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Abstract

We propose a general framework for regularization based on group-induced ma-
jorization. In this framework, a group is defined to act on the parameter space and
an orbit is fixed; to control complexity, the model parameters are confined to the
convex hull of this orbit (the orbitope). We recover several well-known regulariz-
ers as particular cases, and reveal a connection between the hyperoctahedral group
and the recently proposed sorted `1-norm. We derive the properties a group must
satisfy for being amenable to optimization with conditional and projected gradi-
ent algorithms. Finally, we suggest a continuation strategy for orbit exploration,
presenting simulation results for the symmetric and hyperoctahedral groups.

1 Introduction

The main motivation behind current sparse estimation methods and regularized empirical risk min-
imization is the principle of parsimony, which states that simple explanations should be preferred
over complex ones. Traditionally, this has been done by defining a function Ω : V → R that evalu-
ates the complexity of a model w ∈ V and trades off this quantity with a data-dependent term. The
penalty function Ω is often designed to be a convex surrogate of an otherwise non-tractable quantity,
a strategy which has led to important achievements in sparse regression [1], compressed sensing
[2], and matrix completion [3], allowing to successfully recover parameters from highly incomplete
information. Prior knowledge about the structure of the variables and the intended sparsity pattern,
when available, can be taken into account when designing Ω via sparsity-inducing norms [4]. Per-
formance bounds under different regimes have been established theoretically [5, 6], contributing to
a better understanding of the success and failure modes of these techniques.

In this paper, we introduce a new way to characterize the complexity of a model via the concept
of group-induced majorization. Rather than regarding complexity in an absolute manner via Ω, we
define it relative to a prototype model v ∈ V , by requiring that the estimated model w satisfies

w �G v, (1)

where �G is an ordering relation on V induced by a group G. This idea is rooted in majorization
theory, a well-established field [7, 8] which, to the best of our knowledge, has never been applied to
machine learning. We therefore review these concepts in §2, where we show that this formulation
subsumes several well-known regularizers and motivates new ones. Then, in §3, we introduce two
important properties of groups that serve as building blocks for the rest of the paper: the notions
of matching function and region cones. In §4, we apply these tools to the permutation and signed
permutation groups, unveiling connections with the recent sorted `1-norm [9] as a byproduct. In §5
we turn to algorithmic considerations, pinpointing the group-specific operations that make a group
amenable to optimization with conditional and projected gradient algorithms.
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Figure 1: Examples of orbitopes for the orthog-
onal group O(d) (left) and the hyperoctahedral
group P± (right). Shown are also the correspond-
ing region cones, which in the case of O(d) degen-
erates into a ray.

A key aspect of our framework is a decoupling in which the group G captures the invariances of
the regularizer, while the data-dependent term is optimized in the group orbitopes. In §6, we build
on this intuition to propose a simple continuation algorithm for orbit exploration. Finally, §7 shows
some simulation results, and we conclude in §8.

2 Orbitopes and Majorization

2.1 Vector Spaces and Groups

Let V be a vector space with an inner product 〈·, ·〉. We will be mostly concerned with the case where
V = Rd, i.e., the d-dimensional real Euclidean space, but some of the concepts introduced here
generalize to arbitrary Hilbert spaces. A group is a set G endowed with an operation · : G×G→ G
satisfying closure (g · h ∈ G, ∀g, h ∈ G), associativity ((f · g) · h = f · (g · h), ∀f, g, h ∈ G),
existence of identity (∃1G ∈ G such that 1G · g = g · 1G = g, ∀g ∈ G), and existence of inverses
(each g ∈ G has an inverse g−1 ∈ G such that g · g−1 = g−1 · g = 1G). Throughout, we use
boldface letters u,v,w, . . . for vectors, and g, h, . . . for group elements. We also omit the group
operation symbol, writing gh instead of g · h.

2.2 Group Actions, Orbits, and Orbitopes

A (left) group action of G on V [10] is a function ψ : G × V → V satisfying ψ(g, ψ(h,v)) =
ψ(g ·h,v) and ψ(1G,v) = v for all g, h ∈ G and v ∈ V . When the action is clear from the context,
we omit the letter ψ, writing simply gv for the action of the group element g on v, instead of ψ(g,v).
In this paper, we always assume our actions are linear, i.e., g(c1v1 + c2v2) = c1gv1 + c2gv2 for
scalars c1 and c2 and vectors v1 and v2. In some cases, we also assume they are norm-preserving,
i.e., ‖gv‖ = ‖v‖ for any g ∈ G and v ∈ V . When V = Rd, we may regard the groups underlying
these actions as subgroups of the general linear group GL(d) and of the orthogonal group O(d),
respectively. GL(d) is the set of d-by-d invertible matrices, and O(d) the set of d-by-d orthogonal
matrices {U ∈ Rd×d | U>U = UU> = Id}, where Id denotes the d-dimensional identity matrix.

A group action defines an equivalence relation on V , namely w ≡ v iff there is g ∈ G such that
w = gv. The orbit of a vector v ∈ V under the action of G is the set Gv := {gv | g ∈ G}, i.e., the
vectors that result from acting on v with some element of G. Its convex hull is called the orbitope:

OG(v) := conv(Gv). (2)
Fig. 1 (left) illustrates this concept for the orthogonal group in R2. An important concept associated
with group actions and orbitopes is that of G-majorization [7]:

Definition 1 Let v,w ∈ V . We say that w is G-majorized by v, denoted w �G v, if w ∈ OG(v).

Proposition 2 If the group action is linear, then �G is reflexive and transitive, i.e., it is a pre-order.

Proof: See supplemental material.

Group majorization plays an important role in the area of multivariate inequalities in statistics [11].
In this paper, we use this concept for representing model complexity, as described next.

2.3 Orbit Regularization

We formulate our learning problem as follows:
minimize L(w) s.t. w �G v, (3)

where L : V → R is a loss function, G is a given group, and v ∈ V is a seed vector. This
formulation subsumes several well-known cases, outlined below.
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• `2-regularization. If G := O(d) is the orthogonal group acting by multiplication, we recover `2
regularization. Indeed, we have Gv = {Uv ∈ Rd | U ∈ O(d)} = {w ∈ Rd | ‖w‖2 = ‖v‖2}, for
any seed v ∈ Rd. That is, the orbitope OG(v) = conv(Gv) becomes the `2-ball with radius ‖v‖2.
The only property of the seed that matters in this case is its `2-norm.

• Permutahedron. Let P be the symmetric group (also called the permutation group), which can
be represented as the set of d-by-d permutation matrices. Given v ∈ Rd, the orbitope induced by v
under P is the convex hull of all the permutations of v, which can be equivalently described as the
vectors that are transformations of v through a doubly stochastic matrix:

OP(v) = conv{Pv | P ∈ P} = {Mv | M1 = 1, M>1 = 1, M ≥ 0}. (4)

This set is called the permutahedron [12]. We will revisit this case in §4.

• Signed permutahedron. Let P± be the hyperoctahedral group (also called the signed permuta-
tion group), i.e., the d-by-d matrices with entries in {0,±1} such that the sum of the absolute values
in each row and column is 1. The action of P± on Rd permutes the entries of vectors and arbitrarily
switches signs. Given v ∈ Rd, the orbitope induced by v under P± is:

OP±(v) = conv{Diag(s)Pv | P ∈ P, s ∈ {±1}d}, (5)

where Diag(s) denotes a diagonal matrix formed by the entries of s. We call this set the signed
permutahedron; it is depicted in Fig. 1 and will also be revisited in §4.

• `1 and `∞-regularization. As a particular case of the signed permutahedron, we recover `1 and
`∞ balls by choosing seeds of the form v = γe1 (a scaled canonical basis vector) and v = γ1 (a
constant vector), respectively, where γ is a scalar. In the first case, we obtain the `1-ball, OG(v) =
γ conv({e1, . . . , ed}) and in the second case, we get the `∞-ball OG(v) = γ conv({±1}d).

• Symmetric matrices with majorized eigenvalues. Let G := O(d) be again the orthogonal
group, but now acting by conjugation on the vector space of d-by-d symmetric matrices, V = Sd.
Given a seed v ≡ A ∈ Sd, its orbit is Gv = {UAU> | U ∈ O(d)} = {U Diag(λ(A))U> | U ∈
O(d)}, where λ(A) denotes a vector containing the eigenvalues of A in decreasing order (so we
may assume without loss of generality that the seed is diagonal). The orbitope OG(v) becomes:

OG(v) := {B ∈ Sd | λ(B) �P λ(A)}, (6)

which is the set of matrices whose eigenvalues are in the permutahedron OP(λ(A)) (see example
above). This is called the Schur-Horn orbitope in the literature [8].

• Squared matrices with majorized singular values. Let G := O(d) × O(d) act on Rd×d (the
space of squared matrices, not necessarily symmetric) as gU,VA := UAV >. Given a seed v ≡ A,
its orbit is Gv = {UAV > | U, V ∈ O(d)} = {U Diag(σ(A))V > | U, V ∈ O(d)}, where σ(A)
contains the singular values of A in decreasing order (so we may assume without loss of generality
that the seed is diagonal and non-negative). The orbitope OG(v) becomes:

OG(v) := {B ∈ Rd×d | σ(B) �P σ(A)}, (7)

which is the set of matrices whose singular values are in the permutahedron OP(σ(A)).

• Spectral and nuclear norm regularization. The previous case subsumes spectral and nuclear
norm balls: indeed, for a seed A = γId, the orbitope becomes the convex hull of orthogonal ma-
trices, which is the spectral norm ball {A ∈ Rd×d | ‖A‖2 := σ1(A) ≤ γ}; while for a seed
A = γDiag(e1), the orbitope becomes the convex hull of rank-1 matrices with norm bounded by
γ, which is the nuclear norm ball {A ∈ Rd×d | ‖A‖∗ :=

∑
i σi ≤ γ}. This norm has been widely

used for low-rank matrix factorization and matrix completion [3].

Besides these examples, other regularization strategies, such as non-overlapping `2,1 and `∞,1 norms
[13, 4] can be obtained by considering products of the groups above. We omit details for space.

2.4 Relation with Atomic Norms

Atomic norms have been recently proposed as a toolbox for structured sparsity [6]. Let A ⊆ V
be a centrally symmetric set of atoms, i.e., v ∈ A iff −v ∈ A. The atomic norm induced by A
is defined as ‖w‖A := inf{t > 0 | w ∈ t conv(A)}. The corresponding atomic ball is the set
{w | ‖w‖A ≤ 1} = conv(A). Not surprisingly, orbitopes are often atomic norm balls.
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Proposition 3 (Atomic norms) If G is a subgroup of the general linear group GL(d) and satisfies
−v ∈ Gv, then the set OG(v) is the ball of an atomic norm.

Proof: Under the given assumption, the set Gv is centrally symmetric, i.e., it satisfies w ∈ Gv iff
−w ∈ Gv (indeed, the left hand side implies that w = gv for some g ∈ G, and −v ∈ Gv implies
that −v = hv for some h ∈ G, therefore, −w = −gh−1(−v) = gh−1v ∈ Gv). As shown by
Chandrasekaran et al. [6], this guarantees that ‖.‖Gv satisfies the axioms of a norm.

Corollary 4 For any choice of seed, the signed permutahedron OP±(v) and the orbitope formed
by the squared matrices with majorized singular values are both atomic norm balls. If d is even and
v is of the form v = (v+,−v+), with v+ ∈ Rd/2+ , then the permutahedron OP(v) and the orbitope
formed by the symmetric matrices with eigenvalues majorized by λ(v) are both atomic norm balls.

3 Matching Function and Region Cones

We now construct a unifying perspective that highlights the role of the group G. Two key concepts
that play a crucial role in our analysis are that of matching function and region cone. In the sequel,
these will work as building blocks for important algorithmic and geometric characterizations.

Definition 5 (Matching function) The matching function of G, mG : V × V → R, is defined as:
mG(u,v) := sup{〈u,w〉 | w ∈ Gv}. (8)

Intuitively, mG(u,v) “aligns” the orbits of u and v before taking the inner product. Note also that
mG(u,v) = sup{〈u,w〉 | w ∈ OG(v)}, since we may equivalently maximize the linear objective
over OG(v), which is the convex hull of Gv. We therefore have the following

Proposition 6 (Duality) Fix v ∈ V , and define the indicator function of the orbitope, IOG(v)(w) =
0 if w ∈ OG(v), and −∞ otherwise. The Fenchel dual of IOG(v) is mG(.,v). As a consequence,
letting L? : V → R is the Fenchel dual of the loss L, the dual problem of Eq. 3 is:

maximize − L?(−u)−mG(u,v) w.r.t. u ∈ V. (9)

Note that if ‖.‖Gv is a norm (e.g., if the conditions of Prop. 3 are satisfied), then the statement above
means that mG(.,v) = ‖.‖?Gv is its dual norm. We will revisit this dual formulation in §4.

The following properties have been established in [14, 15].

Proposition 7 For any u,v ∈ V , we have: (i) mG(c1u, c2v) = c1c2mG(u,v) for c1, c2 ≥ 0;
(ii) mG(g1u, g2v) = mG(u,v) for g1, g2 ∈ G; (iii) mG(u,v) = mG(v,u). Furthermore, the
following three statements are equivalent: (i)w �G v, (ii) f(w) ≤ f(v) for all G-invariant convex
functions f : V → R, (iii) mG(u,w) ≤ mG(u,v) for all u ∈ V .

In the sequel, we always assume that G is a subgroup of the orthogonal group O(d). This implies
that the orbitopeOG(v) is compact for any v ∈ V (and therefore the sup in Eq. 8 can be replaced by
a max), and that ‖gv‖ = ‖v‖ for any v ∈ V . Another important concept is that of the normal cone
of a point w ∈ V with respect to the orbitope OG(v), denoted as NGv(w) and defined as follows:

NGv(w) := {u ∈ V | 〈u,w′ −w〉 ≤ 0 ∀w′ �G v}. (10)
Normal cones plays an important role in convex analysis [16]. The particular case of the normal
cone at the seed v (illustrated in Fig. 1) is of great importance, as will be seen below.

Definition 8 (Region cone) Given v ∈ V , the region cone at v is KG(v) := NGv(v). It is the set
of points that are “maximally aligned” with v in terms of the matching function:

KG(v) = {u ∈ V | mG(u,v) = 〈u,v〉}. (11)

4 Permutahedra and Sorted `1-Norms

In this section, we focus on the permutahedra introduced in §2. Below, given a vector w ∈ Rd, we
denote by w(k) its kth order statistic, i.e., we will “sort” w so that w(1) ≥ w(2) ≥ . . . ≥ w(d). We
also consider the order statistics of the magnitudes |w|(k) by sorting the absolute values.
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4.1 Signed Permutahedron

We start by defining the “sorted `1-norm,” proposed by Bogdan et al. [9] in their recent SLOPE
method as a means to control the false discovery rate, and studied by Zeng and Figueiredo [17].

Definition 9 (Sorted `1-norm) Let v,w ∈ Rd, with v1 ≥ v2 ≥ . . . ≥ vd ≥ 0 and v1 > 0. The
sorted `1-norm of w (weighted by v) is defined as: ‖w‖SLOPE,v :=

∑d
j=1 vj |w|(j).

In [9] it is shown that ‖.‖SLOPE,v satisfies the axioms of a norm. The rationale is that larger com-
ponents of w are penalized more than smaller ones, in a way controlled by the prescribed v. For
v = 1, we recover the standard `1-norm, while the `∞-norm corresponds to v = e1. Another spe-
cial case is the OSCAR regularizer [18, 19], ‖w‖OSCAR,τ1,τ2 := τ1‖w‖1 + τ2

∑
i<j max{|wi|, |wj |},

corresponding to a linearly spaced v, vj = (τ1 + τ2(d− j)) for j = 1, . . . , d. The next proposition
reveals a connection between SLOPE and the atomic norm induced by the signed permutahedron.

Proposition 10 Let v ∈ Rd+ be as in Def. 9. The sorted `1-norm weighted by v and the atomic norm
induced by the P±-orbitope seeded at v are dual to each other: ‖.‖?P±v = ‖.‖SLOPE,v .

Proof: From Prop. 6, we have ‖w‖?P±v = mP±(w,v). Let P be a signed permutation matrix s.t.
w̃ := Pw has its components sorted by decreasing magnitude, |w̃|1 ≥ . . . ≥ |w̃|d. From Prop. 7,
we have mP±(w,v) = m(w̃,v) = 〈|w̃|,v〉 = ‖w‖SLOPE,v .

The next proposition [7, 14] provides a characterization of the P±-orbitope in terms of inequalities
about the cumulative distribution of the order statistics.

Proposition 11 (Submajorization ordering) The orbitope OP±(v) can be characterized as:

OP±(v) =
{
w ∈ Rd

∣∣ ∑
j≤i |w|(j) ≤

∑
j≤i |v|(j), ∀i = 1, . . . , d

}
. (12)

Prop. 11 leads to a precise characterization of the atomic norm ‖w‖P±v , and therefore of the dual
norm of SLOPE: ‖w‖P±v = maxi=1,...,d

∑
j≤i |w|(j)/

∑
j≤i |v|(j).

4.2 Permutahedron

The unsigned counterpart of Prop. 11 goes back to Hardy et al. [20].

Proposition 12 (Majorization ordering) The P-orbitope seeded at v can be characterized as:

OP(v) =
{
w ∈ Rd

∣∣ 1>w = 1>v ∧
∑
j≤i w(j) ≤

∑
j≤i v(j), ∀i = 1, . . . , d− 1

}
. (13)

As seen in Corollary 4, if d is even and v = (v+,−v+), with v ≥ 0, then ‖w‖Pv qualifies as a
norm (we need to confine to the linear subspace V := {w ∈ Rd |

∑d
j=1 wj = 0}). From Prop. 12,

we have that this norm can be written as: ‖w‖Pv = maxi=1,...,d−1
∑
j≤i w(j)/

∑
j≤i v(j).

Proposition 13 Assume the conditions above hold and that v1 ≥ v2 ≥ . . . ≥ vd/2 ≥ 0 and v1 > 0.
The dual norm of ‖.‖Pv is ‖w‖?Pv =

∑d/2
j=1 vj(w(j) − w(d−j+1)).

Proof: Similar to the proof of Prop. 11.

5 Conditional and Projected Gradient Algorithms

Two important classes of algorithms in sparse modeling are the conditional gradient method [21, 22]
and the proximal gradient method [23, 24]. Under Ivanov regularization as in Eq. 3, the latter reduces
to the projected gradient method. In this section, we show that both algorithms are a good fit for
solving Eq. 3 for arbitrary groups, as long as the two building blocks mentioned in §3 are available:
(i) a procedure for evaluating the matching function (necessary for conditional gradient methods)
and (ii) a procedure for projecting onto the region cone (necessary for projected gradient).
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1: Initialize w1 = 0
2: for t = 1, 2, . . . do
3: ut = arg maxu�Gv〈−∇L(wt),u〉
4: ηt = 2/(t+ 2)
5: wt+1 = (1− ηt)wt + ηtut
6: end for

1: Initialize w1 = 0
2: for t = 1, 2, . . . do
3: Choose a stepsize ηt
4: a = wt − ηt∇L(wt)
5: wt+1 = arg minw�Gv ‖w − a‖
6: end for

Figure 2: Conditional gradient (left) and projected gradient (right) algorithms.

5.1 Conditional Gradient

The conditional gradient method is shown in Fig. 2 (left). We assume that a procedure is available
for computing the gradient of the loss. The relevant part is the maximization in line 3, which
corresponds precisely to an evaluation of the matching function m(s,v), with s = −∇L(wt)
(cf. Eq. 8). Fortunately, this step is efficient for a variety of cases:

Permutations. If G = P , the matching function can be evaluated in time O(d log d) with a sim-
ple sort operation. Without losing generality, we assume the seed v is sorted in descending order
(otherwise, pre-sort it before the main loop starts). Then, each time we need to evaluate m(s,v),
we compute a permutation P such that Ps is also sorted. The minimizer in line 3 will equal P−1v.

Signed permutations. If G = P±, a similar procedure with the same O(d log d) runtime also
works, except that now we sort the absolute values, and set the signs of P−1v to match those of s.

Symmetric matrices with majorized eigenvalues. Let A = UAλ(A)U>A ∈ Sd and B =
UBλ(B)U>B ∈ Sd, where the eigenvalues λ(A) and λ(B) are sorted in decreasing order.
In this case, the matching function becomes mG(A,B) = maxV ∈O(d) trace(A>V BV >) =

〈λ(A),λ(B)〉 due to von Neumann’s trace inequality [25], the maximizer being V = UAU
>
B .

Therefore, we need only to make an eigen-decomposition and set B′ = UAλ(B)U>A .

Squared matrices with majorized singular values. Let A = UAσ(A)V >A ∈ Rd×d and
B = UBσ(B)V >B ∈ Rd×d, where the singular values are sorted. We have mG(A,B) =
maxU,V ∈O(d) trace(A>UBV >) = 〈σ(A),σ(B)〉 also from von Neumann’s inequality [25]. To
evaluate the matching function, we need only to make an SVD and set B′ = UAσ(B)V >A .

5.2 Projected Gradient

The projected gradient algorithm is illustrated in Fig. 2 (right); the relevant part is line 5, which
involves a projection onto the orbitope OG(v). This projection may be hard to compute directly,
since the orbitope may lack a concise half-space representation. However, we next transform this
problem into a projection onto the region cone KG(v) (the proof is in the supplemental material).

Proposition 14 Assume G is a subgroup of O(d). Let g ∈ G be such that 〈a, gv〉 = mG(a,v).
Then, the solution of the problem in line 5 is w∗ = a−ΠKG(gv)(a− gv).

Thus, all is necessary is computing the arg-max associated with the matching function, and a black
box that projects onto the region cone KG(v). Again, this step is efficient in several cases:

Permutations. If G = P , the region cone of a point v is the set of pointsw satisfying vi > vj ⇒
wi ≥ wj , for all i, j ∈ 1, . . . , d. Projecting onto this cone is a well-studied problem in isotonic
regression [26, 27], with existing O(d) algorithms.

Signed permutations. If G = P±, this problem is precisely the evaluation of the proximity oper-
ator of the sorted `1-norm, also solvable in O(d) runtime with a stack-based algorithm [9].

6 Continuation Algorithm

Finally, we present a general continuation procedure for exploring regularization paths when L
is a convex loss function (not necessarily differentiable) and the seed v is not prescribed. The
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Require: Factor ε > 0, interpolation parameter α ∈ [0, 1]
1: Initialize seed v0 randomly and set ‖v0‖ = ε
2: Set t = 0
3: repeat
4: Solve wt = arg minw�Gvt

L(w)
5: Pick v′t ∈ Gvt ∩KG(wt)
6: Set next seed vt+1 = (1 + ε)(αv′t + (1− α)wt)
7: t← t+ 1
8: until ‖wt‖Gvt

< 1.
9: Use cross-validation to choose the best ŵ ∈ {w1,w2, . . .}

Figure 3: Left: Continuation algorithm. Right: Reachable region WG for the hyperoctahedral group, with a
reconstruction loss L(w) = ‖w − a‖2. Only points v s.t. −∇L(v) = a − v ∈ KG(v) belong to this set.
Different initializations of v0 lead to different paths along WG, all ending in a.

procedure—outlined in Fig. 3—solves instances of Eq. 3 for a sequence of seeds v1,v2, . . ., using
a simple heuristic for choosing the next seed given the previous one and the current solution.

The basic principle behind this procedure is the same as in other homotopy continuation methods
[28, 29, 30, 31]: we start with very strong regularization (using a small norm ball), and then gradually
weaken the regularization (increasing the ball) while “tracking” the solution. The process stops
when the solution is found to be in the interior of the ball (the condition in line 8), which means the
regularization constraint is no longer active. The main difference with respect to classical homotopy
methods is that we do not just scale the ball (in our case, the G-orbitope); we also generate new
seeds that shape the ball along the way. To do so, we adopt a simple heuristic (line 6) to make
the seed move toward the current solution wt before scaling the orbitope. This procedure depends
on the initialization (see Fig. 3 for an illustration), which drives the search into different regions.
Reasoning in terms of groups, line 4 makes us move inside the orbits, while line 6 is an heuristic
to jump to a nearby orbit. For any choice of ε > 0 and α ∈ [0, 1], the algorithm is convergent and
produces a strictly decreasing sequence L(w1) > L(w2) > · · · before it terminates (a proof is
provided as supplementary material). We expect that, eventually, a seed v will be generated that is
close to the true model ŵ. Although it may not be obvious at first sight why would it be desirable
that v ≈ ŵ, we provide a simple result below (Prop. 15) that sheds some light on this matter, by
characterizing the set of points in V that are “reachable” by optimizing Eq. 3.

From the optimality conditions of convex programming [32, p. 257], we have that w∗ is a solution
of the optimization problem in Eq. 3 if and only if 0 ∈ ∂L(w∗) +NGv(w∗), where ∂L(w) denotes
the subdifferential of L at w, and NGv(w) is the normal cone to OG(v) at w, defined in §3. For
certain seeds v ∈ V , it may happen that the optimal solution w∗ of Eq. 3 is the seed itself. Let WG

be the set of seeds with this property:

WG := {v ∈ V | L(v) ≤ L(w), ∀w �G v} = {v ∈ V | 0 ∈ ∂L(v) +KG(v)}, (14)

where KG(v) is the region cone and the right hand side follows from the optimality conditions. We
next show that this set is all we need to care about.

Proposition 15 Consider the set of points that are solutions of Eq. 3 for some seed v ∈ V , ŴG :={
w∗ ∈ V

∣∣ ∃v ∈ V : w∗ ∈ arg minw�Gv L(w)
}

. We have ŴG = WG.

Proof: Obviously, v ∈ WG ⇒ v ∈ ŴG. For the reverse direction, suppose that w∗ ∈ ŴG,
in which case there is some v ∈ V such that w∗ �G v and L(w∗) ≤ L(w) for any w �G v.
Since �G is a pre-order, it must hold in particular that L(w∗) ≤ L(w) for any w �G w∗ �G v.
Therefore, we also have that w∗ ∈ arg minw�Gw∗ L(w), i.e., w∗ ∈WG.

7 Simulation Results

We describe the results of numerical experiments when regularizing with the permutahedron (sym-
metric group) and the signed permutahedron (hyperoctahedral group). All problems were solved
using the conditional gradient algorithm, as described in §5. We generated the true model ŵ ∈ Rd
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Figure 4: Learning curves for the permutahedron and signed permutahedron regularizers with a perfect seed.
Shown are averages and standard deviations over 10 trials. The baselines are `1 (three leftmost plots, resp. with
k = 150, 250, 400), and `2 (last plot, with k = 500).

Figure 5: Mean squared errors in the training set (left) and the test set (right) along the regularization path.
For the permutahedra regularizers, this path was traced with the continuation algorithm. The baseline is `1
regularization. The horizontal lines in the right plot show the solutions found with validation in a held-out set.

by sampling the entries from a uniform distribution in [0, 1] and subtracted the mean, keeping k ≤ d
nonzeros; after which ŵ was normalized to have unit `2-norm. Then, we sampled a random n-
by-d matrix X with i.i.d. Gaussian entries and variance σ2 = 1/d, and simulated measurements
y = Xŵ + n, where n ∼ N(0, σ2

n) is Gaussian noise. We set d = 500 and σn = 0.3σ.

For the first set of experiments (Fig. 4), we set k ∈ {150, 250, 400, 500} and varied the number
of measurements n. To assess the advantage of knowing the true parameters up to a group trans-
formation, we used for the orbitope regularizers a seed in the orbit of the true ŵ, up to a constant
factor (this constant, and the regularization constants for `1 and `2, were all chosen with valida-
tion in a held-out set). As expected, this information was beneficial, and no significant difference
was observed between the permutahedron and the signed permutahedron. For the second set of
experiments (Fig. 5), where the aim is to assess the performance of the continuation method, no
information about the true model was given. Here, we fixed n = 250 and k = 300 and ran the
continuation algorithm with ε = 0.1 and α = 0.0, for 5 different initializations of v0. We observe
that this procedure was effective at exploring the orbits, eventually finding a slightly better model
than the one found with `1 and `2 regularizers.

8 Conclusions and Future Work

In this paper, we proposed a group-based regularization scheme using the notion of orbitopes. Sim-
ple choices of groups recover commonly used regularizers such as `1, `2, `∞, spectral and nuclear
matrix norms; as well as some new ones, such as the permutahedron and signed permutahedron.
As a byproduct, we revealed a connection between the permutahedra and the recently proposed
sorted `1-norm. We derived procedures for learning with these orbit regularizers via conditional and
projected gradient algorithms, and a continuation strategy for orbit exploration.

There are several avenues for future research. For example, certain classes of groups, such as reflec-
tion groups [33], have additional properties that may be exploited algorithmically. Our work should
be regarded as a first step toward group-based regularization—we believe that the regularizers stud-
ied here are just the tip of the iceberg. Groups and their representations are well studied in other
disciplines [10], and chances are high that this framework can lead to new regularizers that are a
good fit to specific machine learning problems.
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