
Introduction

In this assignment, you will implement Q-learning using deep learning function approxima-
tors in OpenAI Gym. You will work with the Atari game environments, and learn how
to train a Q-network directly from pixel inputs. The goal is to understand and implement
some of the techniques that were found to be important in practice to stabilize training and
achieve better performance. As a side effect, we also expect you to get comfortable using
Tensorflow or Keras to experiment with different architectures and different hyperparameter
configurations and gain insight into the importance of these choices on final performance
and learning behavior.

Before starting your implementation, make sure that you have Tensorflow and the Atari
environments correctly installed. For this assignment you may choose either Enduro (Enduro-v0)
or Space Invaders (SpaceInvaders-v0). In spite of this, the observations from other Atari
games have the same size so you can try to train your models in the other games too. Note
that while the size of the observations is the same across games, the number of available
actions may be different from game to game.

Q-learning and variants

Due to the state space complexity of Atari environments, we represent Q-functions using a
class of parametrized function approximators Q = {Qw | w ∈ Rp}, where p is the number
of parameters. Remember that in the tabular setting, given a 4-tuple of sampled experience
(s, a, r, s′), the vanilla Q-learning update is

Q(s, a) := Q(s, a) + α

(
r + γmax

a′∈A
Q(s′, a′)−Q(s, a)

)
, (1)

where α ∈ R is the learning rate. In the function approximation setting, the update is
similar:

w := w + α

(
r + γmax

a′∈A
Qw(s′, a′)−Qw(s, a)

)
∇wQw(s, a). (2)

Q-learning can be seem as a pseudo stochastic gradient descent step on

`(w) = Es,a,r,s′

(
r + γmax

a′∈A
Qw(s′, a′)−Qw(s, a)

)2

,

where the dependency of maxa′∈AQw(s′, a′) on w is ignored, i.e., it is treated as a fixed
target.

Many of the methods that you will implement in this homework are variants of update (2),
namely in the way the targets are constructed and maintained. For example, the deep Q-
learning implementation described in [1, 2] maintains two Q-networks: the online network,
which plays the same role of the Qw terms Qw(s, a) and ∇wQw(s, a) in update (2), and the
target network, which is used in the target in update (2). The update in this case is

w := w + α

(
r + γmax

a′∈A
Qw−(s′, a′)−Qw(s, a)

)
∇wQw(s, a). (3)

1

The target Q-network is assigned every so often to be equal to the online Q-network, and is
kept frozen until the next assignment. This helps to stabilize the learning procedure, as with
deep learning function approximators, updating the target Q-network with every update to
the online Q-network proves too unstable.

Double Q-learning [3] also maintains two Q-networks, but they do not play a fixed role
as online and target networks as in [1, 2]. Let us call the networks Qw1 and Qw2 ; at each
update step, we flip a fair coin and either do

w1 := w1 + α

(
r + γQw2(s

′, arg max
a′∈A

Qw1(s
′, a′))−Qw1(s, a)

)
∇w1Qw1(s, a) (4)

or

w2 := w2 + α

(
r + γQw1(s

′, arg max
a′∈A

Qw2(s
′, a′))−Qw2(s, a)

)
∇w2Qw2(s, a).

As at each update the role of Qw1 and Qw2 is determined stochastically with probability 0.5,
these networks play a symmetric role. This helps with the over-optimism of the targets in
update (2).

In this homework, we also ask you to implement the dueling deep Q-network described
in [4]. This amounts to a slightly different Q-network architecture from the one in [1, 2]. Most
models will be trained using experience replay [1, 2], meaning that the 4-tuples (s, a, r, s′)
will be sampled from the replay buffer rather than coming directly from the online experience
of the agent.

Guidelines on hyperparameters

In this assignment you will implement improvements to the simple Q-learning update that
make learning more stable and the resulting trained model more performant. We briefly
comment on the meaning of each hyperparameter and some reasonable values for them.

• Discount factor γ: 0.99.

• Learning rate α: 0.0001; a schedule is often used where the learning rates is decreased
with increasing iteration count.

• Exploration probability ε: Similarly to the learning rate, a schedule is often used, with
the probability of exploration decreasing linearly with increasing iteration count.

• Number of environment interactions: 5000000; depending on the model, more or fewer
interactions may be needed for convergence.

• Number of frames to feed to the Q-network: 4; as a single frame may not be a good
representation of the current state of the MDP (e.g., in Space Invaders, from a single
frame you cannot tell if spaceships are moving left or right), multiple frames are fed to
the Q-network to compute the Q-values.

2

• Input image resizing: 84 × 84 × 1: using models of moderate size in the original
210×160×3 image is computationally expensive, therefore we resize the original image
to make it more manageable. The image becomes 1 channel because it is converted
to grayscale. You can use the Python Image Library to do the conversions: from PIL

import Image.

• Replay buffer size: 100000.

• Target Q-network reset interval: 10000; this hyperparameter only matters when we are
maintaining both an online and target network; after this number of updates to the
online Q-network, the target Q-network is set to be the same as the online Q-network.

• Batch size: 32; typically, rather doing the update as in (2), we use a small batch of
sampled experiences from the replay buffer; this provides better hardware utilization.

• ...

The implementations of the methods in this homework have multiple hyperparameters.
These hyperparameters (and others) are part of the experimental setup described in [1, 2].
For the most part, we strongly suggest you to follow the experimental setup described in each
of the papers. [1, 2] was published first; your choice of hyperparameters and the experimental
setup should follow closely their setup. [3, 4] follow for the most part the setup of [1, 2]. We
recommend you to read all these papers. We give pointers for the most relevant portions for
you to read in a future section.

Guidelines on implementation

This homework requires a significant implementation effort. It is hard to read through the
papers once and know immediately what you will need to be implement. We suggest you
to think about the different components (e.g., image preprocessor, replay buffer, Tensorflow
or Keras model definition, model updater, model runner, exploration schedule, learning rate
schedule, ...) that you will need to implement for each of the different methods that we
ask you about, and then read through the papers having these components in mind. By
this we mean that you should try to divide and implement small components with well-
defined functionalities rather than try to implement everything at once. Much of the code
and experimental setup is shared between the different methods so identifying well-defined
reusable components will save you trouble.

This is a challenging assignment. Please start early!

Guidelines on references

We recommend you to read all the papers mentioned in the references. There is a significant
overlap between different papers, so in reality you should only need to read certain sections to
implement what we ask of you. We provide pointers for relevant sections for this assignment
for your convenience

3

The work in [1] contains the description of the experimental setup. Read paragraph 3 of
section 4 for a description of the replay memory; read Algorithm 1; read paragraphs 1 and 3
of section 4.1 for preprocessing and model architecture respectively; read section 5 for the
rest of the experimental setup (e.g., reward truncation, optimization algorithm, exploration
schedule, and other hyperparameters). The methods section in [2], may clarify a few details
so it may be worth to read selectively if questions remain after reading [1].

In [3], read ”Double Q-learning” for the definition of the double Q-learning target; read
paragraph 3 of ”Empirical results” for some brief comments on the experimental setup fol-
lowed. In [4], look at equation 11 and read around three paragraphs up and down for how
to set up the dueling architecture; read paragraph 2 of section 4.2 for comments on the
experimental setup and model architecture. It may be worth to skim additional sections of
all these papers.

Questions

1. [5pts] Show that update (1) and update (2) are the same when the functions in Q are
of the form Qw(s, a) = wTφ(s, a), with w ∈ R|S||A| and φ : S × A→ R|S||A|, where the
feature function φ is of the form φ(s, a)s′,a′ = 1[s′ = s, a′ = a], where 1 denotes the
indicator function which evaluates to 1 if the condition evaluates to true and evaluates
to 0 if the condition evaluates to false. Note that the coordinates in the vector space
R|S||A| can be seem as being indexed by pairs (s′, a′), where s′ ∈ S, a′ ∈ A.

2. [5pts] Implement a linear Q-network (no experience replay or target fixing). Use the
the experimental setup of [1, 2] to the extent possible. Use the preprocessed state
image pixels as your “features”.

3. [10pts] Implement a linear Q-network with experience replay and target fixing. Use
the experimental setup of [1, 2] to the extent possible.

4. [5pts] Implement a linear double Q-network. Use the the experimental setup of [1, 2]
to the extent possible.

5. [35pts] Implement the deep Q-network as described in [1, 2]. This should converge.
You should run for as many iterations as necessary to show that your agent is converg-
ing. We recommend you run for at least a million. This will take some time to run!
You may use the cluster to train this agent once you have worked out the bugs.

6. [20pts] Implement the double deep Q-network as described in [3].

7. [20pts] Implement the dueling deep Q-network as described in [4].

5pts out of the total of 100pts are reserved for overall report quality. We recommend you
to follow closely the experimental setup described in the papers. Even if you fully replicate
the experimental from the paper, we expect you to summarize it briefly in the report once.
After that you can simply describe differences from it and mention that you used the same
experimental setup otherwise if that was the case.

4

For each of the models, we want you to generate a performance plot across time. To do
this, you should periodically run (e.g., every 10000 or 100000 updates to the Q-network)
the policy induced by the current Q-network for 20 episodes and average the total reward
achieved. Note that in this case we are interested in total reward without discounting or
truncation. Also briefly comment on the training behavior and whether you find something
unexpected in the results obtained.

Additionally, for each of the models, we want you to generate a video capture of an
episode played by your trained Q-network at different points of the training process (0/3,
1/3, 2/3, and 3/3 through the training process) of either Enduro or Space Invaders. An
episode is defined as the interval between the moment you start the game until the moment
you lose all lives. You can use the Monitor wrapper to generate both the performance curves
(although only for ε-greedy in this case) and the video captures. Look at the OpenAI Gym
tutorial for more details on how to use it. We recommend that you periodically checkpoint
your network files and then reload them after training to generate the evaluation curves.

Finally, construct a table with the average total reward per episode in 100 episodes
achieved by your fully trained model. Also show the information about the standard devi-
ation, i.e., each entry should have the format mean ± std. There should be an entry per
model. Briefly comment on the results of this table.

You should submit your report, video captures, and code through Gradescope. Your code
should be reasonably well-commented in key places of your implementation.

References

[1] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

[2] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529–533,
2015.

[3] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with
double q-learning. 2016.

[4] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and Nando
de Freitas. Dueling network architectures for deep reinforcement learning. arXiv preprint
arXiv:1511.06581, 2015.

5

