the expected beam transition cost,
Eb′∼π(b,·)c(b, b′) : Θ→ R, where b′ results by transitioning with scores s ∈ Rn.

Meta-algorithm
New and existing beam-aware algorithms can be seen as resulting from specific
choices of surrogate loss, data collection strategy, and beam size.

1: function BEAMTRAJECTORY(G, c∗, f, k)
2: b1 ← {v(0)} ≡ b(0)
3: j = 1
4: while BEST(bj, 1, f) /∈ T do
5: if strategy is oracle then
6: bj+1 ← POLICY(G, bj, k,−c∗)
7: else
8: bj+1 ← POLICY(G, bj, k, f)
9: if c∗(bj+1) > c∗(bj) then

10: if strategy is stop then
11: break
12: if strategy is reset then
13: bj+1 ← POLICY(G, bj, 1,−c∗)
14: j ← j + 1
15: return b1:j

1: function POLICY(G, b, k, f)
2: Let Ab = ∪v∈bNv

3: return BEST(Ab, k, f)

1: function LEARN(D, θ1, k)
2: for each t ∈ [|D|] do
3: Induce G using xt
4: Induce s(·, θt) : V → R using G and θt
5: Induce c∗ : V → R using (xt, yt)
6: b1:j ← BEAMTRAJECTORY(G, c∗, s(·, θt), k)
7: Incur losses `(·, b1), . . . , `(·, bj−1)
8: Compute θt+1 using

∑j−1
i=1 `(·, bi), e.g., by SGD or

Adam
9: return best θt on validation

1: function BEAMSEARCH(G, k, θ)
2: b← {v(0)} ≡ b(0)
3: while BEST(b, 1, s(·, θ)) /∈ T do
4: b← POLICY(G, b, k, s(·, θ))
5: return BEST(b, 1, s(·, θ))

1: function BEST(A, k, f)
2: Let A = {v1, . . . , vn} be ordered such that

f (v1) ≥ · · · ≥ f (vn)
3: Let k′ = min(k, n)
4: return v1, . . . , vk′

Meta-algorithm is expressive:
• Captures many existing

algorithms
• Suggests new

beam-aware algorithms

Algorithm Meta-algorithm choices
data collection surrogate loss k

log-likelihood oracle log loss (neighbors) 1
DAgger continue log loss (neighbors) 1
early update stop perceptron (first) > 1
LaSO (perceptron) reset perceptron (first) > 1
LaSO (large-margin) reset margin (last) > 1
BSO reset cost-sensitive margin (last) > 1
globally normalized stop log loss (beam) > 1
Ours continue [choose a surrogate loss] > 1

Regret Guarantees
Thm. 1: no-regret guarantees when no-regret algorithm uses explicit loss expecta-
tions for beam search policy

Let `(θ, θ′) = E(x,y)∼DEb1:h∼π(·,θ′)
(∑h−1

i=1 `(θ, bi)
)
. If θ1, . . . , θm is chosen by a deterministic

no-regret online learning algorithm, then
1
m

m∑
t=1
`(θt, θt)−min

θ∈Θ

1
m

m∑
t=1
`(θ, θt) = γm,

with γm→ 0 when m→∞.

Thm. 2: no-regret high probability bounds with only access to empirical expectations

Let ˆ̀(·, θ′) = ∑h−1
i=1 `(·, bi) generated by sampling (x, y) from D and sampling b1:h with

π(·, θ′). Let |∑h−1
i=1 `(θ, bi)| ≤ u. Let no-regret algorithm be as in Thm. 1. then

P
 1
m

m∑
t=1
`(θt, θt) ≤

1
m

m∑
t=1

ˆ̀(θt, θt) + η(δ,m)
 ≥ 1− δ,

where δ ∈ (0, 1] and η(δ,m) = u
√

2 log(1/δ)/m.

Thm. 3: regret guarantees for stop and reset data collection policies

See paper for details!

NeurIPS 2018 negrinho@cs.cmu.edu

