DeepArchitect: Automatically Designing and Training Deep Architectures

Renato Negrinho
Carnegie Mellon University
negrinho@cs.cmu.edu

Geoff Gordon
Carnegie Mellon University
ggordon@cs.cmu.edu

Abstract

In deep learning, performance is strongly affected by the choice of architecture and hyperparameters. While there has been extensive work on automatic hyperparameter optimization for simple spaces, complex spaces such as the space of deep architectures remain largely unexplored. As a result, the choice of architecture is done manually by the human expert through a slow trial and error process guided mainly by intuition. In this paper we describe a framework for automatically designing and training deep models. We propose an extensible and modular language that allows the human expert to compactly represent complex search spaces over architectures and their hyperparameters. The resulting search spaces are tree-structured and therefore easy to traverse. Models can be automatically compiled to computational graphs once values for all hyperparameters have been chosen. We can leverage the structure of the search space to introduce different model search algorithms, such as random search, Monte Carlo tree search (MCTS), and sequential model-based optimization (SMBO). We present experiments comparing the different algorithms on CIFAR-10 and show that MCTS and SMBO outperform random search. In addition, these experiments show that our framework can be used effectively for model discovery, as it is possible to describe expressive search spaces and discover competitive models without much effort from the human expert. Code for our framework and experiments has been made publicly available.

1. Introduction

Deep learning has seen a surge in popularity due to breakthroughs in applications such as computer vision, natural language processing, and reinforcement learning [11, 15, 22, 27]. An important observation in much of the recent work is that complex architectures are important for achieving high performance [11, 19]. Larger datasets and more powerful computing infrastructures are likely to increase our ability to effectively train larger, deeper, and more complex architectures. However, improving the performance of a neural network is not as simple as adding more layers or parameters—it often requires clever ideas such as creating more branches [28] or adding skip connections [11]. Even popular techniques such as dropout [25] and batch normalization [13] do not always lead to better performance, and need to be judiciously applied to be helpful.

Currently, choosing appropriate values for these architectural hyperparameters requires close supervision by a human expert, in a trial and error manual search process largely guided by intuition. The expert is burdened by having to make the large number of choices involved in the specification of a deep model. Choices interact in non-obvious ways and strongly impact performance. The typical workflow has the expert specify a single model, train it, and compute a validation score. Based on the validation score, previous experience, and information gathered during training, the expert decides if the trained model is satisfactory or not. If the model is considered unsatisfactory, the expert has to think about model variations that may lead to better performance.

From the perspective of the expert, it would be convenient to search over architectures automatically, just as we search over simple scalar hyperparameters, such as the learning rate and the regularization coefficient. Ideally, the expert would have control in setting up the search space to incorporate inductive biases about the task being solved and constraints about computational resources. Prior to this work, achieving this goal was hard because expressing model search spaces using general hyperparameter optimization tools requires the human expert to manually distill a set of relevant scalar architectural hyperparameters.

The main contributions of our work are

1. a modular, compositional, and extensible language for compactly representing expressive search spaces over models that

 (a) gives control to the human expert over what model variations to consider;

 (b) makes it easy to automatically search for performant models in the search space;
2. Related Work

Model search has a long and rich history in machine learning and statistics. There has been a wide variety of theoretical and empirical research in this area [2, 4, 5, 21], including Bayesian optimization methods [12, 14, 24]. However, conventional methods are primarily designed for searching over hyperparameters living in Euclidean space. Such methods are ill suited in today’s context, where the discrete architectural choices are just as important as the numerical values of the hyperparameters. Searching over architectures using current hyperparameter optimization algorithms requires the expert to distill structural choices into scalar hyperparameters. As a result, typically only a few simple global structural hyperparameters are considered, e.g., the depth of the network or whether to use dropout or not. This constrains the richness of the search space, preventing the expert from finding unexpected model variations leading to better performance; e.g., perhaps dropout is useful only after certain types of layers, or batch normalization only helps in the first half of the network.

Architecture search has also been considered under the topic of neuroevolution [26], which uses evolutionary (i.e., genetic) strategies to define and search a space of models. In classical approaches, neuroevolution attempts to jointly choose the topology and the parameters of the architecture using genetic algorithms.

(c) allows models to be directly compiled to computational graphs without the human expert having to write additional code.

2. model search algorithms that rely on the tree-structured search spaces induced by our language to systematically and efficiently search for performant models; namely, we

(a) show that by using the constructs in our language, even random search can be effective;

(b) compare different model search algorithms experimentally, and show that random search is outperformed by algorithms that leverage the structure of the search space to generalize more effectively across different models.

The main differences between our work and previous work are that we develop a modular, composable and extensible language, focusing on the problem of searching over deep architectures. This focus allows the expert to compactly set up a search space, search over it, and automatically compile models to their corresponding computational graphs. Our language can be seen as an effort to combine the functionalities of a deep model specification language (e.g., Tensorflow [1]) and a structured hyperparameter search language (e.g., Hyperopt [30]).

Architecture search has received renewed interest recently. Wierstra et al. [29], Floreano et al. [9], and Real et al. [20] use evolutionary algorithms which start from an initial model and evolve it based on its validation performance. Zoph and Le [31] propose a reinforcement learning procedure based on policy gradient for searching for convolutional and LSTM architectures. Baker et al. [3] propose a reinforcement learning procedure based on Q-learning for searching for convolutional architectures.

Unfortunately all these approaches consider fixed hard-coded model search spaces that do not easily allow the human expert to incorporate inductive biases about the task being solved, making them unsuitable as general tools for architecture search. For example, evolutionary approaches require an encoding for the models in the search space and genetic operators (e.g., mutation and crossover) which generate encodings for new models out of encodings of old ones. These aspects are handcrafted and hard-coded so it is hard for the human expert to change the search space in flexible ways. Perhaps different model encodings or genetic operators can be considered, but these knobs give somewhat loose and indirect control over the model search space. The reinforcement learning approaches considered suffer from similar issues—the search spaces are hard-coded and not easily modifiable. None of these approaches have the compositionality, modularity, and extensibility properties of our language.

Bergstra et al. [4] propose Tree of Parzen Estimators (TPE), which can be used to search over structured hyperparameter spaces, and use it to tune the hyperparameters of a Deep Boltzmann Machine. Bergstra et al. [30] use TPE to search for values of the hyperparameters of a computer vision system, and show that it can find better values than the best ones previously known.

TPE is a general hyperparameter search algorithm, and therefore requires considerable effort to use—for any fixed model search space, using TPE requires the human expert to distill the hyperparameters of the search space, express the search space in Hyperopt [30] (an implementation of TPE), and write the code describing how values of the hyperparameters in the search space compile to a computational graph. In contrast, our language is modular and composable in the sense that:

1. search spaces (defined through modules) are constructed compositionally out of simpler search spaces (i.e., simpler modules);

2. hyperparameters for composite modules are derived automatically from the hyperparameters of simpler modules;

3. once values for all hyperparameters of a module have been chosen, the resulting model can be automatically
mapped to a computational graph without the human expert having to write additional code.

3. Roadmap to the DeepArchitect Framework

Our framework reduces the problem of searching over models into three modular components: the model search space specification language, the model search algorithm, and the model evaluation algorithm.

Model Search Specification Language: The model search space specification language is built around the concept of a modular computational module. This is akin to the concept of a module [6] used in deep learning frameworks such as Torch [8]: by implementing the module interface, the internal implementation becomes irrelevant. These modules allow one to express easily complex design choices such as whether to include a module or not, choose between modules of different types, or choose how many times to repeat a module structure. The main insight is that complex modules of different types, or choose how many times to re-use modules allow one to express easily complex design choices. This is akin to the concept of a module [6] used in deep learning frameworks such as Torch [8]: by implementing the module interface, the internal implementation becomes irrelevant. These modules allow one to express easily complex design choices such as whether to include a module or not, choose between modules of different types, or choose how many times to repeat a module structure. The main insight is that complex modules can be created compositionally out of simpler ones. The behavior of complex modules is generated automatically out of the behavior of simpler modules. Furthermore, our language is extensible, allowing the implementation of new types of modules by implementing a high-level interface local to the module.

Model Search Algorithm: The way the model search space is explored is determined by the model search algorithm. This part of the framework decides how much effort to allocate to each part of the search space based on the performance observed for previous models. The model search algorithm typically requires a model evaluation algorithm that computes the performance of a fully specified model. The search algorithm will then use this information to determine which models to try next. The search algorithm interacts with the search space only through a minimal interface that allows it to traverse the space of models and evaluate models discovered this way. This interface is the same irrespective of the specific search space under consideration. We experiment with different search algorithms, such as Monte Carlo tree search [7] and Sequential Model Based Optimization [12].

Model Evaluation Algorithm: Having fully specified a model, i.e., having reached a leaf in the tree defined by our model search space, we can evaluate how good this model is according to some criterion defined by the expert. This typically involves training the model on a training set and evaluating it on a validation set. The training procedure often has multiple hyperparameters that can be tuned (e.g., the choice of the optimization algorithm and its hyperparameters, and the learning rate schedule). If the expert does not know how to write down a reasonable training procedure for every model in the search space, the expert can introduce hyperparameters for the evaluation algorithm and search over them using our specification language. Any of the above components can be changed, improved, or extended, while keeping the others fixed. The fact that different components interact only through well-defined interfaces makes it possible to extend and reuse this framework. We believe that DeepArchitect will be an interesting platform for future research in deep learning and hyperparameter tuning for architecture search.

4. Model Search Space Specification Language

4.1. Search Space Definition

The computational module is the fundamental unit of our model search space specification language. We define a computational module as a function

\[f : n \rightarrow (\mathcal{H} \rightarrow (\mathbb{R}^p \rightarrow (\mathbb{R}^n \rightarrow \mathbb{R}^m))) \]

where \(n \) is the dimensionality of the input, \(\mathcal{H} \) is the set of valid values for the hyperparameters, \(p \) is the number of parameters, and \(m \) is the dimensionality of the output. The set \(\mathcal{H} \) can be structured or simply the cross product of scalar hyperparameter sets, i.e., \(\mathcal{H} = \mathcal{H}_1 \times \ldots \times \mathcal{H}_H \), where \(H \) is the number of scalar hyperparameters. The set \(\mathcal{H} \) is assumed to be discrete in both cases.

Definition (1) merits some discussion. For conciseness we have not explicitly represented it, but the number of parameters \(p \) and the output dimensionality \(m \) can both be functions of the input dimensionality \(n \) and the chosen hyperparameter values \(h \in \mathcal{H} \). For example, an affine module with \(h \) dense hidden units has output dimensionality \(m = h \) and number of parameters \(p = (n + 1)h \); a weight matrix \(W \in \mathbb{R}^{h \times n} \) and a bias vector \(b \in \mathbb{R}^h \). A similar reasoning can be carried out for a convolutional module: the number of parameters \(p \) depends on the input dimensionality, the number of filters, and the size of the filters; the dimensionality of the output \(m \) depends on the input dimensionality, the number of filters, the size of the filters, the stride, and the padding scheme. The fact that \(p \) and \(m \) are functions of the input dimensionality and the chosen hyperparameter values is one of the main observations that allows us to do architecture search—once we know the input dimensionality and have fixed values for the hyperparameters, the structure of the computation performed by the module is determined, and this information can be propagated to other modules. We say that a module is fully specified when values for all hyperparameters of the module have been chosen and the input dimensionality is known.

We focus on search spaces for architectures that have a single input terminal and a single output terminal. By this,
we only mean that the input and output of the module have to be a single tensor of arbitrary order and dimensionality. For example, convolutional modules take as input an order three tensor and return as output an order three tensor, therefore they are single-input single-output modules under our definition. We also assume that the output of a module is used as input to at most a single module, i.e., we assume no output sharing.

These restrictions were introduced to simplify exposition. The single-input single-output case with no sharing is simpler to develop and exemplifies the main ideas that allow us to develop a framework for automatic architecture search. The ideas developed in this work extend naturally to the multiple-input multiple-output case with sharing. Additionally, often we can represent modules that are not single-input single-output by defining new modules that encapsulate many signal paths from input to output. For example, a residual module [11] can be treated in our framework by noting that it is single-input before the skip connection split and single-output after the skip connection merge. Many top performing architectures, such as AlexNet [18], VGG [23], and ResNet [11], are captured in our language.

We distinguish between basic computational modules and composite computational modules. Basic modules do some well defined transformation. Affine, batch normalization, and dropout are examples of basic modules. Composite modules are defined in terms of other (composite or basic) modules, i.e., the instantiation of a composite module takes other modules as arguments. Composite modules may introduce hyperparameters of their own and inherit hyperparameters of the modules taken as arguments. For example, an Or module takes a list of modules and chooses one of the modules to use. It introduces a discrete hyperparameter for which module to use, and chooses values for the hyperparameters of the chosen module; the hyperparameters available are conditional on the choice of the module to use. Most of the representational power of our language arises from the compositionality of composite and basic modules.

The ideas developed in this section are perhaps best illustrated with an example. See Figure 1 for the definition of an example search space in LISP-like pseudocode that closely parallels our implementation. The search space, which results from the composition of several modules, and therefore is also a module itself, encodes 24 different models, corresponding to the different 24 possible paths from the root to the leaves of the tree. The space is defined using three composite modules (Concat, MaybeSwap, and Optional) and five basic modules (Conv2D, BatchNormalization, ReLU, Dropout, and Affine). Concat introduces no additional hyperparameters, but it has to specify all the modules that have been delegated to it; MaybeSwap introduces a binary hyperparameter that encodes whether to swap the order of the pair of modules or not; Optional introduces a binary hyperparameter that encodes whether to include the module or not. The behavior of the basic modules in Figure 1 is relatively straightforward: Conv2D takes lists of possible values for the number of filters, the size of the filters, and the stride; BatchNormalization and ReLU have no hyperparameters; Dropout takes a list for the possible values for the dropout probability; Affine takes a list for the possible values of the number of hidden units.

Choosing different values for the hyperparameters of the composite modules may affect the structure of the resulting architecture, while choosing different values for the hyperparameters of the basic modules only affects the structure of the corresponding local transformations. The search space of Figure 1 results from the composition of basic and composite modules; therefore it is a module itself and can be characterized by its input, output, parameters, and hyperparameters. Our set of composite modules in not minimal: e.g., given an Empty basic module, which has no hyperparameters or parameters and simply does the identity transformation, and a Or composite module, which introduces an extra hyperparameter encoding the choice of a specific module in its list, the composite modules Optional and MaybeSwap can be defined as (Optional B) = (Or Empty B) and (MaybeSwap B1 B2) = (Or (Concat B1 B2), (Concat B2 B1)).

4.2. Search Space Traversal

Given a search space defined by a module, there is an underlying tree over fully specified models: we build this tree by sequentially assigning values to each of the hyperparameters of the module. Each internal node in the tree corresponds to some partial assignment to the hyperparameters of the module, and each terminal node (i.e., each leaf) corresponds to a fully specified model. We can also think about an internal node as corresponding to the state of a module before assigning a value to the next unassigned hyperparameter. The branching factor of a node corresponds to the number of possible values for the hyperparameter under consideration at that node, and traversing a specific edge from that node to a child corresponds to assigning the value encoded by that edge to the hyperparameter under consideration. As a tree has a single path between the root and any leaf, the paths from root to leaves are in one-to-one cor-

Figure 1. A simple search space with 24 different models. See Figure 2 for a path through the search space.
To traverse the search space, i.e., to assign values to all hyperparameters of the module defining the search space, all that is needed is that each module knows how to sequentially specify itself. *Modules resulting from the composition of modules will then be automatically sequentially specifiable.* The three local operations that a module needs to implement for traversal are: to test whether it is fully specified (i.e., whether it has reached a leaf yet); if it is not specified, to return which hyperparameter it is specifying and what are the possible values for it; and given a choice for the current hyperparameter under consideration, to traverse the edge to the child of the current node corresponding to chosen value.

4.3. Compilation

Once values for all hyperparameters of a module have been chosen, the fully specified model can be automatically mapped to its corresponding *computational graph*. We call this mapping *compilation*. This operation only requires that each module knows how to locally map itself to a computational graph: compilation is derived recursively from the compilation of simpler modules. For example, if we know how to compile Conv2D, ReLU, and Or modules, we will automatically be able to compile all modules built from them. This behavior is also similar to recursive expression evaluation in programming languages.

5. Model Search Algorithms

In this section, we consider different search algorithms that are built on top of the functionality described above. Some of these algorithms rely on the fact that the search space is tree structured. One of the challenges of our setting is that deep models are expensive to train, so unless we have access to extraordinary computational resources, only a moderate number of evaluations will be practical.

5.1. Random Search

Random search is the simplest algorithm that we can consider. At each node of the tree, we choose an outgoing edge uniformly at random, until we reach a leaf node (i.e., a model). Even just random search is interesting, as the model search space specification language allows us to capture expressive structural search spaces. Without our language, randomly selecting an interesting architecture to try would not be possible without considerable effort from the human expert.

5.2. Monte Carlo Tree Search

Monte Carlo tree search (MCTS) [7, 16] is an approximate planning technique that has been used effectively in many domains [22]. Contrary to random search, MCTS uses the information gathered so far to steer its policy towards better performing parts of the search space. MCTS
choosing a value in the first or second half of the parameter, we commit sequentially—first we decide if a node, rather than committing directly to a value of the hyperparameter, we commit sequentially. When a leaf is reached, the model encoded by it is evaluated (e.g., trained on the training set and evaluated on the validation set), and the resulting score is used to update the statistics of the nodes in the currently expanded tree in the path to the leaf. Each node in the expanded tree keeps statistics about the number of times it was visited and the average score of the models that were evaluated in the subtree at that node. The rollout policy is often simple, e.g., the random policy described in Section 5.1.

The tree policy typically uses an upper confidence bound (UCB) approach. Let \(n \) be the number of visits of a node \(v \in \mathcal{T} \), where \(\mathcal{T} \) denotes the currently expanded tree, and \(n_1, \ldots, n_b \) and \(\bar{X}_1, \ldots, \bar{X}_b \) be, respectively, the number of visits and the average scores of the \(b \) children of \(v \). The tree policy at \(x \) chooses to traverse an edge corresponding to a child maximizing the UCB score:

\[
\max_{i \in \{1, \ldots, b\}} \bar{X}_i + 2c\sqrt{\frac{2\log n}{n_i}},
\]

where \(c \in \mathbb{R}_+ \) is a constant capturing the trade-off between exploration and exploitation—larger values of \(c \) correspond to larger amounts of exploration. If at node \(x \), some of its children have not been added to the tree, there will be some \(i \in \{1, \ldots, b\} \) for which \(n_i = 0 \); in this case we define the UCB score to be infinite, and therefore, unexpanded children always take precedence over expanded children. If multiple unexpanded children are available, we expand one uniformly at random.

5.3. Monte Carlo Tree Search with Tree Restructuring

When MCTS visits a node in the expanded part of the tree, it has to expand all children of that node before expanding any children of its currently expanded children. This is undesirable when there are hyperparameters that can take a large number of related values.

We often consider hyperparameters which take numeric values, and similar values result in similar performance. For example, choosing between 64 or 80 filters for a convolutional module might not have a dramatic impact on performance.

A way of addressing such hyperparameters is to restructure the branches of the tree by doing bisection. Assume that the set of hyperparameters has a natural ordering. At a node, rather than committing directly to a value of the hyperparameter, we commit sequentially—first we decide if we are choosing a value in the first or second half of the set of hyperparameters, and then we recurse on the chosen half until we have narrow it down to a single value. See an example tree in Figure 3 and the corresponding restructured tree in Figure 4.

![Figure 3. A tree encoding an hyperparameter and its five possible values. MCTS applied to this tree is sample-inefficient as there is no sharing of information between the different child nodes. See also Figure 4.](image)

![Figure 4. The result of restructuring the tree in Figure 3 with bisection. MCTS applied to this tree results in more sharing when compared to the original tree. For example, sampling a path reaching node 1 provides information about nodes 1, 2, and 3.](image)

Tree restructuring involves a tradeoff between depth and breadth: the tree in Figure 3 has depth 1, while the tree in Figure 4 has depth 3. The restructured tree can have better properties in the sense that there more sharing between different values of the hyperparameters. We could also consider restructured trees with branching factors different than two, again trading off depth and breadth. If the branching factor of the restructured tree is larger than the number of children of the hyperparameter, the restructuring has no effect, i.e., the original and restructured trees are equal. The restructuring operation allows MCTS to effectively consider hyperparameters with a large number of possible values.

5.4. Sequential Model Based Optimization

MCTS is tabular in the sense that it keeps statistics for each node in the tree. While the restructuring operation described in Section 5.3 increases sharing between different hyperparameter values, it still suffers from the problem that nodes have no way of sharing information other than through common ancestors. This is problematic because
differences in hyperparameter values at the top levels of the tree lead to little sharing between models, even if the resulting models happen to be very similar.

Sequential Model Based Optimization (SMBO) [12] allows us to address this problem by introducing a surrogate function which can be used to capture relationships between models and how promising it is to evaluate any specific model. The surrogate function can use expressive features to capture architecture patterns that influence performance, e.g., features about sequences of basic modules that occur in the model.

The surrogate function can then be optimized to choose which model to evaluate next. Exactly optimizing the surrogate function over a search space can be difficult as often there is a combinatorially large number of models. To approximately optimize the surrogate function, we do some number of random rollouts from the root of the tree until we hit leaf nodes (i.e., models), we evaluate the surrogate function (i.e., we determine, according to the surrogate function, how promising it is to evaluate that model), and evaluate the model that has the highest score according to the surrogate function. We also introduce an exploratory component where we flip a biased coin and choose between evaluating a random model or evaluating the best model according to the surrogate function. The surrogate function is updated after each evaluation.

In our experiments, we use a simple surrogate function: we train a ridge regressor to predict model performance, using the models evaluated so far and their corresponding performances as training data. We only use features based on n-grams of sequences of basic modules, disregarding the values of the hyperparameters. More complex features, surrogate functions, and training losses are likely to lead to better search performance, but we leave these to future work.

6. Model Evaluation Algorithms

As a reminder, once we assign values to all hyperparameters of the module defining the search space, we need to compute a score for the resulting model, i.e., a score for the path from the root to the corresponding leaf encoding the model to evaluate. The specific way to compute scores is defined by the human expert, and it typically amounts to training the model on a training set and evaluating the trained model on a validation set. The score of the model is the resulting validation performance. The training process often has its own hyperparameters, such as: what optimization algorithm to use and its corresponding hyperparameters, the learning rate schedule (e.g., the initial learning rate, the learning rate reduction multiplier, and how many epochs without improving the validation performance the algorithm waits before reducing the learning rate), how many epochs without improving the validation performance the algorithm waits before terminating the training process (i.e., early stopping), and what data augmentation strategies to use and their corresponding hyperparameters. The behavior of the evaluation algorithm with respect to the values of its hyperparameters is defined by the expert for the task being considered, so the compilation step described in Section 4.3 for this functionality has to be implemented by the expert. Nonetheless, these user hyperparameters can be included in the search space and searched over in the same way as the architecture hyperparameters described in Section 4.1.

7. Experiments

We illustrate how our framework can be used to search over all hyperparameters of a model, i.e., both architecture and training hyperparameters, using only high-level insights. We choose a search space of deep convolutional models based around the ideas that depth is important, batch normalization helps convergence, and dropout is sometimes helpful. We search over architectures and evaluate our models on CIFAR-10 [17].

The training hyperparameters that we consider are whether to use ADAM or SGD with momentum, the initial learning rate, the learning rate reduction multiplier, and the rate reduction patience, i.e., how many epochs without improvement to wait before reducing the current learning rate. We use standard data augmentation techniques: we zero pad the CIFAR-10 images to size $40 \times 40 \times 3$, randomly crop a 32×32 portion, and flip horizontally at random. We could search over these too if desired.

We compare the search algorithms described in Section 5 in terms of the best model found, according to validation performance, as a function of the number of evaluations. We run each algorithm 5 times, for 64 model evaluations each time. All models were trained for 30 minutes on GeForce GTX 970 GPUs in machines with similar specifications.

On the leftmost plot of Figure 5, we see that all search algorithms find performant solutions (around 89% accuracy) after 64 evaluations. On the center plot of Figure 5, we see that for fewer than 6 evaluations there is considerable variance between the different algorithms; the more sophisticated model search algorithms are not able to outperform random search with so few evaluations. On the rightmost plot in Figure 5, we see that both SMBO and MCTS with bisection eventually outperform random search; MCTS with bisection starts outperforming random search around 32 evaluations, while for SMBO, it happens around 16 evaluations.

Surprisingly, MCTS without restructuring does not outperform random search. We think that this is because there are too many possible values for the first few hyperparameters in the tree, so MCTS will not be able to identify and focus on high-performance regions of the search space within...
Figure 5. Average maximum validation score achieved as a function of the number of evaluation across five repetitions. The error bars indicate standard error. The two plots on the right have the same results as the plot on the left, but are zoomed in for better visualization.

Figure 6. Percentage of models above a given validation threshold performance. MCTS with bisection and SMBO outperform random search. The error bars have size equal to the standard error.

8. Conclusion

We described a framework for automatically designing and training deep models. This framework consists of three fundamental components: the model search space specification language, the model search algorithm, and the model evaluation algorithm. The model search space specification language is composable, modular, and extensible, and allows us to easily define expressive search spaces over architectures. The model evaluation algorithm determines how to compute a score for a model in the search space. Models can be automatically compiled to their corresponding computational graphs. Using the model search space specification language and the model evaluation algorithm, we can introduce model search algorithms for exploring the search space. Using our framework, it is possible to do random search over interesting spaces of architectures without much effort from the expert. We also described more complex model search algorithms, such as MCTS, MCTS with tree restructuring, and SMBO. We present experiments on CIFAR-10 comparing different model search algorithms and show that MCTS with tree restructuring and SMBO outperform random search. Code for our framework and experiments has been made publicly available. We hope that this paper will lead to more work and better tools for automatic architecture search.

Acknowledgements

The authors would like to thank Matt Gormley, Matt Barnes, Christoph Dann, and Kirthevasan Kandasamy for helpful discussions and detailed comments on early versions of the manuscript.

References

A. Detailed Experimental Setup

In Section 7, we considered a search space of deep convolutional models having structural hyperparameters for the depth of the network, whether to apply batch normalization before or after ReLU, and whether to use dropout; hyperparameters for the number and size of the convolutional filters; training hyperparameters for the learning rate schedule. We show in Figure 7 the LISP-like pseudocode for the search space considered in Section 7, and in Figure 8 the corresponding runnable Python implementation in our framework.

MH = UserHyperparams(['optimizer_type',
'learning_rate_init',
'rate_mult',
'rate_patience',
'stop_patience',
'learning_rate_min',
],
[('adam', 'step'),
['logspace(10^-2, 10^-7, 33),
'rate_mult': logspace(10^-2, 0.5, 8),
'rate_patience': [4, 8, 12, 16, 20, 24, 28, 32],
'stop_patience': [64],
'learning_rate_min': [10^-9]])

M = (Concat MH M1 M2 M1 M2 (Affine [10]))

MH = (Concat MH M1 M2 M1 M2 (Affine [10]))

B. List of Modules

We provide a brief description of a representative subset of the types of basic and composite modules that we have implemented in our framework.

B.1. Basic Modules

Basic modules take no other modules when instantiated, having only local hyperparameters and parameters.

• Affine: Dense affine transformation. Hyperparameters: number of the hidden units and initialization scheme of the parameters. Parameters: dense matrix and bias vector.

• Conv2D: Two-dimensional convolution. Hyperparameters: number of filters, size of the filters, stride, padding scheme, and initialization scheme of the parameters. Parameters: convolutional filters and bias vector.

• MaxPooling2D: Two-dimensional max pooling. Hyperparameters: size of the filters, stride, and padding scheme. Parameters: none.

B.2. Composite Modules

Composite modules take other modules as arguments when instantiated, which we will call submodules. The behavior of a composite module depends on its submodules. The hyperparameters which a composite module has to specify depend on the values of the hyperparameters of the composite module and the hyperparameters of the submodules; e.g., Or takes a list of submodules but it only has to specify the hyperparameters of the submodule that it ends up choosing. A composite module is responsible for specifying its submodules, which is done through calls to the module interfaces of the submodules.

- **Concat**: Takes a list of submodules and connects them in series. Hyperparameters: hyperparameters of the submodules. Parameters: parameters of the submodules.
- **Or**: Chooses one of its submodules to use. Hyperparameters: which submodule to use and hyperparameters of the submodule chosen. Parameters: parameters of the submodule chosen.
- **Repeat**: Repeats a submodule some number of times, connecting the repetitions in series; values for the hyperparameters of the repetitions are chosen independently. Hyperparameters: number of times to repeat the submodule and hyperparameters of the repetitions of the submodule. Parameters: parameters of the repetitions of the submodule.
- **RepeatTied**: Same as Repeat, but values for the hyperparameters of the submodule are chosen once and used for all the submodule repetitions. Hyperparameters: the number of times to repeat the submodule and hyperparameters of the submodule chosen. Parameters: parameters of the repetitions of the submodule.
- **Optional**: Takes a submodule and chooses whether to use it or not. Hyperparameters: whether to include the submodule or not and, if included, hyperparameters of the submodule. Parameters: parameters of the submodule.
- **Residual**: Takes a submodule and implements a skip connection adding the input and output; if the input and output have different dimensions, they are padded to make addition possible. Hyperparameters: hyperparameters of the submodule. Parameters: parameters of the submodule.
- **MaybeSwap**: Takes two submodules and connects them in series, choosing which submodule comes first. Hyperparameters: which of the submodules comes first and hyperparameters of the submodules. Parameters: parameters of the submodules.

C. Module Interface

We describe the module interface as we implemented it in Python. To implement a new type of module, one only needs to implement the module interface.

```python
class Module(object):
    def initialize(self, in_d, scope):
    def get_outdim(self):
    def is_specified(self):
    def get_choices(self):
    def choose(self, choice_i):
    def compile(self, in_x, train_feed, eval_feed):
```

Figure 9. Module interface used by all modules irrespective if they are basic or composite. To implement a new type of module, the human expert only needs to implement the module interface.

- **initialize**: Tells a module its input dimensionality. A composite module is responsible for initializing the submodules that it uses.
- **get_outdim**: Once a module is fully specified, we can determine its output dimensionality by calling get_outdim. The output dimensionality is a function of the input dimensionality (which is determined when initialize is called) and the values of the hyperparameters chosen.
- **is_specified**: Tests whether a module is fully specified. If a module is fully specified, outdim and compile may be called.
- **get_choices**: Returns a list of the possible values for the hyperparameter currently being specified.
- **choose**: Chooses one of the possible values for the hyperparameter being specified. The module assigns the chosen value to that hyperparameter and either transitions to the next hyperparameter to specify or becomes fully specified. The module maintains internally the state of its search process.
- **compile**: Creates the computational graph of the model in a deep learning model specification language, such as Tensorflow or PyTorch. For composite modules, compilation can be performed recursively, through calls to the compile functions of its submodules.

Composite modules rely on calls to the module interfaces of its submodules to implement their own module interfaces. For example, Concat needs to call out_dim for the last submodule of the series connection to determine its own output dimensionality, and needs to call choose on the submodules to specify itself. One of the design choices that make the language modular is the fact that a composite module can implement its own module interface through
calls to the module interfaces of its submodules. All information about the specification of a module is local to itself or kept within its submodules.

D. Beyond Single-Input Single-Output Modules

We can define new modules with complex signal paths as long as their existence is encapsulated, i.e., a module may have many signal paths as long they fork from a single input and merge to a single output, as illustrated in Figure 10.

![Figure 10. A module with many signal paths from input to output.](image)

To implement a module, the human expert only needs to implement its module interface. \(M_1, M_2, M_3, \) and \(M_4\) are arbitrary single-input single-output modules; \(g_1\) and \(g_2\) are arbitrary transformations that may have additional hyperparameters. The hyperparameters of \(g_1\) and \(g_2\) can be managed internally by \(\text{NewModule}\).

In Figure 10 there is a single input fed into \(M_1, M_2, \) and \(M_3. M_1, M_2, M_3, M_4, M_5\) are arbitrary single-input single-output submodules of \(\text{NewModule}\). The module interface of \(\text{NewModule}\) can be implemented using the module interfaces of its submodules. Instantiating a module of type \(\text{NewModule}\) requires submodules for \(M_1, M_2, M_3, M_4, \) and \(M_5\), and potentially lists of possible values for the hyperparameters of \(g_1\) and \(g_2\). A residual module which chooses what type of merging function to apply, e.g., additive or multiplicative, is an example of a module with hyperparameters for the merging functions.

A module of the type \(\text{NewModule}\) is fully specified after we choose values for all the hyperparameters of \(M_1, M_2, M_3, M_4, M_5, g_1, \) and \(g_2\). Testing if \(M_1, M_2, M_3, M_4, \) and \(M_5\) are fully specified can be done by calling \(\text{is_specified}\) on the corresponding submodule.

The output dimensionality of \(\text{NewModule}\) can be computed as a function of the values of the hyperparameters of \(g_2\) and the output dimensionality of \(M_5\) and \(M_4\), which can be obtained by calling \(\text{get_outdim}\). Similarly, for \(\text{get_choices}\) we have to keep track of which hyperparameter we are specifying, which can either come from \(M_1, M_2, M_3, M_4, \) and \(M_5\), or from \(g_1\) and \(g_2\). If we are choosing values for an hyperparameter in \(M_1, M_2, M_3, M_4, \) and \(M_5\) we can call \(\text{get_choices}\) and \(\text{choose}\) on that submodule, while for the hyperparameters of \(g_1\) and \(g_2\) we have to keep track of the state in \(\text{NewModule}\). \(\text{compile}\) is similar in the sense that it is implemented using calls to the \(\text{compile}\) functionality of the submodules.