Problem 1

Consider a finite discounted MDP $M = (S, A, P, R, \gamma)$. In this problem, we study some properties of value iteration. The Bellman optimality equation for the optimal value function $V^* : S \to \mathbb{R}$, which we also write $V^* \in \mathbb{R}^S$, is

$$V^*(s) = \max_{a \in A} \left(\sum_{s' \in S} P(s'|s, a) (R(s, a, s') + \gamma V^*(s')) \right).$$

Define the Bellman optimality operator $F^* : \mathbb{R}^S \to \mathbb{R}^S$ as

$$F^*V(s) = \max_{a \in A} \left(\sum_{s' \in S} P(s'|s, a) (R(s, a, s') + \gamma V(s')) \right),$$

where $F^*V(s)$ is shorthand for $(F^*(V))(s)$. Note that S is finite so value functions are vectors in $\mathbb{R}^{|S|}$. The operator F^* maps vectors in $\mathbb{R}^{|S|}$ to vectors in $\mathbb{R}^{|S|}$.

Value iteration amounts to the repeated application of F^* to an arbitrary initial value function $V_0 \in \mathbb{R}^{|S|}$.

a) Prove that V^* is an unique fixed point of F^*, i.e., $F^*V^* = V^*$ and that if $F^*V = V$ and $F^*V' = V'$ for two value functions $V, V' \in \mathbb{R}^S$, then $V = V'$, i.e., $V(s) = V'(s)$ for all $s \in S$.

b) Prove that $(F^*)^kV_0$ converges to V^* as $k \to \infty$ for any $V_0 \in \mathbb{R}^{|S|}$. Consider convergence in max-norm. The max-norm of a vector $u \in \mathbb{R}^d$ is defined as $||u||_{\infty} = \max_{i \in \{1, \ldots, d\}} |u_i|$.

c) Given the optimal value function V^* write down the expression that recovers the optimal policy π^* as a function of V^* and the parameters of M.\footnote{ Actually, such a procedure works for any value function $V \in \mathbb{R}^S$. This procedure is called policy extraction.}