
Hidden Markov Models [50 pts]

A HMM defines a joint probability distribution over sequences of state-observation pairs. Let S = {1, . . . , n}
denote the set of n possible states andO = {1, . . . ,m} denote the set ofm possible observations. Furthermore,
define two special states: start and stop. Every state sequence begins with start and ends with stop. There
are no observations associated with these states, and they only occur, respectively, at the beginning and the
end of state sequences.

Note that the states start and stop are normal states in much the same way as the states in S, but
because it is impossible to transition back into start and to transition out of stop, it is convenient to single
them out in this way.

A HMM is determined by two types of parameters: state transition parameters θ ∈ Rn×n, θstart ∈ Rn,
and θstop ∈ Rn, where θij = PS|S′(j|i), θstart,j = PS|S′(j|start), and θi,stop = PS|S′(stop|i); state observation
parameters γ ∈ Rn×m, where γij = PO|S(j|i). Furthermore, we have the normalization constraints

∑n
j=1 θij+

θi,stop = 1,
∑n

j=1 θstart,j = 1 for the state transition parameters and
∑n

j=1 γij = 1 for the state observation
parameters, for i ∈ S. Note that for each state i ∈ S, we have a categorical distribution with parameters
θi1, . . . , θin, θi,stop for the transitions out of state i, and a categorical distribution with parameters γi1, . . . , γim
for the observations in state i. There is also a categorical distributions with parameters θstart,1, . . . , θstart,n
for the initial transition out of the state start. We assume that empty sequences are impossible (i.e., T = 0).
The state transition and state observation parameters are the same across all time steps and all sequences.
It is said that the HMM is homogeneous.

Given the above definition of a HMM, a sequence of state-observation pairs of length T has probability

PS0:T+1,O1:T
(start, s1:T , stop, o1:T ; θ, θstart, θstop, γ) =

T+1∏
t=1

PS|S′(st|st−1; θ, θstart, θstop)

T∏
t=1

PO|S(ot|st; γ), (1)

where s0 = start, sT+1 = stop, st ∈ S, and ot ∈ O, for t ∈ {1, . . . , T}. From now on, we will use a simplified
notation where we omit the parameters and subscripts when the meaning is clear from context.

Structure [8 pts]

(a) [2 pts] Draw the graphical model corresponding to HMM model for a sequence of state-observation
pairs with length T = 3. Don’t forget to include the random variables associated with the start and
stop states.

(b) [2 pts] A generative model, as it is the case of a HMM, has a generative story that describes how to
sample from the model. What is the generative story for the HMM described above?

(c) [2 pts] List two types of conditional independence statements that can be read of the HMM graphical
model structure.

(d) [2 pts] Explain what is the Markov blanket of a node in a Bayesian network in terms of the notion of d-
separation and active paths. What is the Markov blanket for state nodes? What about for observation
nodes?

Estimation [8 pts]

We will now derive maximum likelihood estimator for the HMM parameters given a set of fully observed N

training examples D = {(s(1)1:T1
, o

(1)
1:T1

), . . . , (s
(N)
1:TN

, o
(N)
1:TN

)}, with lengths T1, . . . , TN .
It is convenient to remember that for a categorical random variable X over K different events with

parameters β1, . . . , βK with
∑K

k=1 βk = 1, the probability of event x ∈ {1, . . . ,K} can be written as

PX(x) =

K∏
k=1

β
1[x=k]
k ,

where 1[·] is the indicator function. This can be similar to what you have done in previous homeworks to
write the likelihood under a Bernoulli model, which is just a categorical distribution with K = 2.

1

(e) [2 pts] Write the log likelihood `(θ, θstart, θstop, γ) for the training set D.

(f) [6 pts] Show that the log likelihood `(θ, θstart, θstop, γ) can be written as a separable function of the
parameters θstart, and θi,:, θi,stop, γi,: for all i ∈ S, i.e., `(θ, θstart, θstop, γ) = `(θstart) +

∑n
i=1 `(θi,:) +

`(θi,:, θi,stop)+`(γi,:). What are the statistics of the training data needed to evaluate the log likelihood?

The maximum likelihood solution for the log-likelihood cannot just be computed by differentiating and
equating to zero. This is because of the normalization constraints for the distributions, i.e.,

∑m
j=1 θstart,j = 1,

and
∑n

j=1 θi,j + θi,stop = 1,
∑m

j=1 γi,j = 1, for all i ∈ S. The problem can be solved by introducing Lagrange
multipliers for the constraints. We get the following natural estimators:

θ̂ij =
ctrans(i, j)

c(i)
,

θ̂start,j =
ctrans(start, j)

N
,

θ̂i,stop =
ctrans(i, stop)

c(i)
,

γ̂ij =
cobs(i, j)

c(i)
,

where

ctrans(i, j) =

N∑
k=1

Tk−1∑
t=1

1[s
(k)
t = i, s

(k)
t+1 = j],

ctrans(i, stop) =

N∑
k=1

1[s
(k)
Tk

= i, s
(k)
Tk+1 = stop],

ctrans(start, j) =

N∑
k=1

1[s
(k)
0 = start, s

(k)
1 = j],

c(i) =

n∑
j=1

ctrans(i, j) + ctrans(i, stop)

=

N∑
k=1

Tk∑
t=1

1[s
(k)
t = i]

cobs(i, j) =

N∑
k=1

Tk∑
t=1

1[s
(k)
t = i, o

(k)
t = j].

Estimating the parameters of a HMM from labelled data reduces to counting and normalizing.

Inference [12 pts]

Given a fixed HMM, i.e., a HMM with fixed parameters, θ, θstart, θstop, and γ, there are various queries
that we may want to answer. For example, we could want to know what is the probability of a sequence
of observations o1:T , i.e, PO1:T (o1:T). Evaluating this requires marginalizing over all possible sequences of
states that may have generated o1:T , i.e.,

PO1:T (o1:T) =
∑

s1:T∈ST

PS0:T+1,O1:T
(start, s1:T , stop, o1:T). (2)

Doing the summation naively is intractable. An efficient approach will exploit the HMM structure. A more
common query is given a sequence of observations o1:T , what is the most likely sequence of states s1:T that

2

gave rise to o1:T . This is called MAP or Viterbi decoding and it is written as

ŝ1:T = argmax
s1:T

PS0:T+1|O1:T
(start, s1:T , stop|o1:T). (3)

Another common way of decoding predicts the most likely state for each position in the sequence, given
the sequence of observations o1:T and marginalizing out all the other state random variables. This is called
marginal decoding and it is written as

ŝt = argmax
st

PSt|O1:T
(st|o1:T), (4)

for t = 1, . . . , T . The marginal over St can be computed naively as

PSt|O1:T
(st|o1:T) =

∑
s−t∈ST−1

PS0:T+1|O1:T
(start, s1:T , stop|o1:T),

where s−t denotes a state assignment to all state variables except St.

(g) [2 pts] Show that the decoding rule 3 is equivalent to argmaxs1:T P (start, s1:T , stop, o1:T).

(h) [2 pts] What is the time complexity of doing Viterbi decoding naively in terms of the number of
states n, the number of observations m, and the length of the sequence T (i.e. evaluating ŝ1:T =
argmaxs1:T P (start, s1:T , stop, o1:T))?

We will now show how the factorization 2 can be used to derive an efficient algorithm for Viterbi decoding.
The derivation is similar to the one for Forward-Backward algorithm seen in class.

(i) [6 pts] Derive an efficient algorithm to do Viterbi decoding. Hint: Start with the equivalent definition
given in (g), substitute the definition of the joint, use the fact that not all terms in the product de-
pend on all the variables. Consider defining the following recursion α1(j) = PS|S′(j|start)PO|S(o1|j),
αt+1(j) = maxi∈S αt(i)PS|S′(j|i)PO|S(ot+1|j), for t = 1, . . . , T−1, and αT+1 = maxi∈S αT (i)PS|S′(stop|i).
The term αt(j) can be interpreted as the maximum score for a partial state assignment ending at state
j at step t.

(j) [2 pts] What is the computational complexity of Viterbi decoding using the algorithm derived in the
previous exercise?

Implementation [18 pts]

We will now train a HMM for a Natural Language Processing task: Named Entity Recognition (NER). In
what follows we interchangeably talk of states as tags or labels and observations as words. We will learn the
parameters from labelled data, implement Viterbi decoding and compare it to a simple baseline that does
independent predictions for each label in the sequence.

Named Entity Recognition is a sequence labelling task that seeks to identify elements in text from specific
categories. The labels have a BIO specifiers (begin, inside, and outside). In our case, there are four categories:
Person, Organization, Location and Miscellaneous. There are nine labels total: eight for the cross-product
of the four categories with the begin and inside specifiers; one for the outside specifier. An example sentence
from the dataset is shown below:

B-LOC O B-PER O B-LOC O B-PER O

Iraq ’s Saddam meets Russia ’s Zhirinovsky .

There are structural constraints in the tagging scheme: a label of type inside has to be preceded by a label
of type begin of the same category.

A NER dataset from the CoNNL 2003 shared task has been provided in data.mat. Both the train and test
datasets have been preprocessed, and both tags and words have been indexed and substituted by integers.
The file data.mat contains:

• train: Structure with the training data.

3

– word seqs: Cell array with the word sequences.

– tag seqs: Cell array with the tag sequences. Matching dimensions to word seqs.

• test Test dataset. Same structure as the training dataset.

• index to word : Contains the mapping from integers to words used to preprocess the data. Words that
were not in the vocabulary were mapped to OOV. Can be used with the function map to readable to
get back the (preprocessed) readable sequences.

• index to tag : Same as index to word, but for tags. For tags there is no OOV equivalent.

For the implementation questions, you will be asked to complete parts of the code provided. The naming
convention used in the code follows in part the notation in the writeup. We briefly describe the structure of
the code provided.

• baseline train.m: Contains the function [baseline params] = baseline train(state seqs, obs seqs,

n, m). Used to train a model that does independent prediction for each of the labels just based on
the observation of that position. The statistics that you will need to collect here are the same as the
observation statistics for the HMM.

• baseline decode.m: Contains the function [pred state seqs] = baseline decode(baseline params,

obs seqs) You will need to do baseline decoding using the parameters computed in baseline train,
i.e., for each word in each of the sentences, predict the tag that occurred most frequently with that
word.

• hmm train.m: Contains the function [hmm params] = hmm train(state seqs, obs seqs, n, m, alpha obs,

alpha trans. You will have to collect the statistics from the training data that are necessary to eval-
uate the estimators for the parameters of the HMM.

• hmm decode.m: Contains the function [pred state seqs] = hmm decode(hmm params, obs seqs).
You will have to implement the Viterbi decoding here.

• map to readable.m: Used to map sequences back to a readable format.

• main.m: Code for training the model and running all the experiments. After the functions have been
completed, these can be used to obtain test and train results.

(k) [3 pts] Complete the function [baseline params] = baseline train(state seqs, obs seqs, n,

m). Compute the co-occurrence counts of state-observation pairs.

(l) [2 pts] Complete the function [pred state seqs] = baseline decode(baseline params, obs seqs).
For each observation, you will predict the label that occurred most frequently with it.

(m) [5 pts] Complete the function [hmm params] = hmm train(state seqs, obs seqs, n, m, alpha obs,

alpha trans) . You will need to collect the statistics from the training data according to the expres-
sions computed in the estimation section. The arguments alpha obs and alpha trans are parameters
for add-k smoothing for the state observation probabilities and the state transition probabilities.

(n) [8 pts] Complete the function [pred state seqs] = hmm decode(hmm params, obs seqs). You will
need to implement the computation of the Viterbi messages and the backpointers to recover the most
probable label sequence. Note: you will work in log-probabilities, rather than directly with proba-
bilities, to avoid numeric underflow. This does not change the maximum probability labelling of the
sequence.

Analysis [4 pts]

(o) [2 pts] Run the code with alpha obs = 0.1 and alpha trans = 0. What are the results that you get?
How do you justify the difference in accuracy between the baseline and Viterbi decoding?

(p) [2 pts] Run the code with alpha obs = 0 and alpha trans = 0. Are the results for Viterbi better or
worse that in the previous exercise? How do you justify the difference?

4

