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Resumo

Nesta tese, abordamos o problema de representação de formas bidimensionais na sua forma mais

geral, i.e., conjuntos arbitrários de pontos. Exemplos destas formas surgem em várias situações, sob a

forma de conjuntos esparsos de pontos representativos, ou conjuntos densos de pontos de contornos de

imagens. Os nossos alvos são problemas de reconhecimento, onde é fundamental gerir dois objectivos

contraditórios: formas que diferem de transformações rı́gidas ou permutações dos pontos devem ter a

mesma representação (invariância), mas formas geometricamente distintas devem ter representações

diferentes (completude).

Introduzimos uma nova representação de forma que junta propriedades dos polinómios simétricos e

do biespectro. Tal como o espectro de potência, o biespectro é invariante a translações do sinal; mas,

ao contrário do espectro de potência, o biespectro é completo. Conjuntos particulares de polinómios

simétricos, os chamados polinómios elementares simétricos e as somas de potências, são completos

e invariantes a permutações das variáveis. Mostramos que estes polinómios dos pontos da forma

dependem da orientação de uma maneira que nos permite interpretá-los no domı́nio da frequência e

construir um biespectro a partir deles. O resultado é uma representação de forma que é completa e

invariante a transformações rı́gidas e a permutações dos pontos.

Descrevemos o problema de representação de forma de uma maneira muito geral através do uso de

conceitos de teoria de grupos. O conceito de forma é determinado pela definição de transformações

preservadoras de forma (e.g, permutação dos pontos e/ou transformações geométricas) através de

acções de grupos. As formas são então identificadas com as órbitas das acções daqueles grupos e

representar forma reduz-se a representar essas órbitas. Desta maneira, tal como pretendido, elementos

que pertencem à mesma órbita têm a mesma representação e elementos que pertencem a órbitas

diferentes têm representações diferentes. A representação de forma proposta na tese atinge estes

objectivos.

Descrevemos como calcular eficientemente a representação proposta usando programação dinâmica

e terminamos descrevendo experiências que ilustram as propriedades provadas.

Palavras-chave: Representação de forma, Reconhecimento de forma, Invariante completo,

Biespectro, Polinómios simétricos, Teoria de grupos, Acção de grupo.
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Abstract

We address the representation of two-dimensional shapes in its most general form, i.e., arbitrary sets of

points. Examples of these shapes arise in multiple situations, in the form of sparse sets of representative

landmarks, or dense sets of image edge points. Our goal are recognition tasks, where the key is balancing

two contradicting demands: shapes that differ by rigid transformations or point relabeling should have the

same representation (invariance), but geometrically distinct shapes should have different representations

(completeness).

We introduce a new shape representation that marries properties of the symmetric polynomials and

the bispectrum. Like the power spectrum, the bispectrum is insensitive to signal shifts; however, unlike

the power spectrum, the bispectrum is complete. Particular sets of symmetric polynomials, the so-called

elementary ones and the power sums, are complete and invariant to variable relabeling. We show that

these polynomials of the shape points depend on the shape orientation in a way that enables interpreting

them in the frequency domain and building from them a bispectrum. The result is a shape representation

that is complete and invariant to rigid transformations and point relabeling.

We describe the shape representation problem in a very general way by using concepts of group theory.

The concept of shape is determined by the definition of the required shape-preserving transformations

(e.g., point relabeling and/or geometric ones) through group actions. Shapes are then identified with the

orbits of the actions of those groups and shape representation amounts to representing those orbits. This

way, as pretended, elements that belong to the same orbit have the same representation and elements

that belong to different orbits have different representations. The proposed shape representation attains

this goal.

We describe how the proposed representation can be efficiently computed from the shape points

using dynamic programming and end by describing experiments that illustrate the proved properties.

Keywords: Shape representation, Shape recognition, Complete invariant, Bispectrum, Symmet-

ric polynomials, Group theory, Group action.

vii



viii



Contents

Agradecimentos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Introduction 1

1.1 Problem and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Current Approaches and their Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Shape Representation 7

2.1 First Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Group Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Shapes as Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Symmetric Polynomials 17

3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Monomial Symmetric Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Power Sum Symmetric Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Elementary Symmetric Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.6 Homogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.7 Efficient Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Spectral Invariants 29

4.1 Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Power Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Bispectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Higher-Order Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

ix



5 Proposed Representation 35

5.1 Group Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Translation Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Scaling Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4 Permutation Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.5 Rotation Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.6 Computational Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Experimental Results 45

6.1 Robustness to Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Shape Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3 Trademark Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Conclusion 51

A Shape Dissimilarity 53

B Perturbation Analysis 55

C Reflection Invariance 59

Bibliography 66

x



List of Figures

1.1 Each footprint is an instance of the same shape, i.e., the same set of 2D points is displayed

with distinct scales, orientations, and positions. When attempting to recognize the shape

from the list of 2D point coordinates of an instance, besides these geometric distortions,

there is an additional difficulty (hidden when the shapes are displayed): the fact that the

point lists have in general distinct orders. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Pictorial view of the problem addressed in this thesis: how to represent shapes in such a

way that distinct shapes are mapped to distinct points in a shape space, but instances of

the same shape (differing by geometric transformations and point re-ordering) are mapped

to the same point? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Examples of shape representatives related by rotation and permutation of the labels. If

the shape preserving transformations include rotations and permutations of the labels, all

these representatives belong to the set of representatives of the same shape. To represent

shape we need to capture this relation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 The set X is partitioned into the equivalence classes X1, X2, X3, X4, and X5. The set

of the five equivalence classes is an example of a quotient space X/ ∼ and each of the

equivalence classes is an element of this new space. The elements of X that belong to

the same equivalence class are identified with the same point in quotient space. This

identification is called the projection of X into the quotient space X/ ∼. . . . . . . . . . . 13

2.3 The space of shape representatives CN is partitioned into five shapes. Each of these

shapes has several shape representatives. To capture the shape information, the shape

representation mapping ρ : CN → R has to take the same value for all shape repre-

sentatives of a shape (invariance), which is illustrated by ρ(rs2) = ρ(r′s2), and different

values for shape representatives of different shapes (completeness), which is illustrated by

ρ(rs1) 6= ρ(rs2) 6= ρ(rs5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Each of the shape representatives in the above figure has points with coordinates−1, 1, and

j, differing by permutation of the labels. Nonetheless, they all yield the same result when we

evaluate the elementary symmetric polynomials: e1(−1, 1, j) = e1(j,−1, 1) = e1(1, j,−1) =

j, e2(−1, 1, j) = e2(j,−1, 1) = e2(1, j,−1) = −1, and e3(−1, 1, j) = e3(j,−1, 1) = e3(1, j,−1) =

−j. Furthermore, −1, 1, j is the only unordered set of three points yielding this result. . . 22

xi



3.2 On the left, the shape representative rs, with points −1, 1, and j. On the right, the

shape representative r′s with points −j, j, and −1 (r′s is obtained by rotating rs around

the origin by π
2 ). Evaluating the elementary symmetric polynomials e1, e2, and e3 on the

points of the shape representatives yields: for rs, e1(−1, 1, j) = j, e2(−1, 1, j) = −1, and

e3(−1, 1, j) = −j; for r′s, e1(−j, j,−1) = −1, e2(−j, j,−1) = 1, and e3(−j, j,−1) = −1.

The elementary symmetric polynomials for rs and r′s are related by the homogeneity

property (3.25), which reduces in this case to ek(−1, 1, j) = ejk
π
2 ek(−j, j,−1), with k = 1, 2, 3. 24

3.3 Entry (i, j) of the array stores ej(z1, . . . , zi). If the array is initially empty, the computa-

tion of e4(z1, . . . , z6) through decomposition (3.34) uses the 12 positions marked in gray

(the arrows from entry (6, 4) to entries (5, 3) and (5, 4) represent the dependency of the

computation of e4(z1, . . . , z6) on the values of those entries, e3(z1, . . . , z5) and e4(z1, . . . , z5)). 27

4.1 On top, three real-valued periodic signals, x, x′, and y. On bottom, the corresponding

power spectra, Pk(x), Pk(x′), and Pk(y). Signals x and x′ only differ by a time shift and

their power spectra are the same, illustrating its invariance. However, the power spectra of

y, which is not a shifted version of x and x′, is also the same, illustrating its incompleteness. 31

4.2 On top, three real-valued periodic signals, x, x′, and y. On bottom, the corresponding

phase of the bispectra arg bk1,k2(x), arg bk1,k2(x′), and arg bk1,k2(y). Signals x and x′ only

differ by a time shift and their bispectra are the same, illustrating its invariance. Contrary to

the power spectrum (see Figure 4.1), the bispectrum of the signal y is different from the

one of the signals x and x′, illustrating its completeness. . . . . . . . . . . . . . . . . . . . 32

5.1 Top: shape representatives rs and r′s, related by a shape-preserving transformation (i.e.,

translation, scaling, permutation and rotation), and a distinct shape representative rs′ .

Middle and bottom: the corresponding representations (magnitude and phase), illustrating

that the proposed representation ρ = ρr,p,s,t is simultaneously complete and invariant, i.e.,

ρ(rs) = ρ(r′s) 6= ρ(rs′)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1 Noise-free shape representatives in the database. . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Shape classification accuracy as a function of the standard deviation of the noise. . . . . 46

6.3 Noisy versions of the shape representatives in the database (Figure 6.1) with σ = 0.25, the

approximate limit for 100% correct classifications (Figure 6.2). . . . . . . . . . . . . . . . . 46

6.4 Unlabeled images of digits to group into clusters. . . . . . . . . . . . . . . . . . . . . . . . 47

6.5 Automatic clustering of the binary images in Figure 6.4. . . . . . . . . . . . . . . . . . . . 48

6.6 Top: three examples of images captured with an hand-held webcam. Bottom: the corre-

sponding edge maps. The shapes to classify are given by the coordinates of the black

points in these maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.7 Examples of webcam images of logos correctly recognized. . . . . . . . . . . . . . . . . . 49

xii



Chapter 1

Introduction

We start by introducing and motivating the problem of shape representation. Then, after reviewing current

approaches and their limitations, we briefly describe our work. The chapter ends with an outline of the

thesis content.

1.1 Problem and Motivation

In many cases, an object can be recognized by its shape alone. For example, a human would hardly

mistake, even without any texture or color information, the shape of a chicken for the shape of a dog. In

this thesis, we address the problem of representing two-dimensional (2D) shapes, having in mind shape

retrieval tasks, i.e., finding, in a shape database, the shapes that are similar to a query shape.

For us, a 2D shape is an arbitrary set of points in the plane. In some approaches, researchers only

consider shapes that are well-described by closed contours. Although this makes the representation

problem significantly easier, it also severely limits the kinds of shapes that can be dealt with. In fact, in

many real-life scenarios (e.g., trademark retrieval), the underlying shapes contain multiple contours, lines,

and/or small isolated regions that are better modeled as simple 2D points.

Comparing two collections of points is difficult because, as it happens in general shape recognition

problems, they are related by unknown geometric transformations (due to different position, orientation,

and size) and permutation (due to the absence of labels for the points). For example, although all the 2D

shapes in Figure 1.1 are the same, this is not easily captured from the corresponding lists of 2D point

coordinates.

The difficulties summarized in the previous paragraph, but also the fact that modern machine learning

algorithms require more than the capability of comparing pairs of shapes, motivates the search for a

representation that enable shapes to be treated as points in an abstract shape space, where machine

learning algorithms can be applied. Naturally, the representation must be invariant to geometric transfor-

mations and point permutation but also complete, in the sense of fully describing the underlying shape,

i.e., shapes that differ only by a rigid geometric transformation or point relabeling are mapped to the

same point in the abstract shape space while shapes not related by these transformations are mapped to
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Figure 1.1: Each footprint is an instance of the same shape, i.e., the same set of 2D points is displayed
with distinct scales, orientations, and positions. When attempting to recognize the shape from the list of
2D point coordinates of an instance, besides these geometric distortions, there is an additional difficulty
(hidden when the shapes are displayed): the fact that the point lists have in general distinct orders.

different points in the abstract shape space. This is illustrated in Figure 1.2.

1.2 Current Approaches and their Limitations

Shape representation has deserved the attention of several researchers in the past and complete surveys

can be found in [1, 2, 3, 4]. In the sequel, we summarize the limitations of a few meaningful approaches.

Although connected regions can be represented by a one-dimensional contour, which is easier to

code, see, e.g., [5], this is not the case of general shapes, i.e., arbitrary sets of points in the plane. The

statistical theory of shape [6] addresses this problem in situations where the points are labeled (usually in

small number, denoted by landmarks). However, the problem remains for reasonably large sets of points

without labels or natural ordering, e.g., those arising from automatic edge/corner/interest-point detection.

When dealing with point clouds, translation and scale are easily taken care of through normalization.

However, this is not the case of rotation and permutation, whose simultaneous estimation leads to a

non-convex problem. Iterative methods such as the Iterative Closest Point (ICP) [7] or its probabilistic

versions based on Expectation-Maximization (EM), e.g., [8], tackle this problem but suffer from the usual

sensitivity to the initialization, exhibiting uncertain convergence. When the relative orientation of the

shapes to compare is known, the estimation of the permutation relating the point sets can be casted into

a convex optimization problem [9]. However, normalizing a point set with respect to rotation is harder than

it could seem at first sight. In fact, although theoretically sustained moment-based methods have been

proposed (see [10] and the references therein), degenerate cases have been successively identified,

showing that these methods can be sensitive to the noise and motivating subsequent research, e.g., [11].

Reference [12] proposes a representation that overcomes the need to compute correspondences

between shape points. It is permutation-invariant and complete, but it is not rotation invariant, requiring

pairwise alignments for shape comparison. Moment-based representations of image patterns have been

2



Figure 1.2: Pictorial view of the problem addressed in this thesis: how to represent shapes in such a way
that distinct shapes are mapped to distinct points in a shape space, but instances of the same shape
(differing by geometric transformations and point re-ordering) are mapped to the same point?

used since the sixties due to their geometric invariance properties but their completeness only recently

have been focus of attention [10].

1.3 Proposed Approach

In this thesis we introduce a new shape representation that is complete and invariant with respect to

geometric transformations and point permutations. We draw on properties of the symmetric polynomials

and the bispectrum. The symmetric polynomials, extensively studied in algebra and in combinatorics, are

motivated by the permutation invariance/completeness. The bispectrum, which has received attention in

signal processing, is motivated by the geometric invariance/completeness.

It can be shown that particular subclasses of symmetric polynomials (the power sums and the

so-called elementary symmetric polynomials) on a set of variables suffice to determine them up to a

permutation. This enables us to factor out the permutation of the shape points in an efficient manner,

while guaranteeing the completeness of the proposed shape representation scheme.

To obtain complete invariance with respect to shape rotation, we draw inspiration from the bispectrum.

While the power spectrum of a signal is insensitive to signal shifts but does not uniquely determine the

underlying signal, its bispectrum inherits the invariance and determines the signal, up to a shift. We

show that shape rotation affects the symmetric polynomials in a similar way as a signal shift affects

the coefficients of its Fourier series. Based on this property, we propose a shape representation that

consists in a bispectrum computed from the symmetric polynomials, being then complete and invariant

with respect to point permutation and shape orientation (translation and scale are taken care of through

normalization).

We believe that the connection just summarized is the most insightful part of our work. Our approach

3



links two well-known mathematical objects that have received extensive attention in the research literature.

The complete invariance of the bispectrum with respect to shifts has been used in image processing, but

not to represent arbitrary sets of points. For example, in reference [13] image rotations are transformed into

shifts in the polar domain and reference [14] uses the bispectrum of one-dimensional image projections

(Radon transform). Although the completeness of bispectrum even inspired other authors to extend its

applicability beyond commutative groups [15, 16], to the best of our knowledge, none addresses the

representation of 2D shapes with the generality we do here.

In spite of the key aspect just referred, our work lead to other original contributions, which are singled

out in a synthetic way in the following list:

• Shapes as unordered sets of 2D points and their representations via groups and group actions.

• Using particular subsets of symmetric polynomials to represent 2D shapes in a way that factors out

point label permutations.

• The homogeneity property of the symmetric polynomials in general and its relation to Fourier

analysis.

• Efficient computation of the monomial symmetric polynomials using dynamic programming.

• Using the bispectrum computed from symmetric polynomials to represent 2D shapes in a way that

also factors out rotations.

The representation based on elementary symmetric polynomials was presented in [17]; reference [18]

summarizes our work.

1.4 Thesis Organization

The remaining of the thesis is structured as follows.

In Chapter 2, we formulate the problem of shape representation with generality. Shape is defined

as what remains after factoring out the action of a group of transformations. The formalization of the

shape representation problem uses thus concepts of group theory, motivating the need to introduce the

notions of group and group action. These concepts provide a rigorous way to interpret shapes as orbits

of particular group actions. They also enable elegant derivations of the invariance properties presented in

subsequent chapters.

Chapter 3 deals with the symmetric polynomials. We derive properties of such polynomials, shedding

light on why these are interesting for the problem of shape representation. We particularize two subclasses

of symmetric polynomials, namely, the power sums and the elementary symmetric ones. Two important

properties of these polynomials are completeness and homogeneity. The completeness allows us to

represent an arbitrary set of points up to a permutation. The homogeneity allows us to link the symmetric

polynomials to Fourier analysis. Finally, we study how the symmetric polynomials can be computed,

deriving an efficient approach based on dynamic programming.

4



In Chapter 4, we address the bispectrum. We show how signal shifts affect their frequency represen-

tation, making the connection with what happens in the case of the symmetric polynomials of a 2D shape.

We illustrate the desired properties of the bispectrum by contrasting with the power spectrum: while the

latter is invariant to shifts but incomplete, the former inherits the invariance but exhibits completeness.

Chapter 5 describes the proposed representation. First, we introduce the group action that defines

the shape-preserving transformations, formalizing the concept of shape. The transformations that we

consider are translation, rotation, scaling, and permutation of the labels. They are successively factored

out and invariance and completeness properties of the intermediate representations are analytically

shown. The final invariant and complete representation is attained by composing the partial invariants.

In Chapter 6, we illustrate the properties of the proposed representation with experiments such as

shape classification in the presence of noise, automatic clustering of binary images, and classification of

shapes extracted from real trademark images with simple edge detection.

Chapter 7 concludes the thesis. We summarize our approach and the properties of the proposed

representation and end by outlining research paths that emerged from our work.

In the appendices, we include topics that would hinder the presentation in the main body of the thesis.

Appendix A discusses the notion of shape dissimilarity and its implications. In Appendix B, we study

the impact on the elementary symmetric polynomials and the power sum symmetric polynomials of a

perturbation of their arguments. In Appendix C, we extend the proposed representation to also include

invariance and completeness with respect to reflections by defining a new shape dissimilarity measure.
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Chapter 2

Shape Representation

In this chapter, we start by discussing the problem of shape representation from an intuitive standpoint,

raising questions that need formal addressing. The discussion intends to make the reader aware of the

freedom that exists in the definition of shape.

We then present concepts of group theory and use them to formulate the problem of shape represen-

tation. These concepts will be rather abstract at first, but we will see instantiations of them in Chapter 3

and Chapter 4, where we deal with invariants to a particular group actions, and in Chapter 5, where we

specify a definition of shape and construct the corresponding representation.

2.1 First Remarks

Our work concerns the representation two-dimensional (2D) shapes, that are given as ordered sets of

points in the plane, which we call shape representatives (sometimes we call them just representatives

or, when it is clear from the context, shapes). When we talk about shapes there is usually some

invariance involved. For example, a square is still a square if it is rotated, scaled and translated arbitrarily.

The invariance that captures the notion of shape will be defined through a set of shape-preserving

transformations, which have the property that, if we apply them to particular shape representative, the

transformed shape representative has the same shape as the untransformed one. We will define the

shape preserving transformation through the action of a group.

The shape representatives that we consider live in CN , where N is the number of shape points. For

now, we consider that the number of points is fixed at the same value for all shapes. This is mostly for

convenience reasons and will be dealt with later. The identification of C with R2 is trivial and, therefore,

no information is lost by working in this space instead. The choice of C is motivated by its more favorable

algebraic properties.

By using CN to represent representatives of shapes, we realize that they are inherently labeled due

to the distinction between coordinates. This will allow us to treat the problem in a very general manner,

beginning with arbitrary ordered sets of points in the plane. For example, we can consider that each of

the distinct labeled sets of points represents a different shape. This effectively corresponds to having only
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the identity as a shape-preserving transformation.

The shape s is identified with its set of shape representatives Rs ⊂ CN , which contains all the shape

representatives rs ∈ CN that are instantiations of the shape s. Each of the coordinates of rs is simply a

labeled point in the plane:

rs =


z1
...

zN

 ∈ CN . (2.1)

We define shape by partitioning the space of shape representatives CN into equivalence classes.

Each of the resulting equivalence classes corresponds to a different shape. We will define the equivalence

classes through the action of a group that defines the shape-preserving transformations. Here, two

elements rs and rs′ in the space of shape representatives are representatives of the same shape if

and only if they are related by a shape-preserving transformation, i.e., if there is a shape-preserving

transformation that maps one representative to the other.

In our initial example, where we had only the identity as a shape-preserving transformation, each

representative rs is related (by the identity shape-preserving transformation) only with itself and with no

other different representative r′s. This means that each rs ∈ CN is identified with a different shape and

that the set of all shape representatives Rs for a shape s has a single element rs (it is a singleton set).

This is a trivial example.

In more interesting cases, we have nontrivial transformations that we want to deem as shape-

preserving. Some commonly considered shape-preserving transformations are the rigid ones, where

two shape representatives represent the same shape if there is a translation, rotation, and reflection

in the plane C, that maps one representative to the other. Another interesting set of shape-preserving

transformations are the permutations of the labels, where two representatives represent the same shape

if they differ by a permutation of the coordinates. This gives rise to unlabeled shapes, i.e., shapes whose

points do not have natural labels.

In general, considering a set of shape-preserving transformations, two representatives correspond to

the same shape if there is a shape-preserving transformation that maps one to the other. Equivalently,

two shapes s and s′ are equal if and only if Rs = Rs′ . We will use shape and its identification with a set of

representatives, interchangeably.

Since a shape s can be identified with its set of representatives Rs, we may think of representing s

by explicitly storing Rs. Nonetheless, this is usually not possible (note that the set of representatives is

finite for the case of permutations of the labels, but infinite for the case of rigid transformations; even

in the case of the unlabeled shapes, the explicit storage of the Rs is intractable because the set has

N ! elements.) Figure 2.1 illustrates this difficulty. If the shape-preserving transformations are rotations

and permutations of the labels, all the shape representatives in Figure 2.1 belong to the same set of

representatives and, therefore have to be represented as such. To capture shape, we need to somehow

encode this relation of belonging of a given shape representative to a given set of shape representatives.

A more convenient way to represent the sets of representatives is to map the problem to some space

where each set of representatives can be represented by a point in that space, which identifies a shape
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Figure 2.1: Examples of shape representatives related by rotation and permutation of the labels. If the
shape preserving transformations include rotations and permutations of the labels, all these representa-
tives belong to the set of representatives of the same shape. To represent shape we need to capture this
relation.

(see Figure 1.2). We require this map to keep all shape information and to be computable just from one

representative of the shape (and not just from the full set of representatives). The motivation for these

requirements is obvious since, given two different representatives, knowing if they correspond to the

same shape or not boils down then to the evaluation of this mapping and to the comparison of the results

in the new space.

Stating that all shape information is kept means that, besides the shape-preserving transformations,

no other information is factored out. In this case, two representatives will be mapped to the same point in

this new space if and only if they correspond to the same shape. This amounts to having a complete

and invariant representation for shapes. We call this new space, the space of shape representations

R and the mapping that matches each shape representative to its shape representation, the shape

representation mapping ρ : CN → R.

2.2 Group Theory

We outlined what we would like to do for solving the shape representation problem without ever de-

scribing how we might go about constructing the specified objects. Now, we formalize the concepts of

shape-preserving transformation, shape representative set, space of shape representations, and shape

representation mapping. We begin by introducing notions of group theory that will help us in the task.

A group is a tuple (G, ·), where G is a set, sometimes called the underlying set, and · is a mapping

G×G→ G, satisfying the following axioms:

Closure: For any x and y in G, xy is also in G;

Associativity: For any x, y, and z in G, x(yz) = (xy)z;

Existence of identity: There is an unique element of G, denoted e and called the identity element, such

that, for any g in G, eg = ge = g;

Existence of inverses: For any g in G, there is a corresponding element, denoted g−1 and called the
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inverse of g, such that gg−1 = g−1g = e.

Note that although we use the multiplicative notation to denote the group operation, that does not

mean that the group is necessarily commutative, i.e., for every g1 and g2 ∈ G, g1g2 may not be equal

to g2g1. It is common practice to refer to a group (G, ·) by just G. We will also adopt this usage, however,

it must be kept in mind that a group is identified, not just by its underlying set G, but both by its underlying

set G and its group operation ·. The simplest group has just the identity element. It is possible to specify a

finite group G by identifying a set {g1, . . . g|G|} (where |G| is the number of elements in the group, usually

called the order of the group) and explicitly writing a multiplication table with |G|2 entries that defines

the group operation. Obviously, the operation defined by the multiplication table has to satisfy the group

axioms, otherwise the resulting structure is not a group.

The seemingly simple four group axioms above give rise to an exceedingly rich mathematical structure

on which there is an extensive body of knowledge under the field of group theory and related subfields.

Even though, at first, the notion of a group may seem like a rather abstract one, we can easily come up

with several concrete examples:

1. Complex numbers under addition, (C,+);

2. Nonzero complex numbers under multiplication, (C \ {0}, ·);

3. Vector space under addition, e.g., (RN ,+) and (CN ,+);

4. Real N -by-N matrices of unit determinant under matrix multiplication, called the special orthogonal

group and denoted by SO(N);

5. Permutations of n symbols under composition, called the symmetric group and denoted by Sn.

A subgroup H of a group G is a group on its own right, but we call it a subgroup for tying its definition

to the larger group. The underlying set of the subgroup H is simply a subset of the underlying set of the

group G. The group operation for the subgroup H is the same as the one of the group G. This allows us

to specify smaller groups.

A way to build a larger group G given two smaller ones G1 and G2 is by taking their direct product

G1 × G2. The underlying set of G is the direct product of the underlying sets of the groups G1 and

G2. The group operation of the new group G is constructed from the group operations of G1 and G2

by having the group operation of G1 act on the part of G that pertains to G1 and by having the group

operation of G2 act on the part of G that pertains to G2. More concretely, if g1 and g2 are in G, where

g1 = (g11 , g
2
1) and g2 = (g12 , g

2
2), and where g11 and g12 are in G1 and g21 and g22 are in G2. The product of

g1g2 is given by (g11g
1
2 , g

2
1g

2
1). We can easily verify that the product group G verifies the group axioms.

Taking the direct product of some groups basically amounts to stacking them together. No new information

is added besides the one already contained in the component groups. The commutativity of the group

G = G1 ×G2 depends on the commutativity of its components groups G1 and G2. Nonetheless, every

element g = (g1, g2) of G can be written as the product of the elements g1 = (g1, e2) and g2 = (e1, g2),

where e1 and e2 are the identities of the component groups G1 and G2, respectively, which commute, i.e.,

we have g = g1g2 = g2g1.
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Now, we present the concept of a group action. This will bring us one step closer to formalizing the

notion of shape-preserving transformations. A group G is said to act on a set X when there is a map

φ : G×X → X satisfying:

Identity map: φ(e, x) = x for every x in X;

Group Homomorphism: φ(g1, φ(g2, x)) = φ(g1g2, x), for every g1 and g2 in G and every x in X.

When it results in no confusion, we use the group element g to denote the action by g. In this case, φ(g, x)

is denoted by g(x). The action itself is determined by the choice of the map φ. The second condition

means that we can commute between taking the product g1g2 ∈ G and acting by this element or acting,

successively, by g2 and then by g1. The satisfaction of these properties by φ turns G into a transformation

group and X into a G-set. Note that every group acts on itself by group multiplication. In this case, the

set X is the underlying set of G. Another interesting fact is that the trivial action is a valid action for every

group, i.e., having φ(g, x) = x for every g ∈ G and every x ∈ X. It can be trivially verified that this satisfies

the properties of a group action irrespective of the group G.

As a nontrivial example, we can make the permutation group SN act on CN by defining the map

φ(π, rs) =


zπ(1)

...

zπ(N)

 , (2.2)

where π ∈ SN and rs ∈ CN . This action permutes the labels of the points of the representatives according

to the element π of the group of permutations SN . This is what we call the natural action of the symmetric

group SN on space of representatives CN . The identity property is trivially verified because the identity

permutation does not change the labels. The homomorphism property is verified:

φ(π1, φ(π2, rs)) =


zπ1(π2(1))

...

zπ1(π2(N))

 =


zπ1π2(1)

...

zπ1π2(N)

 = φ(π1π2, rs), (2.3)

for any π1, π2 ∈ SN and rs ∈ CN .

Defining the shape-preserving transformations through the action of a group automatically endows

the set of shape-preserving transformations with group properties: the identity transformation is a

shape-preserving transformation; the inverse of a shape-preserving transformation exists, being also a

shape-preserving transformation; the composition of two shape-preserving transformations is a shape-

preserving transformation. These properties are derived from the definitions of group and group action.

Considering φ(g, x), if we fix an element x ∈ X and let g run over all the elements in G, we obtain the

orbit Ox of x. Formally,

Ox = {φ(g, x)|g ∈ G}. (2.4)

The orbits of the elements of X are either disjoint or the same and its union is the whole set X. We

present a sketch of the proof of this fact. For each x ∈ X, the orbit Ox is nonempty since it has at least x
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in it. Therefore, the union of all the orbits is the whole set X. The equality or disjointness can be proved

by noting that if we have the orbits Ox and Ox′ , generated by elements x and x′ ∈ X, and Ox ∩ Ox′ 6= ∅,

then, there is an element y ∈ Ox ∩ Ox′ . By the definition of orbit, this implies that y = φ(g, x) = φ(g′, x′),

for some g, g′ ∈ G. Acting with g−1 on both sides and using the properties of a group action, we get

φ(g−1, φ(g, x)) = φ(e, x) = x = φ(g−1g′, x′). This means that x is in the same orbit as x′. But this implies

that the orbits are the same, since a element of the orbit runs over all the elements of the orbit when it is

acted by the group.

The fact that the orbits of the action partition X means that they define a set of equivalence classes

on X (in general, a set of equivalence classes on X is basically a partition of X). Two elements of X are

equivalent if and only if they belong to the same orbit. This means that two elements are equivalent if and

only if one can be mapped to the other by acting with some element of G. This is the equivalence relation

that arises from the partition of X with the orbits.

An equivalence relation ∼ is a binary relation X ×X satisfying the following properties:

Reflexive: a ∼ a, for all a in X;

Symmetric: If a ∼ b, then b ∼ a, for all a, b in X;

Transitive: If a ∼ b and b ∼ c, then a ∼ c, for all a, b and c in X.

By having a set of equivalence classes on X, we get an equivalence relation on the elements of X

that is given by: two elements of X are equivalent if and only if they belong to the same equivalent class.

The converse is also true. An equivalence relation on X induces a set of equivalence classes on X where

the equivalence class of some element of X is the set of all elements of X that are equivalent to it.

Another important concept that arises when we talk about group actions is the concept of a stabilizer.

The stabilizer is related to the concept of an orbit. Both orbits and stabilizers are indexed by elements of

X, but, while the elements of an orbit are elements of the set X, the elements of a stabilizer are elements

of the group G. The stabilizer of an element x ∈ X is the set of all group elements g ∈ G that act on x by

leaving it fixed. The stabilizer of x ∈ X is denoted by Gx and it is formally defined as

Gx = {g ∈ G|φ(g, x) = x}. (2.5)

The notation Gx is to emphasize that the stabilizer is a subgroup of G. (We leave the proof of this to the

reader.)

The group theoretical concepts just presented are but a tiny fraction of all group theory and abstract

algebra. More information can be found in references such as [19, 20, 21].

2.3 Shapes as Orbits

As anticipated above, we define the shape-preserving transformations, which determine the notion of

shape, through the action of some group on the set of shape representatives CN . The definitions of the

desired group and action depend on the shape-preserving transformations that we want to consider. In
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most cases of interest, the group can be easily constructed by taking some smaller groups as building

blocks and putting them together by taking the direct product. Given the group, the desired group action

is also easy to build.

The set Rs, containing all the representatives of a shape s, is simply the orbit of any of its representa-

tives rs under the action of the group of shape-preserving transformations. Each orbit is a subset of CN

and the set of all orbits is a partition of CN . Two shapes are equivalent if they correspond to the same

orbit or, equivalently, if given a representative of each shape, there is an action by some element of the

group of shape-preserving transformations that maps one to the other. The space of all orbits is written

as CN/ ∼, where ∼ is the equivalence relation induced by the group action defining the shape-preserving

transformations.

The space of all orbits is an example of a quotient space. The operation by which we obtain a quotient

space is called quotienting out by an equivalence relation. An equivalence class is identified with a

single point in this new space. Sometimes, as an intuitive explanation of how this quotienting out process

works, it is said that the points in an equivalence class are glued or collapsed together into a single point.

The space resulting from the collapse of all the equivalence classes is the quotient space. Figure 2.2

illustrates the notion of an equivalence class and a quotient set.

Figure 2.2: The set X is partitioned into the equivalence classes X1, X2, X3, X4, and X5. The set of the
five equivalence classes is an example of a quotient space X/ ∼ and each of the equivalence classes is
an element of this new space. The elements of X that belong to the same equivalence class are identified
with the same point in quotient space. This identification is called the projection of X into the quotient
space X/ ∼.

A shape is naturally identified with its orbit, which contains all its representatives. We could, in

principle, represent a shape by amassing all the elements of its orbit but, as we have already noted

in Section 2.1, this is not computationally tractable in general. This is where the notion of a shape

representation mapping comes into play.

A way to represent orbits is to find a function ρ that maps shape representatives in CN to the space of

shape representationsR. We require the mapping ρ : CN → R to take the same value for all the elements

of an orbit, i.e., it is constant when restricted to a particular orbit. This property is called invariance. We
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are indirectly factoring out the equivalence relations induced by the group action through the evaluation of

the shape representation mapping ρ. The other key property is completeness. This property requires

that two shape representations ρ(rs) and ρ(rs′) are equal only if rs and rs′ are equivalent as defined by

the group action. Our goal is to a find a complete and invariant representation. Figure 2.3 illustrates the

partition of the space of shape of representatives CN into shapes and the invariance and completeness

of the shape representation mapping ρ : C→ R.

Figure 2.3: The space of shape representatives CN is partitioned into five shapes. Each of these
shapes has several shape representatives. To capture the shape information, the shape representation
mapping ρ : CN → R has to take the same value for all shape representatives of a shape (invariance),
which is illustrated by ρ(rs2) = ρ(r′s2), and different values for shape representatives of different shapes
(completeness), which is illustrated by ρ(rs1) 6= ρ(rs2) 6= ρ(rs5).

We first define a map ρC
N/∼

CN that assigns to each representative rs its corresponding orbit Rs (this is

the projection onto the equivalence class). This map is surjective because every orbit has at least one

representative. A second map is ρRCN/∼, which assigns to each of the orbits Rs a point ρRCN/∼(Rs) in the

space of shape representations R. The final shape representation map is ρRCN : to each representative rs,

it assigns a point ρ(rs) that encodes the orbit on which rs is present and therefore, the shape that rs is a

representative of. This map can be seen as the composition of the two previously defined maps:

ρ = ρRCN = ρRCN/∼ ◦ ρ
CN/∼
CN . (2.6)

Even though in practice the representation ρ may not be computed as the composition of the mappings

expressed in (2.6), it is an interesting idea to keep in mind because the invariance comes from the fact

that ρC
N/∼

CN maps any element in an orbit to that orbit and the completeness comes from requiring the

injectiveness of ρRCN/∼. Anyway, the computation of ρ as a composition of the mappings would imply

dealing with whole orbits at an intermediate step, which is not tractable in general.
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As for the properties of invariance and completeness, invariance has received attention, being

completeness much harder to guarantee in general. In fact, many researchers introduced invariants to

some group actions and experimentally validated if they actually are descriptive enough, i.e., if they keep

enough relevant information about shape. Note that by itself the problem is nontrivial. We could just

represent all the representatives of all the shapes by the same constant. Even though this representation

is clearly invariant to any group action that we can conceive, it obviously does not keep any shape

information, being therefore, useless.

Summarizing, in this chapter we approached the problem of shape representation from an abstract

perspective by using notions of group theory. We start by identifying the group and the corresponding

action on CN . This defines the notion of shape. For the identified group action, the shape representation

mapping ρ has to be constructed. The process of construction of ρ will usually involve putting together

invariants to form the invariant to the full group action. Its construction will be elaborated in subsequent

chapters by presenting invariants that can serve as building blocks and then, finally, constructing an

actual representation for a particular case. Remember that the representation mapping ρ : CN → R is

evaluated in the space of representatives CN and does not involve explicitly the orbits. In our work, the

space of shape representations R will be identified with CM , for some M that represents the dimension

of the space of shape representations R, and the shape dissimilarity measure on R will be the Euclidean

distance on CM . We refer the reader to Appendix A for a discussion on how one may define the notion of

shape dissimilarity.
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Chapter 3

Symmetric Polynomials

A symmetric polynomial is a polynomial that is invariant to any permutation, i.e., relabeling, of its variables.

In this chapter, we define the symmetric polynomials and study their properties. The two types of

symmetric polynomials that will be more important to us are the elementary symmetric polynomials and

the power sum symmetric polynomials. This is due to the fact that they completely represent a set of

points in C apart from arbitrary permutations, allowing, therefore to build complete invariants to the action

of the symmetric group.

We also present the monomial symmetric polynomials, which subsume both the elementary symmetric

polynomials and the power sum symmetric polynomials. Monomial symmetric polynomials are interesting

because, even though their general case will not be extensively used for the construction of shape

invariants, they provides a framework to better reason about symmetric polynomials.

The concepts presented in this chapter will be used in Chapter 5, where we deal with a concrete

group action defining the shape-preserving transformations and propose the corresponding shape

representation mapping.

3.1 Definition

A polynomial s : CN → C is called a symmetric polynomial if it is invariant to any permutation of its

variables. This concept can be considered for polynomials in arbitrary fields, nonetheless, since in this

work we are interested in C, we will only consider polynomials in this field. For a reference in symmetric

polynomials, see [22].

In a formal way, with the symmetric group SN acting on the set of variables z1, . . . , zN of the polynomial

s : CN → C (each element of SN yields a labeling for the variables), we say that s is symmetric if and

only if

s(z1, . . . , zN ) = s(zπ(1), . . . , zπ(N)), (3.1)

for all π in SN , where z1, . . . , zN ∈ C and π denotes, simultaneously, an element of the symmetric group

SN and the permutation that it induces. It may also be said that a symmetric polynomial is stable under
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the action of the symmetric group. Some examples of symmetric polynomials in N variables are:

p1(z1, . . . , zN ) = z1 + . . .+ zN ; (3.2)

p3(z1, . . . , zN ) = z31 + . . .+ z3N ; (3.3)

s(z1, . . . , zN ) = z1 + z31 + . . .+ zN + z3N ; (3.4)

e2(z1, . . . , zN ) = z1z2 + . . .+ z1zN + z2z3 + . . .+ z2zN + . . .+ zN−1zN . (3.5)

It is immediately clear that the first three polynomials (3.2), (3.3), and (3.4) are symmetric. The fourth

one (3.5) is also symmetric since it is given by the sum of all products of pairs of the variables z1, . . . , zN .

A permutation of the variables amounts to reordering the terms in the sum, but that does not change the

polynomial. It can also be seen that, summing or multiplying two arbitrary symmetric polynomials also

yields a symmetric polynomial. (In fact, the symmetric polynomials form a ring [22].)

Each of the individual terms zd11 . . . zdNN , with d1, . . . , dN ∈ N ∪ {0}, in a polynomial is a monomial,

which we denote by (d1, . . . , dN ). For example, in the variables z1, z2, z3, and z4, the monomial z1z23 is

denoted by (1, 0, 2, 0). The order of a monomial (d1, . . . , dN ) is denoted by D(d1, . . . , dN ) and is given by

the sum of the degrees of its variables, i.e.,

D(d1, . . . , dN ) =

N∑
n=1

dn. (3.6)

For example, each of the polynomials (3.2), (3.3), and (3.5) has only monomials of a given order: 1, 3

and 2, respectively.

It is clear that if a symmetric polynomial has a monomial (d1, . . . , dN ), it also has to have all the

monomials that can be generated by a permutation of the indexes, i.e., (dπ(1), . . . , dπ(N)), for any π in SN .

In fact, this is a perfectly natural way of generating symmetric polynomials. The polynomials generated in

this way are called the monomial symmetric polynomials.

In this chapter, we explore three subclasses of symmetric polynomials that will be of interest to our

work: the monomial symmetric polynomials, the power sum symmetric polynomials, and the elementary

symmetric polynomials.

3.2 Monomial Symmetric Polynomials

The monomial symmetric polynomials are the most general type of symmetric polynomials that we

consider. To construct them, we first pick an monomial (d1, . . . , dN ), with d1 ≥ . . . ≥ dN , i.e., we require

d1, . . . , dN to be given in non-increasing order. This monomial indexes a symmetric polynomial and will

be called its indexing monomial. The non-increasing order of d1, . . . , dN guarantees the uniqueness of

the indexing, i.e., that we do not have two different monomials (d1, . . . , dN ) and (d′1, . . . , d
′
N ) originating

the same symmetric polynomial (this would only occur if d1, . . . , dN and d′1, . . . , d
′
N were related by a

permutation). Naturally, a monomial that is not given in non-increasing order can be appropriately sorted,
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without changing the polynomial that results from the construction process.

From the indexing monomial (d1, . . . , dN ), through the action of the symmetric group SN , we generate

all the monomials that can be obtained by a permutation of the variables. (See Section 2.2 for notions of

group theory.) Summing all these monomials, we obtain the indexed symmetric polynomial

s′(d1,...,dN )(z1, . . . , zN ) =
∑
π∈SN

zd1π(1) . . . z
dN
π(N). (3.7)

The action of the symmetric group SN on the variables of this polynomial amounts to a reordering of the

monomials in the sum, leaving the polynomial unchanged. As an example of the construction process

(3.7), the indexing monomial (3, 2, 1) gives rise to the polynomial

s′(3,2,1)(z1, z2, z3) = z31z
2
2z3 + z31z2z

2
3 + z21z

3
2z3 + z21z2z

3
3 + z1z

3
2z

2
3 + z1z

2
2z

3
3 . (3.8)

Note that (3.8) sums all possible monomials that can be generated as a permutation of the indexing

monomial (3, 2, 1).

When not all d1, . . . , dN are distinct, there are permutations that leave the indexing monomial fixed,

meaning that the action of SN on the indexing monomial (d1, . . . , dN ) has nontrivial stabilizer G(d1,...,dN ),

i.e, there are other group elements besides the identity that act on the indexing monomial (d1, . . . , dN )

by leaving it unchanged. The permutations π ∈ SN in the stabilizer G(d1,...,dN ) are those that satisfy

d1 = dπ(1), . . . , dN = dπ(N). Each of the different monomials zd1π(1) . . . z
dN
π(N) appears a number of times

equal to the order of the stabilizer G(d1,...,dN ). In the construction, to cancel this factor, we divide by the

order of the stabilizer, |G(d1,...,dN )|. As an example, consider the indexing monomial (3, 1, 1) which gives

rise to the polynomial

s′(3,1,1)(z1, z2, z3) = z31z2z3 + z31z2z3 + z1z
3
2z3 + z1z2z

3
3 + z1z

3
2z3 + z1z2z

3
3

= 2z31z2z3 + 2z1z
3
2z3 + 2z1z2z

3
3 . (3.9)

The stabilizer G(3,1,1) has the identity permutation and the permutation that exchanges the ones in the

indexing monomial (3, 1, 1), therefore |G(3,1,1)| equals two.

From the indexing monomial (d1, . . . , dN ), we now count how many different monomials are summed

in (3.7). Let P be the number of distinct values that are taken by d1, . . . , dN , and consider the pairs of

variables (v1, b1), . . . , (vP , bP ), where vn denotes one of the values taken by d1, . . . , dN , and bn denotes

how many times vn occurs in d1, . . . , dN . Obviously,
∑P
n=1 bn = N . (For example, for the indexing

monomial (3, 1, 1), we have P = 2 and v1 = 3, b1 = 1, v2 = 1, and b2 = 2.)

If all the d1, . . . , dN are different, we have P = N and b1 = . . . = bN = 1. In this case, the stabilizer is

trivial and there will be N ! different monomials in the sum. If we have repeated values in d1, . . . , dN , we

have P < N and some of the values of b1, . . . , bP will be larger than one.

The order of the stabilizer for the general case can be determined by noticing that there are: b1! ways

to permute the b1 occurrences of v1, b2! ways to permute the b2 occurrences of v2, and so on. None of

these permutations change the monomial (d1, . . . , dN ). Therefore, we can generate an element of the
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stabilizer G(d1,...,dN ) by picking one of b1! permutations, and then picking one of b2! permutations, and so

on. This yields

|G(d1,...,dN )| = b1! . . . bP !. (3.10)

From this follows that there are N !
b1!...bP ! distinct monomials to sum.

The process of construction of the monomial symmetric polynomial corresponding to the indexing

monomial (d1, . . . , dN ) is summarized by

s(d1,...,dN )(z1, . . . , zN ) =
1

|G(d1,...,dN )|
∑
π∈SN

zd1π(1) . . . z
dN
π(N). (3.11)

It is straightforward to prove that the resulting polynomial is symmetric. An element π′ of the symmetric

group SN acting on the polynomial variables, leads to

π′(s(d1,...,dN )(z1, . . . , zN )) =
1

|G(d1,...,dN )|
∑
π∈SN

zd1π′π(1) . . . z
dN
π′π(N)

=
1

|G(d1,...,dN )|
∑
σ∈SN

zd1σ(1) . . . z
dN
σ(N), (3.12)

where σ = π′π. Since (3.12) is the same as (3.11), the polynomial is symmetric. All monomials in a

monomial symmetric polynomial (3.11) have the same order D(d1, . . . , dN ) = d1 + . . .+ dN , so we can

talk unequivocally of the order of the polynomial as being the order of its indexing monomial.

For the indexing monomial (0, . . . , 0), we have |G(0,...,0)| = |SN | = N ! and
∑
π∈SN z

0
1 . . . z

0
N = |SN | =

N !, so, from (3.11), we obtain s(0,...,0)(z1, . . . , zN ) = 1.

We have mostly considered examples of symmetric polynomials which are also monomial symmetric

polynomials, being the only exception the example (3.4), which is the sum of the monomial symmetric

polynomials (3.2) and (3.3). In fact, it can be shown that all symmetric polynomials can be written as

linear combinations of monomial symmetric polynomials [22]. The power sum symmetric polynomials and

the elementary symmetric polynomials are the particular cases of the monomial symmetric polynomials

that we use to represent shape.

3.3 Power Sum Symmetric Polynomials

The power sum symmetric polynomials are the most widely known symmetric polynomials. The power

sum symmetric polynomial pk : CN → C of order k > 0 is the sum of the k-th powers of all its variables

z1, . . . , zN :

pk(z1, . . . , zN ) =

N∑
n=1

zkn. (3.13)

Among the examples of symmetric polynomials that were given in Section 3.1, (3.2) and (3.3) are

power sum symmetric polynomials for k = 1 and k = 3, respectively.

The power sum symmetric polynomial of order k in N variables is the particular case of a monomial
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symmetric polynomial with the indexing monomial (k, 0, . . . , 0):

pk(z1, . . . , zN ) = s(k,0,...,0)(z1, . . . , zN ). (3.14)

Note that, for k = 0, we obtain p0(z1, . . . , zN ) = s(0,...,0)(z1, . . . , zN ) = 1.

3.4 Elementary Symmetric Polynomials

The elementary symmetric polynomial ek : CN → C of order k ≥ 0 is defined as the sum of all different

products of k of the N variables, i.e., the sum of all different monomials of order k involving each of the

variables z1, . . . , zN zero or one times. Therefore, the sum is composed by N -choose-k monomials. This

definition can be formalized as

ek(z1, . . . , zN ) =
∑

(i1,...,iN )∈INk

zi11 . . . ziNN , (3.15)

where INk is the set of the tuples (i1, . . . , iN ) satisfying i1, . . . , iN ∈ {0, 1} and
∑N
n=1 in = k. This set is

indexed by the number N of variables and the order k of the polynomial, and its elements encode every

possible way of taking k elements from a set of N elements. If k = 0, the set INk has exactly one element

since there is exactly one way of taking zero elements from a set of N (the only way is by taking none). In

this case, we have e0(z1, . . . , zN ) = 1. If k > N , the set INk has no elements (there are no ways of taking

more than N elements from a set of N ), leading to ek(z1, . . . , zN ) = 0.

Among the examples of symmetric polynomials that were given in Section 3.1, (3.2) and (3.5)

are elementary symmetric polynomials for k = 1 and k = 2, respectively (the polynomial in (3.2) is,

simultaneously, a power sum and an elementary symmetric polynomial).

As it happens in the case of the power sum symmetric polynomials, the elementary symmetric

polynomial of order k in N variables is a particular case of a monomial symmetric polynomial where

the indexing monomial, in this case, is (1, . . . , 1, 0, . . . 0) (the first k numbers are ones and the remaining

N − k numbers are zeros):

ek(z1, . . . , zN ) = s(1,1,...,1,0,...0)(z1, . . . , zN ). (3.16)

3.5 Completeness

The elementary symmetric polynomials in variables the z1, . . . , zN are closely related to the coefficients

of a monic polynomial with roots z1, . . . , zN (monic means that the coefficient of the polynomial of largest

order is equal to one). The relation is important because it enables building a complete invariant to the

symmetric group by using the elementary symmetric polynomials. Formally, the relation that holds is

N∏
n=1

(t− zn) =

N∑
k=0

(−1)kek(z1, . . . , zN )tN−k, (3.17)
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which states that the coefficients of the monic polynomial are exactly the elementary symmetric polynomi-

als apart from an alternating sign pattern.

Expression (3.17) is easily derived by thinking that, when expanding the product, to each term (t− zn)

we can associate a binary variable that encodes the choice between multiplying by t or multiplying by −zn.

Let zero denote the first choice and one denote the second choice. As we expand (t− z1) . . . (t− zN ),

we can encode each of the resulting terms as a vector of N of these choices, resulting in a total of 2N

different choice vectors. Each of the terms that involve k one choices has N − k zero choices, resulting

in a term that is a product of tN−k and k of the variables −z1, . . . ,−zN . Collecting all the terms with the

same order tN−k, we obtain, apart from the sign pattern, exactly those encoded by the elements of the

set INk in (3.15).

Since the coefficients of a polynomial uniquely identify its roots z1, . . . , zN apart from a permutation,

the values of the elementary symmetric polynomials ek(z1, . . . , zN ), with k = 1, . . . , N , uniquely identify

z1, . . . , zN apart from a permutation. This is useful for building invariants when we want to consider

shapes with unlabeled points (shapes that are induced by the shape-preserving transformations given by

the symmetric group acting on CN by permuting the coordinates). Figure 3.1 illustrates the invariance

and completeness of the elementary symmetric polynomials to permutation.

Figure 3.1: Each of the shape representatives in the above figure has points with coordinates −1, 1, and
j, differing by permutation of the labels. Nonetheless, they all yield the same result when we evaluate
the elementary symmetric polynomials: e1(−1, 1, j) = e1(j,−1, 1) = e1(1, j,−1) = j, e2(−1, 1, j) =
e2(j,−1, 1) = e2(1, j,−1) = −1, and e3(−1, 1, j) = e3(j,−1, 1) = e3(1, j,−1) = −j. Furthermore, −1, 1, j
is the only unordered set of three points yielding this result.

In a surprising manner, the completeness of elementary symmetric polynomials extends to the power

sum symmetric polynomials due to the so-called Newton’s identities. These identities (see, e.g., [22])

state that

kek(z1, . . . , zN ) +

k∑
r=1

(−1)r ek−r(z1, . . . , zN ) pr(z1, . . . , zN ) = 0, (3.18)

which, by straightforward algebraic manipulation, yields

ek(z1, . . . , zN ) =
1

k

k∑
r=1

(−1)r−1 ek−r(z1, . . . , zN ) pr(z1, . . . , zN ). (3.19)

From expression (3.19), it is clear that, if we have the values of the power sum symmetric polynomials

pk(z1, . . . , zN ), with k = 1, . . . , N , we can compute the values of the elementary symmetric polynomials

ek(z1, . . . , zN ), with k = 1, . . . , N , in a recursive way. By rearranging the identities (3.19), we can also

compute the values of the power sum symmetric polynomials pk(z1, . . . , zN ), with k = 1, . . . , N , from the
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values of the elementary symmetric polynomials ek(z1, . . . , zN ), with k = 1, . . . , N , proving that the power

sum symmetric polynomials and the elementary symmetric polynomials are the same in with respect to

completeness.

3.6 Homogeneity

Besides the completeness, the other property that will be key for our work is homogeneity. This property

is valid for all the symmetric polynomials that only have monomials of a fixed order. This implies that

it is valid for the monomial symmetric polynomials and, therefore, for the power sum and elementary

symmetric polynomials.

The property states that if we have z′n = αzn, with n = 1, . . . , N , where α is some constant in C, the

following holds:

s(d1,...,dN )(z
′
1, . . . , z

′
N ) = αD(d1,...,dN )s(d1,...,dN )(z1, . . . , zN ). (3.20)

It can be proved by the following sequence of equalities:

s(d1,...,dN )(z
′
1, . . . , z

′
N ) =

1

|G(d1,...,dN )|
∑
π∈SN

z′
d1
π(1) . . . z

′dN
π(N) (3.21)

=
1

|G(d1,...,dN )|
∑
π∈SN

(αzπ(1))
d1 . . . (αzπ(N))

dN

=
1

|G(d1,...,dN )|
∑
π∈SN

zd1π(1) . . . z
dN
π(N)α

∑N
n=1 dn (3.22)

= αD(d1,...,dN ) 1

|G(d1,...,dN )|
∑
π∈SN

zd1π(1) . . . z
dN
π(N) (3.23)

= αD(d1,...,dN )s(d1,...,dN )(z1, . . . , zN ), (3.24)

where (3.21) is just the definition (3.11), (3.22) is obtained by simple algebraic manipulations, (3.23) uses

the definition of the order of a monomial (3.6), and (3.24) uses the definition of the monomial symmetric

polynomials (3.11).

The homogeneity property (3.20) states that when we multiply all the variables by a constant, the

obtained monomial symmetric polynomials are the original ones multiplied by the same constant raised

to the power of the order of the polynomial. The case of interest to our work are constants of the type

α = ejθ, with θ ∈ [0, 2π). Multiplying a point in the complex plane by a factor ejθ corresponds to rotating

counter-clockwise the point around the origin by an angle of θ radians. For z′n = ejθzn, with n = 1, . . . , N ,

the homogeneity property (3.20) reduces to

s(d1,...,dN )(z
′
1, . . . , z

′
N ) = ejD(d1,...,dN )θs(d1,...,dN )(z1, . . . , zN ). (3.25)

If we consider two sets of points z1, . . . , zN and z′1, . . . , z′N , such that z′n = zne
jθ, with n = 1, . . . , N ,

i.e., the points z′1, . . . , z′N are related to z1, . . . , zN by a counter-clockwise rotation of θ radians around

the origin of C, the monomial symmetric polynomials evaluated for these two sets of points are related
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by s(d1,...,dN )(z
′
1, . . . , z

′
N ) = s(d1,...,dN )(z1, . . . , zN )ejD(d1,...,dN )θ. As we will see in the following chapter,

this is similar to the way the Fourier coefficients of a signal change with a time-shift. This similarity

enables making a bridge between the symmetric polynomials and spectral methods. Figure 3.2 illustrates

the homogeneity for a particular case of monomial symmetric polynomials: the elementary symmetric

polynomials.

Figure 3.2: On the left, the shape representative rs, with points −1, 1, and j. On the right, the shape
representative r′s with points −j, j, and −1 (r′s is obtained by rotating rs around the origin by π

2 ).
Evaluating the elementary symmetric polynomials e1, e2, and e3 on the points of the shape representatives
yields: for rs, e1(−1, 1, j) = j, e2(−1, 1, j) = −1, and e3(−1, 1, j) = −j; for r′s, e1(−j, j,−1) = −1,
e2(−j, j,−1) = 1, and e3(−j, j,−1) = −1. The elementary symmetric polynomials for rs and r′s are
related by the homogeneity property (3.25), which reduces in this case to ek(−1, 1, j) = ejk

π
2 ek(−j, j,−1),

with k = 1, 2, 3.

3.7 Efficient Computation

An apparent problem concerning the usage of the monomial symmetric polynomials in practice is the

computation of s(d1,...,dN )(z1, . . . , zN ). A direct implementation of (3.11) has to sum N !
b1!...bP ! terms (as

discussed in Section 3.2). For the elementary symmetric polynomials, this approach is computationally

intractable, even for small N and k, e.g., the evaluation of ek(z1, . . . , zN ) for N = 50 and k = 10 involves

the sum of more than 10 billion different monomials.

Fortunately, dynamic programming provides an efficient solution. To see this, we have to understand

how the evaluation of s(d1,...,dN )(z1, . . . , zN ) decomposes in overlapping subproblems. We first remember

the notation v1, . . . , vP and b1, . . . , bP , introduced in Section 3.2, where vn is the n-th of P different

values taken by d1, . . . , dN and bn is the number of occurrences of vn in d1, . . . , dN , with n = 1, . . . , P .

For compactness, we now denote the monomial (d1, . . . , dN ) by λ and the monomial obtained from

(d1, . . . , dN ) by removing value v by λ \ v. For example, if we have the monomial λ = (3, 2, 1, 1),

λ \ 2 = (3, 1, 1).

With the introduced notation, definition (3.11) is rewritten as

sλ(z1, . . . , zN ) =
1

|Gλ|
∑
π∈SN

zd1π(1) . . . z
dN
π(N). (3.26)

Noting that each element π in SN maps label N to one of the labels 1, . . . , N , we can partition set of

permutations SN into N sets, such that all the permutations in each of these sets map the label N to the
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same label L, where L = 1, . . . , N . This allows rewriting (3.26) as

sλ(z1, . . . , zN ) =
1

|Gλ|

zd1N ∑
π∈SN−1

zd2π(1) . . . z
dN
π(N−1) + . . .+ zdNN

∑
π∈SN−1

zd1π(1) . . . z
dN−1

π(N−1)

 (3.27)

=
1

|Gλ|

(
zd1N |Gλ\d1 |sλ\d1(z1, . . . , zN−1) + . . .+ zdNN |Gλ\dN |sλ\dN (z1, . . . , zN−1)

)
, (3.28)

where the last equality is obtained by using (3.26) again. Since d1, . . . , dN take only P different values,

rearranging the terms in (3.28), we obtain

sλ(z1, . . . , zN ) =
1

|Gλ|
(
b1z

v1
N |Gλ\v1 |sλ\v1(z1, . . . , zN−1) + . . .+ bP z

vP
N |Gλ\vP |sλ\vP (z1, . . . , zN−1)

)
.

(3.29)

Now, looking at the orders of the stabilizers in (3.29) , we have |Gλ| = b1! . . . , bP ! (see Section 3.2)

and |Gλ\vn | = b1! . . . , bn−1!(bn − 1)!bn+1! . . . bP ! (justified by minus one occurrence of vn in the monomial

λ \ vn, with n = 1, . . . , P ). This implies that

|Gλ| = b1! . . . , bP ! = bnb1! . . . , bn−1!(bn − 1)!bn+1! . . . bP ! = bn|Gλ\vn |, (3.30)

allowing the simplification of (3.29), resulting in

sλ(z1, . . . , zN ) = zv1N sλ\v1(z1, . . . , zN−1) + . . .+ zvPN sλ\vP (z1, . . . , zN−1). (3.31)

The recurrence relation (3.29) decomposes the evaluation of sλ(z1, . . . , zN ) into P subproblems:

solving for sλ\vn(z1, . . . , zN−1), with n = 1, . . . , P , and then combining the results as in (3.31). The

computational gain comes from storing the results and using them when the subproblems reappear.

Note that the choice of zN for the partition condition of SN in (3.27) was arbitrary. Partitioning the set

of permutations SN using an arbitrary label L, where L = 1, . . . , N , is equally valid (we used L = N in

(3.27) and (3.28)), yielding the decomposition

sλ(z1, . . . , zN ) = zv1L sλ\v1(z1, . . . , zL−1, zL+1, . . . , zN )+. . .+zvPL sλ\vP (z1, . . . , zL−1, zL+1, . . . , zN ), (3.32)

where z1, . . . , zL−1, zL+1, . . . , zN equals z2, . . . , zN and z1, . . . , zN−1 for L = 1 and L = N , respectively.

We now particularize the decomposition (3.31) for the case of the power sum symmetric polynomials

and elementary symmetric polynomials. For the power sum symmetric polynomials, decomposition (3.31)

is written as

pk(z1, . . . , zN ) = s(k,0,...,0)(z1, . . . , zN )

= zkNs(0,...,0)(z1, . . . , zN−1) + z0Ns(k,0,...,0)(z1, . . . , zN−1)

= zkN + pk(z1, . . . , zN−1), (3.33)

with k > 0, where equality (3.33) is obtained by using the equalities s(0,...,0)(z1, . . . , zN ) = 1 and
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s(k,...,0)(z1, . . . , zN ) = pk(z1, . . . , zN ), for N > 0 (see Section 3.2). Expression (3.33) is uninterest-

ing in terms of computational efficiency because all the pk(z1, . . . , zn), with k = 1, . . . , N − 1, computed

during the evaluation of pN (z1, . . . , zN ), appear only once (there is no gain in storing them for later).

For the elementary symmetric polynomials, decomposition (3.31) leads to

ek(z1, . . . , zN ) = s(1,...,1,0,...0)(z1, . . . , zN )

= z1Ns(1,...,1,0,...0)(z1, . . . , zN−1) + z0Ns(1,...,1,0,...0)(z1, . . . , zN−1)

= zNek−1(z1, . . . , zN−1) + ek(z1, . . . , zN−1), (3.34)

with k > 0, where the last equality is obtained by using the definition of the elementary symmetric

polynomials as a monomial symmetric polynomial (see Section 3.4). For the elementary symmetric

polynomials, the use of decomposition (3.34) yields an enormous computational gain when compared to

the direct use of the definition (3.15).

To provide intuition, we use the two-dimensional array depicted in Figure 3.3. It is indexed by the

natural numbers, where the two dimensions i and j are identified with N and k, respectively. Entry (i, j)

stores the result of ej(z1, . . . , zi). Column j = 0 is not included because e0(z1, . . . , zi) = 1, for all i ∈ N.

Furthermore, since ek(z1, . . . , zN ) = 0, for k > N , we just have to consider entries (i, j) with j ≤ i. The

computation of ej(z1, . . . , zi) according to the decomposition (3.34) can be performed in constant time if

entries (i− 1, j − 1) and (i− 1, j) have been previously computed. If not, decomposition (3.34) has to

be recursively used until we reach a position (i′, j′) where we can evaluate (3.34) directly from the array

(which eventually happens because e0(z1, . . . , zN ) = 1, for all N , and ek(z1, . . . , zN ) = 0, for k > N ). If

the array is initially empty, i.e., no results have yet been computed, the computation of ek(z1, . . . , zN )

requires computing k(N − k + 1) positions. If we want to evaluate ek(z1, . . . , zN ), for k = 1, . . . , N , an

additional computational gain comes from the fact that the required entries of the array just have to be

computed once and are reused many times. In this case, we have a total of N(N+1)
2 entries involved.

To contrast the computational cost of evaluating ek(z1, . . . , zN ) by the definition (3.15) with the one

of using decomposition (3.34) with techniques of dynamic programming, we recall the example of the

beginning of this section: for N = 50 and k = 10, using definition (3.15) requires the computation of more

than 10 billion terms while using the techniques proposed in this section only requires the computation of

410 terms (assuming that the array is initially empty, this number is k(N − k + 1)).
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Figure 3.3: Entry (i, j) of the array stores ej(z1, . . . , zi). If the array is initially empty, the computation of
e4(z1, . . . , z6) through decomposition (3.34) uses the 12 positions marked in gray (the arrows from entry
(6, 4) to entries (5, 3) and (5, 4) represent the dependency of the computation of e4(z1, . . . , z6) on the
values of those entries, e3(z1, . . . , z5) and e4(z1, . . . , z5)).
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Chapter 4

Spectral Invariants

The chapter discusses the problem of representing a continuous-time complex-valued periodic signal

apart from a time-shift. We first introduce the Fourier series coefficients, which uniquely identify the

signal under mild technical conditions, and study how they change by shifting the signal. We then

present shift invariants that have been studied in the signal processing literature: the power spectrum

and the bispectrum. We verify invariance and discuss completeness. The spectral invariants presented

in this chapter and the permutation invariants of Chapter 3 will be used in Chapter 5 to build a shape

representation that is invariant and complete with respect to permutations of the labels and geometric

transformations. Finally, we briefly discuss the broader family of higher-order spectral invariants, to which

the power spectrum and the bispectrum belong.

4.1 Fourier Series

A continuous-time complex-valued periodic signal x of period T is, under mild technical conditions,

uniquely determined by the coefficients ck(x), with k ∈ Z, of its Fourier series:

x(t) =

+∞∑
k=−∞

ck(x)e−j
2π
T kt. (4.1)

The coefficients of the Fourier series are given in terms of x by

ck(x) =
1

T

∫
T

x(t)e−j
2π
T ktdt. (4.2)

The Fourier series has several properties; the one that impacts our work is the behavior of the

coefficients with a time-shift of the signal x. If a signal x′ is a shifted version of a signal x, i.e., if

x′(t) = x(t+ t0), the coefficients of the Fourier series of x′ are related to the ones of the Fourier series
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of x:

ck(x′) = =
1

T

∫
T

x′(t)e−j
2π
T ktdt

=
1

T

∫
T

x(t+ t0)e−j
2π
T ktdt

=
1

T

∫
T

x(t′)e−j
2π
T k(t

′−t0)dt′ (4.3)

= ej
2π
T kt0ck(x). (4.4)

Equality (4.3) is obtained by making the change of variables t′ = t + t0 and (4.4) uses the fact that

ej
2π
T kt0 does not depend on t′. Expression (4.4) is surprisingly similar to expression (3.25) obtained in

the previous chapter. In both cases (rotating a set of planar points and shifting a periodic signal), the

change in the representation (the symmetric polynomials and the coefficients of the Fourier series) is just

a phase difference that is proportional to the order.

4.2 Power Spectrum

A way to represent a continuous-time complex-valued periodic signal x apart from a time shift is to factor

out the corresponding phase difference induced on the coefficients of the Fourier series. A complete

invariant representation requires that two signals have the same representation if and only if they are

related by a shift. The power spectrum Pk(x) of a continuous-time complex-valued periodic signal x is

the squared absolute value of its coefficients of the Fourier series, i.e.,

Pk(x) = |ck(x)|2 = ck(x)ck(x)
∗
, (4.5)

where ∗ denotes complex conjugation.

The invariance of the power spectrum with respect to signal shifts is easily verified from (4.5). If

x′(t) = x(t+ t0), the power spectrum of x′ is

Pk(x′) = ck(x′)ck(x′)∗

= ck(x)ej2πk
t0
T ck(x)∗e−j2πk

t0
T (4.6)

= ck(x)ck(x)∗

= Pk(x), (4.7)

where equality (4.6) is obtained by using property (4.4).

Unfortunately, the power spectrum is not complete: it keeps all the information about the power of each

frequency component in the signal (motivating the designation of power spectrum), but no information

about the relative phases between these components. Shifting a signal x of period T with coefficients of

the Fourier series ck(x) by t0 results in the multiplication of each coefficient ck(x) by ej
2π
T kt0 . Only the

joint multiplication of each of the coefficients ck(x) by ejkθ results in a shift of the signal x. If this condition
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is not met, the resulting signal is not a shifted version of the original signal. Thus, the power spectrum

is not complete because any two signal x and x′ that have the same power at all the frequencies (i.e.,

|ck(x)| = |ck(x′)|, for all k ∈ Z), irrespective of their temporal cohesion, have the same power spectrum.

This means that, for a signal x, each of the coefficients of the Fourier series ck(x) can be multiplied by a

term ejθk , with an arbitrary θk ∈ [0, 2π) for each k ∈ Z, and still leave the power spectrum unchanged.

This is equivalent to shifting each of the frequency components of x independently. Figure 4.1 illustrates

the invariance of the power spectrum with respect to signal shifts, but also its incompleteness.

Figure 4.1: On top, three real-valued periodic signals, x, x′, and y. On bottom, the corresponding power
spectra, Pk(x), Pk(x′), and Pk(y). Signals x and x′ only differ by a time shift and their power spectra are
the same, illustrating its invariance. However, the power spectra of y, which is not a shifted version of x
and x′, is also the same, illustrating its incompleteness.

4.3 Bispectrum

The bispectrum bk1,k2(x) of a continuous-time complex-valued periodic signal x is defined as

bk1,k2(x) = ck1(x)ck2(x)ck1+k2(x)∗, (4.8)

where k1, k2 ∈ Z. The bispectrum is symmetric with respect to k1 and k2, i.e., bk1,k2(x) = bk2,k1(x). If we

think of the bispectrum as an infinite grid, the main diagonal is the symmetry axis of bk1,k2(x).

As for the the power spectrum, the invariance of the bispectrum with respect to signal shifts is readily

verified from its definition (4.8). Let x′ be a shifted by t0 version of x, i.e., x′(t) = x(t+ t0). The bispectrum
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of x′ is

bk1,k2(x′) = ck1(x′)ck2(x′)ck1+k2(x′)∗

= ck1(x)ej
2π
T k1t0ck2(x)ej

2π
T k2t0ck1+k2(x)∗e−j

2π
T (k1+k2)t0 (4.9)

= ck1(x)ck2(x)ck1+k2(x)∗

= bk1,k2(x), (4.10)

where equality (4.9) is obtained by using property (4.4).

The bispectrum, contrary to the power spectrum, preserves the phase information of the signal apart

from an arbitrary shift and, therefore, it is complete (under mild conditions; see references [23, 24]). There

are reconstruction algorithms that recover the signal apart from an arbitrary shift (see reference [25]).

The completeness comes at the price of an higher dimensional representation for the signal x: while

the power spectrum is linear in the number of coefficients of the Fourier series ck(x), the bispectrum

is quadratic. Nonetheless, the symmetry along the main diagonal allows us to keep just the half of the

bispectrum bk1,k2(x) with k1 ≥ k2. Furthermore, if the signal x has nonzero coefficients of the Fourier

series ck(x) only for k = 1, . . . ,K, we just have to keep the coefficients of the bispectrum bk1,k2(x), with

k1 ≥ k2, k1 ≥ 1, and k1 + k2 ≤ N . See Figure 4.2 for an illustration of the invariance and completeness

properties of the bispectrum. The bispectra of the signal in Figure 4.2 are upper triangular because the

signals represented only has nonzero coefficients of Fourier series for k = 1, . . . , 15. For more information

about the bispectrum see references [26, 13, 27, 28, 29, 30]).

Figure 4.2: On top, three real-valued periodic signals, x, x′, and y. On bottom, the corresponding phase of
the bispectra arg bk1,k2(x), arg bk1,k2(x′), and arg bk1,k2(y). Signals x and x′ only differ by a time shift and
their bispectra are the same, illustrating its invariance. Contrary to the power spectrum (see Figure 4.1),
the bispectrum of the signal y is different from the one of the signals x and x′, illustrating its completeness.
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4.4 Higher-Order Spectra

The power spectrum and the bispectrum are members of a larger family of invariants called higher-order

spectra. The spectrum of order l of a continuous-time complex-valued periodic signal x of period T with

coefficients of the Fourier series ck(x), with k ∈ Z is defined as

hk1,...,kl(x) = ck1+...+kl(x)∗
l∏

n=1

ckn(x), (4.11)

where l ∈ N and k1, . . . , kl ∈ Z. For l = 1, 2, (4.11) is, respectively, the power spectrum and the

bispectrum.

All the elements in the higher-order spectra family are shift-invariant. The process of verifying

invariance is similar to what was done for the power spectrum and the bispectrum.

The autocorrelation function of order l of a signal x of period T is

at1,...,tl(x) =

∫
T

x(t)

l∏
n=1

x(t+ tn)dt, (4.12)

where t1, . . . , tl ∈ R. The higher-order spectra arise as the coefficients of the higher-dimensional Fourier

series of the higher-order autocorrelation functions, i.e.,

hk1,k2,...,kl(x) = F{at1,...,tl(x)}k1,...,kl , (4.13)

where F{at1,...,tl(x)}k1,...,kl denotes the coefficient k1, . . . , kl of the l-dimensional Fourier series of the

higher-order autocorrelation at1,...,tl(x) (see reference [23]).

In this short remark, we only meant to put the power spectrum and the bispectrum in perspective. See

references [31, 32, 33, 34] for more information on higher-order spectra.
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Chapter 5

Proposed Representation

In this chapter, we build a shape representation that is complete and invariant to translation, rotation,

scaling and permutation. We present the group and the group action that encode these transformations

and factor them out in turn. The invariants introduced in Chapter 3 and Chapter 4 are used to deal

with permutation and rotation. We show the invariance and completeness properties of the final shape

representation proposed.

5.1 Group Action

The shape-preserving transformations that we consider are translation, scaling, rotation, and permutation

of the labels. The group G that encodes these transformations is constructed as the product of the

symmetric group SN , the group of complex numbers under addition (C,+), and the group of nonzero

complex numbers under multiplication (C, ·). The nonzero complex numbers under multiplication (C, ·)

can be further decomposed as the product of the group of positive real numbers under multiplication

(R+, ·) and the group of complex numbers with absolute value one under multiplication SO(2). We write

the decomposition of G as a product of its component groups as

G = SN × (C,+)× (C, ·)× (R+, ·)× SO(2). (5.1)

The group operation of G is the one that arises from the product construction (see Section 2.2). We

denote an element of G by g or, when we want to make evident each of the component elements of the

product, by (π, zt, α, zr), where each of the component elements belongs to the corresponding component

group of G as in decomposition (5.1).

The symmetric group SN accounts for permutation of the labels; the complex numbers under addition

(C,+) for translation; the complex numbers with absolute value one under multiplication SO(2) for rotation

(the elements of SO(2) are of the form ejθ, with θ ∈ [0, 2π)); and the positive real numbers under

multiplication (R+, ·) for scaling. The desired group action on the space of shape representatives CN is

φ(g, rs) = φ((π, zt, α, zr), rs) = αzr(π(rs)− r̄s) + r̄s + zt, (5.2)
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where r̄s is the centroid of the shape representative rs (see definition (2.1)), i.e., r̄s = 1
N

∑N
n=1 zn. From

now on, we will use the bar notation to denote the mean of a vector quantity. There is some abuse

of notation in (5.2) since we sum vectors with scalars. What is meant is that the scalar is summed

coordinate-wise to the vector. The action of π on rs is denoted by π(rs). This is the usual coordinate label

permutation induced by the an element π of the symmetric group SN .

In group action (5.2), the term αzr(π(rs) − r̄s) has zero mean: the group action first centers the

representative rs at the origin and only then rotates and scales it. After that, rs is recentered at the

original position plus the translation zt. The term r̄s + zt is the mean of the group action φ(g, rs), i.e.,

φ̄(g, rs) = r̄s + zt. Using this last remark about the mean, we can rewrite (5.2) as

φ(g, rs) = αzr(π(rs)− r̄s) + φ̄(g, rs), (5.3)

or, alternatively, as

φ(g, rs)− φ̄(g, rs) = αzr(π(rs)− r̄s). (5.4)

The commutativity of permutation with scaling and translation allows the following rearrangements

of (5.4):

φ(g, rs)− φ̄(g, rs) = αzr(π(rs)− r̄s) = αzr(π(rs − r̄s)) = π(αzr(rs − r̄s)). (5.5)

We now prove that (5.2) defines a valid group action for G (see Section 2.2). The identity property is

obviously verified. As for the homomorphism property, we have

φ(g1, φ(g2, rs)) = α1z
r
1(π1(φ(g2, rs))− φ̄(g2, rs)) + φ̄(g2, rs) + zt1 (5.6)

= α1z
r
1(π1(φ(g2, rs)− φ̄(g2, rs))) + φ̄(g2, rs) + zt1 (5.7)

= α1z
r
1(π1(α2z

r
2π2(rs − r̄s)) + φ̄(g2, rs) + zt1 (5.8)

= α1α2z
r
1z
r
2(π1(π2(rs − r̄s)) + r̄s + zt1 + zt2 (5.9)

= φ((π1π2, z
t
1z
t
2, α1α2, z

r
1z
r
2), rs)) (5.10)

= φ(g1g2, rs), (5.11)

where φ̄(g2, rs) = r̄s + zt2. To derive equalities (5.6), (5.10), and (5.11), we use the definition of the group

action (5.2). To derive (5.7) and (5.9), we use the commutativity properties of permutation expressed in

(5.5). To derive (5.8), we use (5.4).

In the following sections, we build a complete invariant shape representation by factoring out each of

components of the group action (5.2).
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5.2 Translation Invariance

Translation can be factored out by centering the representative at the origin. The translation invariant is

denoted by ρt : CN → CN . It is evaluated for a shape representative rs as

ρt(rs) = rs − r̄s, (5.12)

where r̄s is the centroid of the representative rs. We use similar notation for the other invariants, i.e.,

the usage of the first letter of a transformation as a superscript means that the map is invariant to that

transformation.

It is straightforward to verify the invariance of ρt to translation:

ρt(φ(g, rs)) = φ(g, rs)− φ̄(g, rs)

= αzr(π(rs)− r̄s), (5.13)

where equality (5.13) comes from the group action rearrangement (5.3). Since (5.13) does not depend

on the translation component zt of the action (5.2), we conclude that ρt is invariant to translation.

The completeness of ρt is proved by noting that two shape representatives rs and r′s have the same

translation invariant representation, i.e., ρt(rs) = ρt(r′s), if and only if r′s = rs + zt for some translation zt

in C, which is obvious from the definition (5.12).

5.3 Scaling Invariance

To factor out the scaling part of the action (5.2), we normalize the mean energy e : CN → R, which is

given by

e(rs) =

√√√√ 1

N

N∑
n=1

|zn|2. (5.14)

The scaling invariant ρs : CN → CN is given by

ρs(rs) =


1

e(rs)
(rs − r̄s) + r̄s if rs 6= 0;

0 otherwise.
(5.15)

From now on, we will assume that rs 6= 0. The shape representative rs only equals zero when all the

points z1, . . . , zN are zero, which is not important in practice.

In (5.15), we use the mean energy instead of the total energy eT : CN → R, which is given by

eT (rs) =

√√√√ N∑
n=1

|zn|2, (5.16)

to provide some constancy to the scaling invariant ρs when the number of points of the shapes change.
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To gain intuition in this respect, assume that we have a shape representative rs with N points. It has total

energy eT (rs) and mean energy e(rs). If we now consider shapes of 2N points and generate a shape

representative r′s by simply repeating twice each of the points in rs. (This is for illustrative purposes only.

It does not happen in practice, although points may indeed be close to each other.) This new shape

representative r′s has total energy

eT (r′s) =

√√√√ 2N∑
n=1

|z′n|2 =

√√√√2

N∑
n=1

|zn|2 =
√

2eT (rs), (5.17)

i.e., the energy eT (r′s) changes when we change the number of points of the shapes. Nonetheless, the

mean energy remains constant:

e(r′s) =

√√√√ 1

2N

2N∑
n=1

|z′n|2 =

√√√√ 1

N

N∑
n=1

|zn|2 = e(rs). (5.18)

By normalizing with the mean energy (5.14), if we plot the two normalized shape representatives ρs(rs)

and ρs(r′s) in the complex plane, we see that the points of the normalized shape representatives ρs(rs)

and ρs(r′s) overlap. This would not happen if we have used the total energy.

A simultaneous invariant to translation and scaling is obtained by evaluating

ρs,t = ρs ◦ ρt. (5.19)

To verify the invariance of ρs,t to translation and scaling, we write

ρs,t(φ(g, rs)) = ρs(ρt(φ(g, rs)))

= ρs(αzr(π(rs)− r̄s)) (5.20)

=
1

e(αzr(π(rs)− r̄s))
αzr(π(rs)− r̄s) (5.21)

=
zr

e(rs − r̄s)
(π(rs)− r̄s), (5.22)

where (5.20) comes from (5.13). Equality (5.21) comes from (5.15) along with the fact that αzr(π(rs)− r̄s)

has zero mean. To obtain (5.22) we used the fact that the mean energy e(αzr(π(rs)− r̄s)) is linear in α

and does not depend on π and zr, which can be easily derived from the definition (5.14). Equality (5.22)

proves that ρs,t is invariant to both translation and scaling because it does not depend on zt and α, the

corresponding components of the action (5.2).

The completeness of the invariant ρs,t is a result of the fact that two shape representatives rs and r′s

only have the same translation and scaling invariant representation (i.e. ρs,t(rs) = ρs,t(r′s)) if and only if

r′s = αrs + zt for some scale factor α in the positive real numbers R+ and some translation in the complex

numbers C, which, again, is obvious from the normalizations (5.12) and (5.15).

The construction of invariants through composition of smaller invariants, as we have done with ρs,t in

(5.19), will be a recurring practice in the remaining of this chapter.
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5.4 Permutation Invariance

The factorization of permutation part of the action (5.2) uses the elementary symmetric polynomials

presented in Chapter 3. The permutation invariant representation ρp : CN → CN is defined as

ρp(rs) =


e1(rs)

...

eN (rs)

 , (5.23)

where e1(rs), . . . , eN (rs) are the elementary symmetric polynomial evaluated at the points z1, . . . , zN

of the shape representative rs. As shown in Section 3.5, the ordered set of values of the elementary

symmetric polynomials e1(rs), . . . , eN (rs) uniquely determine rs up to an arbitrary permutation of its

coordinates z1, . . . , zN .

The invariant ρp,s,t is given by

ρp,s,t = ρp ◦ ρs ◦ ρt. (5.24)

To verify that ρp,s,t is invariant to translation, scaling, and permutation, we write

ρp,s,t(φ(g, rs)) = ρp(ρs,t(φ(g, rs))) (5.25)

= ρp
(

zr

e(rs − r̄s)
(π(rs)− r̄s)

)
(5.26)

= ρp
(
π

(
zr

e(rs − r̄s)
(rs − r̄s

))
(5.27)

= ρp
(

zr

e(rs − r̄s)
(rs − r̄s)

)
. (5.28)

Equalities (5.25) and (5.26) follow from definitions (5.24) and (5.19), respectively. To derive (5.27), we

used the fact that permutation commutes with translation and scaling. Equality (5.28) follows from the

invariance to permutation of ρp in (5.23). Equality (5.28) shows that ρp,s,t is invariant to permutation,

scaling, and translation. The only component of the group action (5.2) left to factor out is the rotation

component zr.

The completeness of invariant ρp,s,t comes from the completeness of ρs,t with respect to scaling and

translation (Section 5.3), and the completeness of ρp with respect to permutation (Section 3.5). Note

that the values e1(rs), . . . , eN (rs) of the elementary symmetric polynomials in (5.23) can be replaced by

the values p1(rs), . . . , pN (rs) of the power sum symmetric polynomials without loss of completeness and

invariance, as shown in Section 3.5. In Appendix B we study the behavior of the elementary symmetric

polynomials and the power sum symmetric polynomials when their variables are perturbed. For what

is required to deal with rotation in the next section, each elementary symmetric polynomial ek can be

substituted by any monomial symmetric polynomial as long as the order of the indexing monomial is
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equal to k (see Section 3.6). Therefore, an alternative permutation invariant ρ′p : CN → CN is

ρ′
p
(rs) =


sλ1

(rs)
...

sλN (rs)

 , (5.29)

where λk is an indexing monomial of order k, i.e., D(λk) = k, with k = 1, . . . , N . However, for the invariant

ρ′
p in (5.29), we are not aware that any completeness properties can be proved.

Notice that translation invariance imposes r̄s = 0 and e1(rs) = Nr̄s = 0. We can thus remove e1 from

the permutation invariant ρp since it does not contain any shape information. The same happens if we use

power sum symmetric polynomials or, in fact, any monomial symmetric polynomial of order 1 since the

only indexing monomial of order 1 is (1, 0, . . . , 0). Therefore, representation ρp,s,t(rs) has N − 1 nontrivial

numbers, i.e., ρp,s,t : CN → CN−1.

To make the permutation invariant ρp insensitive to the point density of the shapes, we divide the

elementary symmetric polynomial ek by the number of monomials summed, i.e., N -choose-k. (This

normalization was left out of (5.23) to avoid unnecessary clutter.) If we had used the power sum symmetric

polynomials, we would have to divide by N . Moreover, in the case of a generic monomial symmetric

polynomial we would have to divide by N !
b1!...bN ! (see Section 3.2). Naturally, this normalization does not

affect the completeness of the permutation invariant.

Making the invariants independent to the number of points of the shapes is interesting because, in

practice, we may have shapes with different numbers of points. Obviously the completeness does not

hold in this case but, since the representation does not depend on the number of points, we can represent

shape by using the invariants and still expect good results for shapes that are similar but have different

number of points.

5.5 Rotation Invariance

The factorization of rotation in this section is linked to the usage of the permutation invariant ρp of the

previous section. Notice that this did not happen when we considered other the invariants. We could

just have, for example, translation and permutation invariance by using ρp,t = ρp ◦ ρt, as presented in

Section 5.2 and Section 5.4.

By the homogeneity property (3.25), we know that the elementary symmetric polynomials ek change

with shape rotation (see Section 3.6) in a way that resembles the change in the Fourier series coefficients

with a signal shift (see Section 4.1) (Remember from the homogeneity property (3.25) that, for r′s = rse
jθ,

ek(r′s) = ek(rr)e
jkθ, where k = 1, . . . , N and θ ∈ [0, 2π)) . We can then interpret the values of the

elementary symmetric polynomials ek(rs) as being the coefficients of the Fourier series of a continuous-
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time complex-valued periodic signal x of period T ,

ck(x) =

ek(rs) if 1 ≤ k ≤ N ;

0 otherwise.
(5.30)

The elementary symmetric polynomial e0 is identically equal to one, being non-informative. Choosing

a period T = 2π for x makes that the rotation of the shape representative rs by θ analogous to shifting

signal x by θ. The problem of obtaining rotation invariance reduces to the problem of finding a complete

shift-invariant representation for signals.

Now, concerning the invariant ρp,s,t of the previous section, the coordinate k of ρp,s,t(φ(g, rs)), which

we denote by {ρp,s,t(φ(g, rs))}k, changes with the rotation zr the following way:

{
ρp,s,t(φ(g, rs))

}
k

=

{
ρp
(

zr

e(rs − r̄s)
(rs − r̄s)

)}
k

(5.31)

= ek

(
zr

e(rs − r̄s)
(rs − r̄s)

)
(5.32)

= (zr)kek

(
1

e(rs − r̄s)
(rs − r̄s)

)
, (5.33)

where zr = ejθ, with θ ∈ [0, 2π). Equalities (5.31) and (5.32) come from (5.28) and (5.23). Equality (5.33)

is obtained by the homogeneity of the elementary symmetric polynomials (3.25).

From equality (5.33), we see that the invariant ρp,s,t depends only on the rotation part zr of the action

(5.2). Furthermore, by multiplying rs by ejθ, the representation ρp,s,t(rs) changes in the same way as the

coefficients of the Fourier series of a signal of period 2π changes with a forward-shift by θ, with θ ∈ [0, 2π)

(see Section 4.1). This enables us to use the spectral invariants introduced in Chapter 4 to factor out

rotation.

Starting with ρp,s,t, rotation invariance is then obtained by defining the invariant ρr,p,s,t as

{
ρr,p,s,t(rs)

}
k1,k2

= bk1,k2(ρp,s,t(rs)), (5.34)

where bk1,k2(ρp,s,t(rs)) is the coefficient of order k1, k2 of the bispectrum computed with ρp,s,t(rs) as the

coefficients of the Fourier series and k1 ≥ 2, k1 ≥ k2, and k1 + k2 ≤ N . The conditions of k1 and k2 are

due to the definition of ρp,s,t and the symmetry of the bispectrum.

The invariance and completeness of the representation ρr,p,s,t is immediate from (5.33), the parallel to

the effect that a signal shift has on the coefficients of the Fourier series, and the statements of Section 4.3,

about the invariance and completeness of the bispectrum. Figure 5.1 illustrates the invariance and

completeness of the invariant map ρr,p,s,t to the group action (5.2).

The shape representation mapping ρ for the group action (5.2) is ρr,p,s,t. The invariance to rotation

remains valid if we substitute the bispectrum by the power spectrum, however, the completeness is

obviously lost (see Section 4.2).
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Figure 5.1: Top: shape representatives rs and r′s, related by a shape-preserving transformation (i.e.,
translation, scaling, permutation and rotation), and a distinct shape representative rs′ . Middle and bottom:
the corresponding representations (magnitude and phase), illustrating that the proposed representation
ρ = ρr,p,s,t is simultaneously complete and invariant, i.e., ρ(rs) = ρ(r′s) 6= ρ(rs′)).

5.6 Computational Summary

In this chapter, we introduced the group inducing the shape-preserving transformations (Section 5.1) and

built a complete invariant shape representation (from Section 5.2 to Section 5.5). The final representation

was built by composing invariants.

Given a shape representative rs ∈ CN , we want to compute its representation ρ(rs). We start by

removing the mean (see (5.12)) and normalizing energy (see (5.15) and (5.14)). This yields ρs,t(rs),

which is the same only for shape representatives r′s that are related to rs by a translation and scale factor.

Then, we evaluate the permutation invariant ρp (see (5.23)) on the scaling and translation invariant

representation ρs,t(rs) of representative rs, which amounts to evaluating the elementary symmetric

polynomials ek(ρs,t(rs)), for k = 2, . . . , N (see Section 3.7 for how to efficiently evaluate the elementary

symmetric polynomials). Each of the values of the elementary symmetric polynomials ek(ρs,t(rs)) is then

divided by N -choose-k (the number of different monomials summed). This yields the representation

ρp,s,t(rs), which is a complete invariant to permutation, scaling and translation.

Finally, the coordinates of the permutation, scaling and translation invariant ρp,s,t(rs) are used as

coefficients of the Fourier series to compute the bispectrum. We just need to compute the coefficients

k1, k2 of the bispectrum that satisfy k1 ≥ 2, k1 ≥ k2, and k1 + k2 ≤ N . This factors out the rotation, which
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is the only part of the group action that remains after the computation of ρp,s,t(rs). This yields the final

shape representation ρr,p,s,t(rs), where ρr,p,s,t is our shape representation mapping ρ, which is invariant

to the full group action (5.2).

The alternatives to the usage of the elementary symmetric polynomials, described in Section 5.4,

and the bispectrum, described in Section 5.5, can be employed without compromising the invariance of

the representation ρ, but with the referred implications on completeness. In Appendix C, we propose an

extension to the proposed representation that enables dealing with shape reflections.
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Chapter 6

Experimental Results

In this chapter, we illustrate the properties of the representation proposed in Chapter 5, using distinct

scenarios. To conduct the experiments, we developed a (MATLAB coded) software package that enables

specifying shapes either in terms of sets of 2D points or sets of images. In the latter case, shapes are

extracted by using edge detection or thresholding. The experiments we single out in this chapter illustrate

how nearest neighbor shape classification behaves in the presence of noise, the automatic clustering of

binary images, and the capability of dealing with shapes that are extracted from real images with simple

edge detection.

6.1 Robustness to Noise

We used a database of four simple shape representatives (see Figure 6.1) and performed 5000 tests

that consisted in classifying randomly disturbed, (i.e., translated, rotated, and scaled) noisy versions

of the shape representatives in the database. A disturbed shape representative r′s with representation

ρ(r′s) is classified as having the same shape as the shape representative rs in database with the closest

representation ρ(rs). The distance is given by the Euclidean distance in CM , where M is the size of the

representation. The classification rule is then

arg min
rs∈D

||ρ(rs)− ρ(r′s)||, (6.1)

where D is the database of shape representatives. Remember that the representations ρ(rs) for the

shape representatives rs in the database are computed as described in Section 5.6.

Figure 6.1: Noise-free shape representatives in the database.
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The plot in Fig. 6.2 shows the percentage of correct classifications as a function of the noise level,

showing 100% correct retrievals with noise standard deviation up to σ = 0.25, which is high enough to

produce the perceptually misleading shape representatives in Figure 6.3 (displayed with the same size

and orientation as the ones in Figure 6.1).

Figure 6.2: Shape classification accuracy as a function of the standard deviation of the noise.

In Appendix B, we study analytically the behavior of the elementary symmetric polynomials and of the

power sum symmetric polynomials when their variables are perturbed, providing insight into the behavior

of the representation ρ.

Figure 6.3: Noisy versions of the shape representatives in the database (Figure 6.1) with σ = 0.25, the
approximate limit for 100% correct classifications (Figure 6.2).

6.2 Shape Clustering

The task described in the previous section is based on the comparison of the representation of pairs of

shape representatives, thus it could be alternatively approached by attempting to compute the transfor-

mation between them (a non-trivial problem in general, as discussed in Section 1.2). In this section, we

consider clustering in the space of shape representations. In clustering, all data points are unlabeled and

we rely on the assumption that the data points of the same class have similar representations to group
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them into clusters.

Most algorithms for clustering, require data represented in a way that factors out relevant trans-

formations, so that statistics such as means, variances, etc, can be computed. To illustrate that our

representation is adequate for these kinds of tasks, we use 30×30 binary images obtained by thresholding

gray-level images of digits with random orientations. The shape representatives extracted from these

images (shown in Figure 6.4) are simply the sets of points corresponding to image pixels of value 1, which

are not exactly related by a geometric transformation, due to the coarse discretization and binarization.

Figure 6.4: Unlabeled images of digits to group into clusters.

Figure 6.5 displays the result of a standard method (hierarchical K-means [35]) used to automatically

cluster the representations of the images in Figure 6.4. Note that the images corresponding to digits

“6” and “9” are grouped into the same cluster, which is not surprising, since they only differ by distinct

orientations of the same geometric pattern, thus having similar representations.

6.3 Trademark Classification

Finally, we describe an experiment where the shape representatives to classify are the edges of real

images. Basically, we used (hand-held) webcam images of trademark logos (see the three examples of

the top of Figure 6.6). The shapes to classify are given by the (Canny [36]) edge maps of these images

(see the examples on the bottom of Figure 6.6). Besides the distinct positions, sizes, and orientations of

the logos, other disturbances come from the only approximate perpendicularity of the camera axis to the

paper plane, which originates geometrically distorted shapes, and the sensitivity of the edge detection to

illumination, resolution, etc. In spite of these disturbances, we were able to successfully classify several

of the images by directly comparing the proposed representations of the corresponding edge maps. As in
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Figure 6.5: Automatic clustering of the binary images in Figure 6.4.

Section 6.1, we used a database containing just one shape representative for each of the different logos

considered. The classification rule was again (6.1), i.e., each shape representative is classified as having

the same shape as the shape representative in the database with the closest representation. Examples

of images correctly classified are shown in Figure 6.7.
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Figure 6.6: Top: three examples of images captured with an hand-held webcam. Bottom: the corre-
sponding edge maps. The shapes to classify are given by the coordinates of the black points in these
maps.

Figure 6.7: Examples of webcam images of logos correctly recognized.
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Chapter 7

Conclusion

In this thesis we dealt with the problem of representing two-dimensional shapes described by arbitrary

sets of points in the plane. We started by framing the problem using group theoretical concepts. Through

the action of the group that encodes the shape-preserving transformations on the space of shape

representatives, we define shapes as the orbits of the action. The problem of representing shapes

reduces to representing orbits.

We discussed the difficulties inherent with dealing with full orbits and concluded that a good approach

to the problem would be to find a map from the space of representatives to the shape representation

space. For this map to be useful, we required it to be invariant to the group action and complete. These

two properties together imply that the two shape representatives have the same representation if and

only if they belong to the same orbit.

We presented the symmetric polynomials, which are invariants with respect to permutation of the

variables. Furthermore, we have seen that the elementary symmetric polynomials and the power sum

symmetric polynomials are complete invariants to permutation. We derived an interesting connection

between the symmetric polynomials and the coefficients of the Fourier series of a periodic signal,

motivating the introduction of spectral invariants, as the power spectrum and the bispectrum, to factor

out rotation. While the power spectrum is invariant to signal shifts but not complete, the bispectrum is

both invariant and complete. This allowed the factorization of rotation and permutation of the labels in a

complete manner.

Building on these facts, we proposed a shape representation that is complete and invariant to

translation, rotation, scaling, and permutation of the labels. The invariants to each of the transformations

are constructed and subsequently used, until we arrive to an invariant to the full action of the desired

group.

Finally, we illustrated the capabilities of the proposed representation with experimental results. We

presented a retrieval example, where we analyzed the robustness of the representation to the noise

affecting the point positions; a shape clustering example, where the proposed representation is used

as a feature vector by a simple clustering algorithm; and an example of shape recognition with real

images, where we compute edge maps from the images and then classify them using the proposed
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representation.

Our work has uncovered questions that deserve further exploration. We single out the following ones:

• How does the proposed representation deal with subsampling? Is it robust or does it vary dramati-

cally with it? Is there a normalization for the representation that mitigates the dependency on the

number of points?

• What kind of statistical analysis can be performed? Are there any analytical results that can be

derived for the statistics of the representation when noise with a given distribution is added to the

points?

• How to estimate shape in the representation space in an optimal way? i.e., if we have several

observations of a single shape, how can we compute an estimate of shape in order to reduce the

effect of the noise?

• How to reconstruct the shape, apart an arbitrary shape-preserving transformation, from the com-

puted representation in an efficient way?

• Are there any advantages on using symmetric polynomials besides the elementary symmetric

polynomials and the power sum symmetric polynomials?
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Appendix A

Shape Dissimilarity

In Chapter 2, we presented the problem of shape representation using group theory. The notion of shape

is defined through the action of a group on the space of shape representatives CN . We denote the space

of orbits by CN/ ∼, where ∼ is the equivalence relation induced by the group action.

To compare shapes we need to address the notion of dissimilarity on the space of orbits CN/ ∼.

A natural way to do so would be to define a metric on this space, leading to a metric space. A metric

d : X ×X → R on a set X satisfies the following axioms:

Non-Negative: d(x, y) ≥ 0, for all x, y in X;

Identity of Indiscernibles: d(x, y) = 0 if and only if x = y, for all x, y in X;

Symmetric: d(x, y) = d(y, x), for all x, y in X;

Triangle Inequality: d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z in X.

We could attempt to define dissimilarity on the shape space CN/ ∼ by using a metric on the space

of shape representatives (which is easy to come up with). The distance between two shapes would be

given by the distance between the closest pair of representatives, i.e.,

d̃CN/∼(Rs, Rs′) = inf
rs∈Rs,rs′∈Rs′

dCN (rs, rs′), (A.1)

where d̃CN is the dissimilarity measure on the shape space CN/ ∼ and dCN is the metric on the space

of the shape representatives CN . However, the dissimilarity measure defined by (A.1) is not a metric in

general. While the first three axioms of a metric are verified, the triangular inequality is not. This can be

understood intuitively by the fact that moving along the orbits does not change the distance. Consider

two orbits that are further apart, but each of them is much closer to a third orbit (the third orbit has a

representative close to one of the first orbit and another representative close to one of the second orbit).

This creates a ”bridge” between the two orbits, violating the triangular inequality. Due to this difficulty, we

drop the requirement of having a metric on the shape space CN/ ∼.

The definition of dissimilarity (A.1) has another problem, since its computation involves full orbits, which

is intractable in general (see Section 2.3). To solve this problem, we can consider the map ρ : CN → R
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from the space of shape representatives CN to a space of shape representations R, which encodes

all the orbit information without dealing with all its elements, as introduced in Section 2.3. If the shape

representation mapping ρ is complete and invariant, it is immediate that any metric on the space of shape

representations R is a dissimilarity measure on the space of shapes CN/ ∼, which satisfies the first three

axioms of a metric on CN/ ∼.

The fact that our dissimilarity measure involves a metric on the space of shape representations R

should not concern us here since in the cases that we will deal with, the space of shape representations

R will be CM and for this case, a metric is readily available (we use the Euclidean distance).
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Appendix B

Perturbation Analysis

The monomial symmetric polynomials are sums of products of the arguments, which makes nontrivial to

derive how a perturbation of the arguments propagates. In this appendix, we study how the elementary

symmetric polynomials and the power sum symmetric polynomials change with perturbations of the

arguments.

Both the elementary symmetric polynomials and the power sum symmetric polynomials are particular

cases of monomial symmetric polynomials (see Section 3.4 and Section 3.3, respectively). The decom-

position for monomial symmetric polynomials, derived in Section 3.7, provides a method to efficiently

evaluate them. We denote the perturbation in zn as ∆zn ∈ C and the perturbed versions of zn as z′n,

where z′n = zn + ∆zn, with n = 1, . . . , N .

For the elementary symmetric polynomials ek, the decomposition (3.31) reduces to (3.34), which we

recall here:

ek(z1, . . . , zN ) = zNek−1(z1, . . . , zN−1) + ek(z1, . . . , zN−1). (B.1)

Remember that decomposition (B.1) can also be written as

ek(z1, . . . , zN ) = znek−1(z1, . . . , zn−1, zn+1 . . . , zN ) + ek(z1, . . . , zn−1, zn+1 . . . , zN ), (B.2)

where n = 1, . . . , N (See equality (3.32)). (For n = 1 and n = N , z1, . . . , zn−1, zn+1 . . . , zN means

z2, . . . , zN and z1, . . . , zN−1, respectively.) Note that equation (B.2) is linear in each of the variables

z1, . . . , zn−1, zn+1 . . . , zN when we fix zn. The partial derivative of ek(z1, . . . , zN ) with respect to zn is

∂ek
∂zn

(z1, . . . , zN ) = ek−1(z1, . . . , zn−1, zn+1 . . . , zN ), (B.3)

where n = 1, . . . , N . Equality (B.3) is clear from (B.2). Consequently, the gradient of ek(z1, . . . , zN ) is

∇ek(z1, . . . , zN ) =


ek−1(z2, . . . , zN )

...

ek−1(z1, . . . , zN−1)

 . (B.4)
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The first-order approximation of ek(z′1, . . . , z
′
N ) is given by

ek(z′1, . . . , z
′
N ) ≈ ek(z1, . . . , zN ) +∇ek(z1, . . . , zN )T∆z

≈ ek(z1, . . . , zN ) + ek−1(z2, . . . , zN )∆z1 + . . .+ ek−1(z1, . . . , zN−1)∆zN , (B.5)

where z′n = zn + ∆zn, with n = 1, . . . , N and ∆z = [∆z1, . . . ,∆zN ]
T . It is curious that perturbing the vari-

able zn by ∆zn induces a perturbation on the value of the elementary symmetric polynomial ek(z1, . . . , zN )

that depends only on the value of the elementary symmetric polynomial ek−1(z1, . . . , zn−1, zn+1 . . . , zN )

— which does not depend on the perturbed variable zn — and on the perturbation ∆zn.

For the power sum symmetric polynomials pk, we can write

pk(z1, . . . , zN ) = zkn + pk(z1, . . . , zn−1, zn+1 . . . , zN ), (B.6)

where n = 1, . . . , N (see equality (3.32)). The partial derivative of pk with respect to zn is then

∂pk
∂zn

(z1, . . . , zN ) = kzk−1n , (B.7)

where n = 1, . . . , N . Consequently, The gradient of pk is

∇pk(z1, . . . , zN ) =


kzk−11

...

kzk−1N

 . (B.8)

The first-order approximation of pk(z′1, . . . , z
′
N ), which is valid for small perturbations ∆z1, . . . ,∆zN ∈ C,

is given by

pk(z′1, . . . , z
′
N ) ≈ pk(z1, . . . , zN ) +∇pk(z1, . . . , zN )T∆z (B.9)

≈ pk(z1, . . . , zN ) + kzk−11 + . . .+ kzk−1N , (B.10)

where z′n = zn + ∆zn, with n = 1, . . . , N and ∆z = [∆z1, . . . ,∆zN ]
T . Distinctly to what happens with the

elementary symmetric polynomials, perturbing zn induces a perturbation on the value of the power sum

symmetric polynomials pk(z1, . . . , zN ), that only depends on the perturbed variable zn, and on no other.

We now consider arbitrary perturbations (not necessarily small) of the variables z1, . . . , zN . We have

by the definition of the elementary symmetric polynomials (3.15):

ek(z′1, . . . , z
′
N ) =

∑
(i1,...,iN )∈INk

z′i11 . . . z′iNN (B.11)

=
∑

(i1,...,iN )∈INk

(z1 + ∆z1)i1 . . . (zN + ∆zN )iN . (B.12)

Now, let us look at an element (i1, . . . , iN ) ∈ INk . Let us assume, without loss of generality, that it is
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(1, . . . , 1, 0 . . . , 0), i.e., i1, . . . , ik = 1 and ik+1, . . . , iN = 0. The corresponding monomial expands as

(z1 + ∆z1) . . . (zk + ∆zk) = z1 . . . zk +
∑

b1,...,bk∈{0,1}
b1,...,bk 6=0

z1−b11 ∆zb11 . . . z1−bkk ∆zbkk . (B.13)

This means that each of the monomials that is summed in (B.11) originates 2k − 1 perturbation terms.

Since there is a total of N !
k!(N−k)! different monomials summed in (B.12), there is a total of (2k − 1) N !

k!(N−k)!

perturbation terms.

For the value of the power sum symmetric polynomials pk(z′1, . . . , z
′
N ), we have

pk(z′1, . . . , z
′
N ) =

N∑
n=1

z′kn

=

N∑
n=1

(zn + ∆zn)k

=

N∑
n=1

k∑
i=0

N
k

 zin∆zk−in (B.14)

=

N∑
n=1

zkn +

N∑
n=1

k−1∑
i=0

N
k

 zin∆zk−in (B.15)

= pk(z1, . . . , zN ) +

N∑
n=1

k−1∑
i=0

N
k

 zin∆zk−in , (B.16)

where (B.14) comes from the binomial formula, (B.15) is obtained by singling out from the sum the term

i = k, and (B.16) is obtained by using the the definition of the power sum symmetric polynomials (3.13).

The behavior of the elementary symmetric polynomials (seen in the equations (B.5) and (B.13)) and

of the power sum symmetric polynomials (seen in the equations (B.10) and (B.16)) do not make clear

which ones perform better in terms of dealing with perturbations. This is one of the questions that we

leave for future work.
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Appendix C

Reflection Invariance

In Chapter 5 we propose a shape representation mapping ρ = ρr,p,s,t that is invariant to translation,

scaling and rotation and permutation of the labels. We now study how the shape representation changes

with reflections and propose an extension to also accommodate invariance with respect to an arbitrary

reflection by redefining the shape dissimilarity measure.

Any reflection in the complex plane can be decomposed in the following sequence of operations:

• a translation, to make the reflection axis pass through the origin;

• a rotation, to align the reflection axis with the real axis;

• a reflection about the real axis;

• the inverse rotation;

• the inverse translation.

Since our shape representation mapping ρ is invariant to translation and rotation, we can assume that the

shape representatives are centered at the origin and that the reflection axis is the real axis. Thus, we

consider, without loss of generality, only a reflection about the real axis.

A reflection about the real axis in the complex plane corresponds to complex conjugating the points of

the shape representative rs. Let r∗s be the result of this reflection:

r∗s =


z∗1
...,

z∗N

 . (C.1)

We now show that the representation ρ(r∗s) is the complex conjugate of the representation ρ(rs). To derive

this, we start by noting that the representation ρs,t(r∗s) can be written as a function of the representation
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ρs,t(rs):

ρs,t(r∗s) =
1

e(r∗s − r̄∗s)
(r∗s − r̄∗s) (C.2)

=
1

e(rs − r̄s)
(rs − r̄s)∗ (C.3)

= ρs,t(rs)
∗, (C.4)

where equality (C.3) comes from noting that conjugation does not affect the mean energy, since it only

depends on the absolute values of the entries (see (5.14)), and equalities (C.2) and (C.4) come from the

definition ρs,t in (5.19).

We can verify that ρp,s,t(r∗s) = ρp,s,t(rs)
∗ by the following sequence of equalities:

ρp,s,t(r∗s) = ρp(ρs,t(r∗s)) (C.5)

= ρp(ρs,t(rs)
∗) (C.6)

= ρp(ρs,t(rs))
∗ (C.7)

= ρp,s,t(rs)
∗, (C.8)

where equality (C.5) comes from the definition (5.24) of ρp,s,t. Equality (C.6) comes from (C.4). Equality

(C.7) comes from the fact that complex conjugation commutes with multiplication and addition in the

complex numbers, and that ρp(ρs,t(r∗s)) consists in the evaluation of a set of (symmetric) polynomials.

Finally, we conclude that ρ(r∗s) = ρr,p,s,t(r∗s) = ρr,p,s,t(rs)
∗ = ρ(rs)

∗ because

ρr,p,s,t(r∗s) = bk1,k2(ρp,s,t(r∗s)) (C.9)

= bk1,k2(ρp,s,t(rs)
∗) (C.10)

= {ρp,s,t(rs)∗}k1{ρp,s,t(rs)∗}k2{ρp,s,t(rs)∗}∗k1+k2 (C.11)

= bk1,k2(ρp,s,t(rs))
∗, (C.12)

with k1 ≥ 2, k1 ≥ k2, and k1 + k2 ≤ N . Equality (C.9) comes from the definition (5.34) of ρr,p,s,t,

equality (C.10) comes from (C.8), and equalities (C.11) and (C.12) come from the definition (4.8) of the

bispectrum.

To extend the invariance of ρ to reflection, while maintaining completeness, we have to capture, for a

shape representative rs, the representations ρ(rs) and ρ(rs)
∗ into one. This can be done by redefining

the dissimilarity measure in the following way: for two shape representatives rs and rs′ we compare the

representation ρ(rs′) with the representations ρ(rs) and ρ(r∗s) and output the distance that is the lowest.

Since the ρ is complete, the dissimilarity between two shape representatives is zero if and only if the two

representatives are related by a rotation, translation, scaling, reflection, and permutation of the labels.

We did not model reflection in the representation of Chapter 5 because this would imply dealing with

more elaborated instantiations of the concepts, which could hinder the ideas that we wanted to convey.

For example, there is no way to model reflections and rotations as a product group (these operations
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do not commute and so, the group capturing these operations cannot be commutative). To capture

simultaneously rotation and reflection we would have to deal with shapes that are represented in R2×N ,

instead of CN . This is due to the fact that we would have to consider orthogonal matrices, i.e., matrices

with determinant plus one or minus one, instead of just special orthogonal matrices, i.e, matrices with

determinant plus one. This would imply a more cumbersome action and an awkward transition when

factoring out the permutation. By staying with the framework of Chapter 5, we are led to factor out

reflection through the redefinition of shape dissimilarity and, since this does not fit in the invariant-based

framework of the rest of this thesis, we decided to include the discussion in the appendix.
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