

 Neel Krishnaswami

 Work

 I am a professor of computer science at
 the Computer Laboratory,
 at the University of
 Cambridge. I am also a fellow
 of Trinity College.

My research interests lie at the intersection of program
 verification; programming language design; and logic, semantics
 and type theory.

Contact

 	Postal:
	
	 Neel Krishnaswami

	 University of Cambridge

	 Computer Laboratory

	 William Gates Building

	 15 JJ Thomson Avenue

	 Cambridge CB3 0FD, UK

	

	Office: FS15

	Telephone: +44 122 376 3617

	Email: <nk480@cl.cam.ac.uk>

	Blog: Semantic Domain

	Github: https://github.com/neel-krishnaswami

	ORCID id: https://orcid.org/0000-0003-2838-5865

	
	 Publications

	
	 Draft Papers

	
	 Students

	
	 History

	
 Conference Papers and Journal Articles

 	Explicit Refinement Types, Jad Ghalayini and Neel Krishnaswami. Accepted for publication at ICFP 2023.

	

	 → Abstract
	 → BibTeX
	

	
	
 We present λ-ert, a type theory supporting refinement types with explicit proofs. Instead of solving refinement constraints with an SMT solver like DML and Liquid Haskell, our system requires and permits programmers to embed proofs of properties within the program text, letting us support a rich logic of properties including quantifiers and induction. We show that the type system is sound by showing that every refined program erases to a simply-typed program, and by means of a denotational semantics, we show that every erased program has all of the properties demanded by its refined type. All of our proofs are formalised in Lean 4.
	

	

@article{ert,
 author = {Ghalayini, Jad and Krishnaswami, Neel},
 title = {Explicit Refinement Types},
 year = {2023},
 issue_date = {September 2023},
 publisher = {Association for Computing Machinery},
 address = {New York, NY, USA},
 volume = {8},
 number = {ICFP},
 journal = {Proceedings of the ACM on Programming Languages},
 month = {sep},
 numpages = {28},
 keywords = {refinement types, first order logic, denotational semantics}
}

 	

	
	flap: A Deterministic Parser with Fused Lexing, Jeremy Yallop, Ningning Xie, and Krishnaswami. Accepted for publication at PLDI 2023.

	A long version with technical appendix is available on the ArXiV.

	

	 → Abstract
	 → BibTeX
	

	
	
		Lexers and parsers are typically defined separately
		and connected by a token stream. This separate
		definition is important for modularity, but harmful
		for performance.
	

	
		We show how to fuse separately-defined lexers and
		parsers, drasticaly improving performance without
		compromising modularity. We propose a deterministic
		variant of Greibach Normal Form that ensures de-
		terministic parsing with a single token of lookahead
		and makes fusion strikingly simple, and prove that
		normalizing context free expressions into the
		deterministic normal form is semantics-preserving. Our
		staged parser combinator library, flap, provides a
		standard interface, but generates specialized
		token-free code that runs two to six times faster than
		ocamlyacc on a range of benchmarks.
	

	

@article{flap,
 author = {Jeremy Yallop and
 Ningning Xie and
 Neel Krishnaswami
 },
 title = {flap: A Determiministic Parser with Fused Lexing},
 journal = {{PACMPL}},
 volume = {7},
 number = {{PLDI}},
 year = {2023},
 note = {\url{http://www.cl.cam.ac.uk/~nk480/flap.pdf}}
}

 	

	CN: Verifying Systems C Code with Separation-Logic Refinement Types, Christopher Pulte, Dhruv C. Makwana, Thomas Sewell, Kayvan Memarian, Peter Sewell, Neel Krishnaswami. Accepted for publication at POPL 2023.

	

	 → Abstract
	 → BibTeX
	

	
	 Despite significant progress in the verification of
		 hypervisors, operating systems, and compilers, and in
		 verifi- cation tooling, there exists a wide gap
		 between the approaches used in verification projects
		 and conventional development of systems software. We
		 see two main challenges in bringing these closer
		 together: verification handling the complexity of
		 code and semantics of conventional systems software,
		 and verification usability.

	 We describe an experiment in verification tool
		 design aimed at addressing some aspects of both: we
		 design and implement CN, a separation-logic
		 refinement type system for C systems software, aimed
		 at predictable proof automation, based on a realistic
		 semantics of ISO C. CN reduces refinement typing to
		 decidable propositional logic reasoning, uses
		 first-class resources to support pointer aliasing and
		 pointer arithmetic, features resource inference for
		 iterated separating conjunction, and uses a novel
		 syntactic restriction of ghost variables in
		 specifications to guarantee their successful
		 inference. We implement CN and formalise key aspects
		 of the type system, including a soundness proof of
		 type checking. To demonstrate the usability of CN we
		 use it to verify a substantial component of Google’s
		 pKVM hypervisor for Android.

	

@article{cn,
 author = {Christopher Pulte and
 Dhruv C. Makwana and
 Thomas Sewell and
 Kayvan Memarian and
 Peter Sewell and
 Neel Krishnaswami
 },
 title = {CN: Verifying Systems C Code with Separation-Logic Refinement Types},
 journal = {{PACMPL}},
 volume = {7},
 number = {{POPL}},
 year = {2023},
 note = {\url{http://www.cl.cam.ac.uk/~nk480/cn.pdf}}
}

 	

	
	
Provably Correct, Asymptotically Efficient, Higher-Order Reverse-Mode
Automatic Differentiation,
Faustyna Krawiec, Simon Peyton-Jones, Neel Krishnaswami, Tom Ellis, Richard
A. Eisenberg, and Andrew Fitzgibbon. Accepted for publication at POPL 2022.

	

	 → Abstract
	 → BibTeX
	

	
	
		 In this paper, we give a simple and efficient
		 implementation of reverse-mode automatic
		 differentiation, which both extends easily to
		 higher-order functions, and has run time and memory
		 consumption linear in the run time of the original
		 program. In addition to a formal description of the
		 translation, we also describe an implementation of
		 this algorithm, and prove its correctness by means of
		 a logical relations argument.
	

	

@article{higher-order-ad,
 author = {Faustyna Krawiec and
 Simon Peyton-Jones and
 Neel Krishnaswami and
 Tom Ellis and
 Richard A. Eisenberg and
 Andrew Fitzgibbon
 },
 title = {Provably Correct, Asymptotically Efficient, Higher-Order Reverse-Mode Automatic Differentiation},
 journal = {{PACMPL}},
 volume = {6},
 number = {{POPL}},
 year = {2022},
 note = {\url{http://www.cl.cam.ac.uk/~nk480/higher-order-ad.pdf}}
}
		

 	

	
	Adjoint Reactive GUI Programming, Christial Uldal Graulund, Dimitrij Szamozvancev, and Neel Krishnaswami. Accepted for publication at FOSSACS 2020.. Link to ArXiV version

	

	 → Abstract
	 → BibTeX
	

	
	
		Most interaction with a computer is done via a
		graphical user interface. Traditionally, these are
		implemented in an imperative fashion using shared
		mutable state and callbacks. This is efficient, but is
		also difficult to reason about and error
		prone. Functional Reactive Programming (FRP) provides
		an elegant alternative which allows GUIs to be
		designed in a declarative fashion. However, most FRP
		languages are synchronous and continually check for
		new data. This means that an FRP-style GUI will "wake
		up" on each program cycle. This is problematic for
		applications like text editors and browsers, where
		often nothing happens for extended periods of time,
		and we want the implementation to sleep until new data
		arrives. In this paper, we present an asynchronous FRP
		language for designing GUIs called λ𝖶𝗂𝖽𝗀𝖾𝗍. Our
		language provides a novel semantics for widgets, the
		building block of GUIs, which offers both a natural
		Curry--Howard logical interpretation and an efficient
		implementation strategy.

	

@InProceedings{10.1007/978-3-030-71995-1_15,
 author="Graulund, Christian Uldal and Szamozvancev, Dmitrij and Krishnaswami, Neel",
 editor="Kiefer, Stefan and Tasson, Christine",
 title="Adjoint Reactive GUI Programming",
 booktitle="Foundations of Software Science and Computation Structures",
 year="2021",
 publisher="Springer International Publishing",
 address="Cham",
 pages="289--309",
 isbn="978-3-030-71995-1"
}
	

 	

	Bidirectional Typechecking, Jana Dunfield and Neel Krishnaswami. To appear in ACM Computing Surveys. Link to ArXiV version

	

	 → Abstract
	 → BibTeX
	

	
	
		Bidirectional typing combines two modes of typing:
		type checking, which checks that a program satisfies a
		known type, and type synthesis, which determines a
		type from the program. Using checking enables
		bidirectional typing to break the decidability barrier
		of Damas-Milner approaches; using synthesis enables
		bidirectional typing to avoid the large annotation
		burden of explicitly typed languages. In addition,
		bidirectional typing improves error locality. We
		highlight the design principles that underlie
		bidirectional type systems, survey the development of
		bidirectional typing from the prehistoric period
		before Pierce and Turner's local type inference to the
		present day, and provide guidance for future
		investigations.
	

	

@Unpublished{Dunfield21:bidir-survey,
 author = {Jana Dunfield and Neel Krishnaswami},
 title = {Bidirectional Typing},
 year = {2021},
 note = {\url{arXiv:1908.05839 [cs.PL]}}
}

 	

	Transfinite Step-Indexing for Termination, Simon Spies, Neel Krishnaswami and Derek Dreyer. Accepted for publication at POPL 2021.

	 (See also the MPI website, and also the PDF with full proofs.)

	

	 → Abstract
	 → BibTeX
	

	
	
		 Step-indexed logical relations are an extremely
		 useful technique for building
		 operational-semantics-based models and program logics
		 for realistic, richly-typed programming
		 languages. They have proven to be indispensable for
		 modeling features like higher-order state,
		 which many languages support but which were difficult
		 to accommodate using traditional denotational
		 models. However, the conventional wisdom is that,
		 because they only support reasoning about finite
		 traces of computation, (unary) step-indexed models
		 are only good for proving safety properties like
		 “well-typed programs don’t go wrong”. There has
		 consequently been very little work on using
		 step-indexing to establish liveness properties, in
		 particular termination.
	

	
		 In this paper, we show that step-indexing can in fact
		 be used to prove termination of well-typed programs --
		 even in the presence of dynamically-allocated,
		 shared, mutable, higher-order state—so long as one’s
		 type system enforces disciplined use of such
		 state. Specifically, we consider a language with
		 asynchronous channels, inspired by promises in
		 JavaScript, in which higher-order state is used to
		 implement communication, and linearity is used to
		 ensure termination. The key to our approach is to
		 generalize from natural number step-indexing to
		 transfinite step-indexing, which enables us to
		 compute termination bounds for program expressions in
		 a compositional way. Although transfinite
		 step-indexing has been proposed previously, we are
		 the first to apply this technique to reasoning about
		 termination in the presence of higher-order state.
	

	

@article{seminaive-datafun,
 author = {Simon Spies and
 Neel Krishnaswami and
 Derek Dreyer},
 title = {Transfinite Step-Indexing for Termination},
 journal = {{PACMPL}},
 volume = {5},
 number = {{POPL}},
 pages = {13:1--1:328},
 year = {2021}
 note = {\url{http://www.cl.cam.ac.uk/~nk480/transfinite-step-indexing.pdf}}
}

 	

	
	Recovering Purity with Comonads and Capabilities, Vikraman Chaudhury and Neel Krishnaswami. Accepted for publication at ICFP 2020.

	See also the technical report with complete proofs.
	

	 → Abstract
	 → BibTeX
	

	
	
		In this paper, we take a pervasively effectful (in the
		style of ML) typed lambda calculus, and show how to
		extend it to permit capturing pure expressions with
		types. Our key observation is that, just as the pure
		simply- typed lambda calculus can be extended to
		support effects with a monadic type discipline, an
		impure typed lambda calculus can be extended to
		support purity with a comonadic type discipline.
	

	
		We establish the correctness of our type system via a
		simple denotational model, which we call the
		capability space model. Our model formalizes the
		intuition common to systems programmers that the
		ability to perform effects should be controlled via
		access to a permission or capability, and that a
		program is capability- safe if it performs no effects
		that it does not have a runtime capability for. We
		then identify the axiomatic categorical structure that
		the capability space model validates, and use these
		axioms to give a categorical semantics for our
		comonadic type system. We then give an equational
		theory (substitution and the call-by-value β and η
		laws) for the imperative lambda calculus, and show its
		soundness relative to this semantics.
	

	
		Finally, we give a translation of the pure
		simply-typed lambda calculus into our comonadic
		imperative calculus, and show that any two terms which
		are βη-equal in the STLC are equal in the equational
		theory of the comonadic calculus, establishing that
		pure programs can be mapped in an equation-preserving
		way into our imperative calculus.
	

	

 	

@article{comonadic-capabilities,
 author = {Vikraman Chaudhury and
 Neel Krishnaswami },
 title = {Recovering Purity with Comonads and Capabilities},
 journal = {{PACMPL}},
 volume = {4},
 number = {{POPL}},
 pages = {111:1--111:328},
 year = {2021}
 note = {\url{http://www.cl.cam.ac.uk/~nk480/icfp20-cap.pdf}}
}

	Seminaïve Evaluation for a Higher-Order Functional Language, Michael Arntzenius and Neel Krishnaswami. Accepted for publication at POPL 2020. Won Distinguished Paper Award.

	

	 → Abstract
	 → BibTeX
	

	
	
		 One of the workhorse techniques for implementing
		 bottom-up Datalog engines is seminaïve
		 evaluation. This optimization improves the
		 performance of Datalog’s most distinctive feature:
		 recursively defined predicates. These are computed
		 iteratively, and under a naïve evaluation strategy,
		 each iteration recomputes all previous
		 values. Seminaïve evaluation computes a safe
		 approximation of the difference between
		 iterations. This can asymptotically improve the
		 performance of Datalog queries.
	

	
		 Seminaïve evaluation is defined partly as a program
		 transformation and partly as a modified iteration
		 strategy, and takes advantage of the first-order
		 nature of Datalog code. This paper extends the
		 seminaïve transformation to higher-order programs
		 written in the Datafun language, which extends
		 Datalog with features like first-class relations,
		 higher-order functions, and datatypes like sum types.
	

	

@article{seminaive-datafun,
 author = {Michael Arntzenius and
 Neel Krishnaswami},
 title = {Seminaïve Evaluation for a Higher-Order Functional Language},
 journal = {{PACMPL}},
 volume = {3},
 number = {{POPL}},
 pages = {9:1--9:28},
 year = {2020}
 note = {\url{http://www.cl.cam.ac.uk/~nk480/seminaive-datafun.pdf}}
}

 	

	
	A Typed, Algebraic Approach to Parsing, Neel Krishnaswami and Jeremy Yallop. Draft, accepted for publication at PLDI 2019. Won Distinguished Paper Award.

	

	 → Abstract
	 → BibTeX
	

	
	
		In this paper, we recall the definition of the
		context-free expressions (or µ-regular expressions),
		an algebraic presentation of the context-free
		languages. Then, we define a core type system for the
		context-free expressions which gives a compositional
		criterion for identifying those context-free
		expressions which can be parsed unambiguously by
		predictive algorithms in the style of recursive
		descent or LL(1).

	
		Next, we show how these typed grammar expressions can
		be used to derive a parser combinator library which
		both guarantees linear-time parsing with no
		backtracking and single-token lookahead, and which
		respects the natural denotational semantics of
		context-free expressions. Finally, we show how to
		exploit the type information to write a staged version
		of this library, which produces dramatic increases in
		performance, even outperforming code generated by the
		standard parser generator tool ocamlyacc.
	

	

@InProceedings{parsing-pldi19,
 author = {Neel Krishnaswami and Jeremy Yallop},
 title = {A Typed, Algebraic Approach to Parsing},
 booktitle = {Programming Language Design and Implementation (PLDI)},
 month = jun,
 year = {2019},
 note = {\url{http://www.cl.cam.ac.uk/~nk480/parsing.pdf}}
}

 	

	NumLin: Linear Types for Linear Algebra, Dhruv Makwana and Neel Krishnaswmi. Draft, accepted for publication at ECOOP 2019.

	

	 → Abstract
	 → BibTeX
	

	
	 We present NumLin, a functional programming language
		designed to express the APIs of low-level linear
		algebra libraries (such as BLAS/LAPACK) safely and
		explicitly, through a brief description of its key
		features and several illustrative examples. We show
		that NumLin’s type system is sound and that its
		implementation improves upon naïve implementations of
		linear algebra programs, almost towards C-levels of
		performance. Lastly, we contrast it to other recent
		developments in linear types and show that using
		linear types and fractional permissions to express the
		APIs of low-level linear algebra libraries is a simple
		and effective idea.
	

	

@InProceedings{numlin-ecoop19,
 author = {Dhruv Makwana and Neel Krishnaswami},
 title = {NumLin: Linear Types for Linear Algebra},
 booktitle = {European Conference On Programming languages (ECOOP)},
 month = jul,
 year = {2019},
 note = {\url{http://www.cl.cam.ac.uk/~nk480/numlin.pdf}}
}

 	

	A Program Logic for First-Order Encapsulated WebAssembly, Conrad Watt, Petar Maksimov, Neel Krishnaswami, Phillipa Gardner. Draft, accepted for publication at ECOOP 2019.

	

	 → Abstract
	 → BibTeX
	

	
	 We introduce Wasm Logic, a sound program logic for
	 first-order, encapsulated WebAssembly.

	 We design a novel assertion syntax, tailored to
	 WebAssembly's stack-based semantics and the strong
	 guarantees given by WebAssembly's type system, and show
	 how to adapt the standard separation logic triple and
	 proof rules in a principled way to capture WebAssembly's
	 uncommon structured control flow. Using Wasm Logic, we
	 specify and verify a simple WebAssembly B-tree library,
	 giving abstract specifications independent of the
	 underlying implementation.

	 We mechanise Wasm Logic and its soundness proof in
	 full in Isabelle/HOL. As part of the soundness proof, we
	 formalise and fully mechanise a novel, big-step
	 semantics of WebAssembly, which we prove equivalent, up
	 to transitive closure, to the original WebAssembly
	 small-step semantics.

	

@InProceedings{wasm-ecoop19,
 author = {Conrad Watt and Petar Maksimov and Neel Krishnaswami and Phillipa Gardner},
 title = {A Program Logic for First-Order Encapsulated WebAssembly},
 booktitle = {European Conference On Programming languages (ECOOP)},
 month = jul,
 year = {2019},
 note = {\url{http://www.cl.cam.ac.uk/~nk480/wasm-pl.pdf}}
}

 	

	ISA Semantics for ARMv8-A, RISC-V, and CHERI-MIPS, Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell, Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel Krishnaswami, Peter Sewell. Accepted for publication at POPL 2019.
	

	 → Abstract
	 → BibTeX
	

	
	
		Architecture specifications notionally define the
		fundamental interface between hardware and software:
		the envelope of allowed behaviour for processor
		implementations, and the basic assumptions for
		software development and verification. But in
		practice, they are typically prose and pseudocode
		documents, not rigorous or executable artifacts,
		leaving software and verification on shaky ground.
	

	
		In this paper, we present rigorous semantic models for
		the sequential behaviour of large parts of the
		mainstream ARMv8-A, RISC-V, and MIPS architectures,
		and the research CHERI-MIPS architecture, that are
		complete enough to boot operating systems, variously
		Linux, FreeBSD, or seL4. Our ARMv8-A models are
		automatically translated from authoritative
		ARM-internal definitions, and (in one variant) tested
		against the ARM Architecture Validation Suite.
	

	
		We do this using a custom language for ISA semantics,
		Sail, with a lightweight dependent type system, that
		supports automatic generation of emulator code in C
		and OCaml, and automatic generation of proof-assistant
		definitions for Isabelle, HOL4, and (currently only
		for MIPS) Coq. We use the former for validation, and
		to assess specification coverage. To demonstrate the
		usability of the latter, we prove (in Isabelle)
		correctness of a purely functional characterisation of
		ARMv8-A address translation. We moreover integrate the
		RISC-V model into the RMEM tool for (user-mode)
		relaxed-memory concurrency exploration. We prove (on
		paper) the soundness of the core Sail type system.
	

	
		We thereby take a big step towards making the
		architectural abstraction actually well-defined,
		establishing foundations for verification and
		reasoning.
	

	

@inproceedings{sail-popl2019,
 author = {Alasdair Armstrong and Thomas Bauereiss and Brian Campbell and Alastair Reid and Kathryn E. Gray and Robert M. Norton and Prashanth Mundkur and Mark Wassell and Jon French and Christopher Pulte and Shaked Flur and Ian Stark and Neel Krishnaswami and Peter Sewell},
 title = {{ISA} Semantics for {ARMv8-A, RISC-V, and CHERI-MIPS}},
 optcrossref = {},
 optkey = {},
 conf = {POPL 2019},
 booktitle = {\textbf{POPL 2019}: Proc. 46th ACM SIGPLAN Symposium on Principles of Programming Languages},
 optbooktitle = {},
 year = {2019},
 opteditor = {},
 optvolume = {},
 optnumber = {},
 optseries = {},
 optpages = {},
 month = jan,
 optaddress = {},
 optorganization = {},
 optpublisher = {},
 note = {Proc. ACM Program. Lang. 3, POPL, Article 71},
 optnote = {},
 optannote = {},
 doi = {10.1145/3290384}

 	

	Sound
 and Complete Bidirectional Typechecking for Higher-Rank
 Polymorphism and Indexed Types, Jana Dunfield and Neelakantan R. Krishnaswami. Accepted for publication at POPL 2019.
	

	A technical report with complete proofs is also available.

	 → Abstract
	 → BibTeX
	

	
	
		Bidirectional typechecking, in which terms either
		synthesize a type or are checked against a known type,
		has become popular for its scalability, its error
		reporting, and its ease of implementation. Following
		principles from proof theory, bidirectional typing can
		be applied to many type constructs.

		The principles underlying a bidirectional approach to
		indexed types (generalized algebraic
		datatypes) are less clear. Building on
		proof-theoretic treatments of equality, we give a
		declarative specification of typing based
		on focalization. This approach permits
		declarative rules for coverage of pattern matching, as
		well as support for first-class existential types
		using a focalized subtyping judgment.

		We use refinement types to avoid explicitly passing
		equality proofs in our term syntax, making our
		calculus close to languages such as Haskell and
		OCaml. An explicit rule deduces when a type is
		principal, leading to reliable substitution principles
		for a rich type system with significant type
		inference.

		We also give a set of algorithmic typing rules, and
		 prove that it is sound and complete with respect to
		 the declarative system. The proof requires a number
		 of technical innovations, including proving
		 soundness and completeness in a mutually-recursive
		 fashion.

	

@InProceedings{gadt-popl19,
 author = {Jana Dunfield and Neel Krishnaswami},
 title = {Sound and Complete Bidirectional Typechecking for Higher-Rank Polymorphism and Indexed Types},
 booktitle = {Principles of Programming Languages (POPL)},
 month = jan,
 year = {2019},
 note = {\url{http://www.cl.cam.ac.uk/~nk480/gadt.pdf}}
}

 	

	
	Datafun: a Functional Datalog, Michael Arntzenius and Neelakantan R. Krishnaswami. Accepted for publication at ICFP 2016.
	

	 → Abstract
	 → BibTeX
	

	
	 Datalog may be considered either an unusually powerful query language or a
		carefully limited logic programming language. It has been applied successfully
		in a wide variety of problem domains thanks to its "sweet spot" combination
		of expressivity, optimizability, and declarativeness. However, most use-cases
		require extending Datalog in an application-specific manner. In this paper we
		define Datafun, an analogue of Datalog supporting higher-order functional
		programming. The key idea is to track monotonicity via types.
	

	

	 @inproceedings{datafun,
	 author = {Arntzenius, Michael and Krishnaswami, Neelakantan R.},
	 title = {Datafun: A Functional Datalog},
	 booktitle = {Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming},
	 series = {ICFP 2016},
	 year = {2016},
	 isbn = {978-1-4503-4219-3},
	 location = {Nara, Japan},
	 pages = {214--227},
	 numpages = {14},
	 url = {https://doi.acm.org/10.1145/2951913.2951948},
	 doi = {10.1145/2951913.2951948},
	 acmid = {2951948},
	 publisher = {ACM},
	 address = {New York, NY, USA},
	 keywords = {Datalog, Prolog, adjoint logic, denotational semantics, domain-specific languages, functional programming, logic programming, operational semantics, type theory},
	 }

 	

	Mtac: A Monad for Typed Tactic Programming in Coq, Beta Ziliani, Derek Dreyer, Neelakantan R. Krishnaswami, Aleksandar Nanevski, Viktor Vafeiadis. To appear in the Journal of Functional Programming.
	

	A website with Coq source and tutorial is available.

	 → Abstract
	 → BibTeX
	

	
	 Effective support for custom proof automation is
	 essential for large-scale interactive proof development.
	 However, existing languages for automation via tactics
	 either (a) provide no way to specify the behavior of
	 tactics within the base logic of the accompanying
	 theorem prover, or (b) rely on advanced type-theoretic
	 machinery that is not easily integrated into established
	 theorem provers.
	

	 We present Mtac, a lightweight but powerful extension to Coq that
	 supports dependently-typed tactic programming. Mtac tactics have
	 access to all the features of ordinary Coq programming, as well as a
	 new set of typed tactical primitives. We avoid the need to touch the
	 trusted kernel typechecker of Coq by encapsulating uses of these new
	 tactical primitives in a monad, and instrumenting Coq so that it
	 executes monadic tactics during type inference.
	

	

	 @article{mtac-journal,
 	 	title = "Mtac: A monad for typed tactic programming in Coq",
 	 	doi = "10.1017/S0956796815000118",
 	 	publisher = "Cambridge University Press",
 	 	address = "Cambridge, UK",
 	 	author = "Beta Ziliani and Derek Dreyer and Neelakantan R. Krishnaswami and Aleksandar Nanevski and Viktor Vafeiadis",
 	 	volume = "25",
 	 	year = "2015",
 	 	month = "001",
 	 	day = "001",
 	 	url = "https://www.cambridge.org/core/article/mtac-a-monad-for-typed-tactic-programming-in-coq/75B49F20037D8A0F718EAB21C662ABA0",
 	 	journal = "Journal of Functional Programming"
	 }
	

 	

	Integrating Linear and Dependent Types, Neelakantan R. Krishnaswami, Cécilia Pradic, Nick Benton. Accepted for publication at POPL 2015.
	 The technical report with proofs is also available.

	

	 → Abstract
	 → BibTeX

	
	 In this paper, we show how to integrate linear types with
		type dependency, by extending the linear/non-linear
		calculus of Benton to support type dependency.
	

	 Next, we give an application of this calculus by giving a
		proof-theoretic account of imperative programming, which requires
		extending the calculus with computationally irrelevant
		quantification, proof irrelevance, and a monad of computations. We
		show the soundness of our theory by giving a realizability model in
		the style of Nuprl, which permits us to validate not only the
		β-laws for each type, but also the η-laws.
	

	 These extensions permit us to decompose Hoare triples into
		a collection of simpler type-theoretic connectives,
		yielding a rich equational theory for dependently-typed
		higher-order imperative programs. Furthermore, both the
		type theory and its model are relatively simple, even when
		all of the extensions are considered.
	

	

 @InProceedings{dlnl15,
 author = {Neelakantan R. Krishnaswami and Cécilia Pradic and Nick Benton},
 title = {Integrating Linear and Dependent Types},
 booktitle = {Principles of Programming Languages (POPL)},
 month = jan,
 year = {2015},
 note = {\url{http://www.cs.bham.ac.uk/~krishnan/dlnl-paper.pdf}}
 }

	

	Freeze After Writing: Quasi-Deterministic Parallel Programming with LVars and Handlers, Lindsey Kuper, Aaron Turon, Neelakantan R. Krishnaswami, Ryan Newton. Accepted for publication at POPL 2014.

	 → Abstract
 → BibTeX
	

 Deterministic-by-construction parallel programming
 models offer programmers the promise of freedom from
 subtle, hard-to-reproduce nondeterministic bugs in
 parallel code. A principled approach to
 deterministic-by-construction parallel programming with
 shared state is offered by LVars: shared memory
 locations whose semantics are defined in terms of a
 user-specified lattice. Writes to an LVar take the
 least upper bound of the old and new values with respect
 to the lattice, while reads from an LVar can observe
 only that its contents have crossed a specified
 threshold in the lattice. Although it guarantees
 determinism, this interface is quite limited.

 We extend LVars in two ways. First, we add the
 ability to "freeze" and then read the contents of an
 LVar directly. Second, we add the ability to attach
 callback functions to an LVar, allowing events to be
 triggered by writes to it. Together, callbacks and
 freezing enable an expressive and useful style of
 parallel programming. We prove that in a language where
 communication takes place through freezable LVars,
 programs are at worst quasi-deterministic: on every run,
 they either produce the same answer or raise an error.
 We demonstrate the viability of our approach by
 implementing a library for Haskell supporting a variety
 of LVar-based data structures, together with two case
 studies that illustrate the programming model and yield
 promising parallel speedup.

 @InProceedings{kuper14lvish,
 author = {Lindsey Kuper and Aaron Turon and Neelakantan R. Krishnaswami and Ryan Newton},
 title = {Freeze After Writing: Quasi-Deterministic Parallel Programming with LVars and Handlers},
 booktitle = {Principles of Programming Languages (POPL)},
 month = jan,
 year = {2014},
 note = {\url{https://www.cs.indiana.edu/~lkuper/papers/lvish-popl14.pdf}}
 }

	Complete and Easy Bidirectional Typechecking for Higher-Rank Polymorphism, Jana Dunfield and Neelakantan R. Krishnaswami. Accepted for publication at ICFP 2013. A companion tech report with detailed proofs is also available.

 Jana Dunfield has a web page for the paper, too.

 → Abstract
 → BibTeX

 Bidirectional typechecking, in which terms either
 synthesize a type or are checked against a known type,
 has become popular for its scalability (unlike
 Damas-Milner type inference, bidirectional typing
 remains decidable even for very expressive type
 systems), its error reporting, and its relative ease of
 implementation. Following design principles from proof
 theory, bidirectional typing can be applied to many type
 constructs. The principles underlying a bidirectional
 approach to polymorphism, however, are less obvious. We
 give a declarative, bidirectional account of higher-rank
 polymorphism, grounded in proof theory; this calculus
 enjoys many properties such as η-reduction and
 predictability of annotations. We give an algorithm for
 implementing the declarative system; our algorithm is
 remarkably simple and well-behaved, despite being both
 sound and complete.

 @InProceedings{Dunfield13:bidir,
 author = {Jana Dunfield and Neelakantan R. Krishnaswami},
 title = {Complete and Easy Bidirectional Typechecking for Higher-Rank Polymorphism},
 booktitle = {International Conference on Functional Programming (ICFP)},
 month = sep,
 year = {2013},
 note = {\url{arXiv:1306.6032 [cs.PL]}}
 }

	Higher-Order Reactive Programming without Spacetime Leaks, Neelakantan R. Krishnaswami. Accepted for publication at ICFP 2013. The companion tech report with the soundness proof is also available.

 Download the source for the AdjS programming language implementing the theory!

→ Abstract
 → BibTeX

 Functional reactive programming (FRP) is an elegant
 approach to declaratively specify reactive
 systems. However, the powerful abstractions of FRP have
 historically made it difficult to predict and control
 the resource usage of programs written in this
 style.

 In this paper, we give a new language for higher-order
 reactive programming. This language generalizes and
 simplifies prior type systems for reactive programming,
 supporting the use of first-class streams, such as
 streams of streams; first-class functions and
 higher-order operations; and permits encoding many
 temporal operations beyond streams, such as terminatable
 streams, events, and even resumptions with first-class
 schedulers. Furthermore, our language supports an
 efficient implementation strategy permitting us to
 eagerly deallocate old values and statically rule out
 spacetime leaks, a notorious source of
 inefficiency in reactive programs. Furthermore, these
 memory guarantees are achieved without the use
 of a complex substructural type discipline.

 We also show that our implementation strategy of eager
 deallocation is safe, by showing the soundness of our
 type system with a novel step-indexed Kripke logical
 relation.

 @InProceedings{Krishnaswami13:simple-frp,
 author = {Neelakantan R. Krishnaswami},
 title = {Higher-Order Reactive Programming without Spacetime Leaks},
 booktitle = {International Conference on Functional Programming (ICFP)},
 month = sep,
 year = {2013},
 }

	Mtac: A Monad for Typed Tactic Programming in Coq , Beta Ziliani, Derek Dreyer, Neelakantan R. Krishnaswami, Aleksandar Nanevski, Viktor Vafeiadis. Accepted for publication at ICFP 2013.

 See the Mtac homepage for more details, including software!

 → Abstract
 → BibTeX

 Effective support for custom proof automation is
 essential for large-scale interactive proof development.
 However, existing languages for automation via
 tactics either (a) provide no way to specify the
 behavior of tactics statically within the logic of the
 theorem prover or (b) rely on advanced type-theoretic
 machinery that is not easily integrated into established
 theorem provers.

 We present Mtac, a lightweight but powerful
 extension to Coq for supporting dependently-typed tactic
 programming. Mtac tactics have access to all the
 features of ordinary Coq programming, as well as a new
 set of typed tactical primitives. We avoid the need to
 touch the trusted kernel typechecker of Coq by
 encapsulating uses of the new tactical primitives in a
 monad, and instrumenting Coq so that it
 executes monadic tactics during type inference.

 @InProceedings{Ziliani13:mtac,
 author = {Beta Ziliani, Derek Dreyer, Neelakantan R. Krishnaswami, Aleksandar Nanevski, Viktor Vafeiadis},
 title = {Mtac: A Monad for Typed Tactic Programming in Coq},
 booktitle = {International Conference on Functional Programming (ICFP)},
 month = sep,
 year = {2013},
 }

	Internalizing Relational Parametricity in the Extensional Calculus of Constructions, Neelakantan R. Krishnaswami, Derek Dreyer. Accepted for publication at CSL 2013. The tech report with expanded proofs is also be available.

 → Abstract
 → BibTeX

 We give the first relationally parametric model of the
 extensional calculus of constructions. Our model remains
 as simple as traditional PER models of types, but unlike
 them, it additionally permits the relating of terms that
 implement abstract types in different ways. Using our
 model, we can validate the soundness of quotient types, as
 well as derive strong equality axioms for Church-encoded
 data, such as the usual induction principles for Church
 naturals and booleans, and the eta law for strong
 dependent pair types. Furthermore, we show that such
 equivalences, justified by relationally parametric
 reasoning, may soundly be internalized (i.e. added as
 equality axioms to our type theory). Thus, we demonstrate
 that it is possible to interpret equality in a
 dependently-typed setting using parametricity. The key
 idea behind our approach is to interpret types as
 so-called quasi-PERs (or zigzag-complete
 relations), which enable us to model the symmetry and
 transitivity of equality while at the same time allowing
 for different representations of abstract types.

 @InProceedings{KrishnaswamiDreyer13:relpar,
 author = {Neelakantan R. Krishnaswami, Derek Dreyer},
 title = {Internalizing Relational Parametricity in the Extensional Calculus of Constructions},
 booktitle = {Computer Science Logic (CSL)},
 month = sep,
 year = {2013},
 }

	Superficially Substructural Types, Neelakantan R. Krishnaswami, Aaron Turon, Derek Dreyer, Deepak Garg. Accepted for publication at ICFP 2012. The extended tech report is also available.

 → Abstract
	 → BibTeX

 Many substructural type systems have been proposed for
 controlling access to shared state in higher-order
 languages. Central to these systems is the notion of a
 resource, which may be split into disjoint
 pieces that different parts of a program can manipulate
 independently without worrying about interfering with
 one another. Some systems support a logical
 notion of resource (such as permissions), under which
 two resources may be considered disjoint even if they
 govern the same piece of state. However, in
 nearly all existing systems, the notions of resource and
 disjointness are fixed at the outset, baked into the
 model of the language, and fairly coarse-grained in the
 kinds of sharing they enable.

	

 In this paper, inspired by recent work on "fictional
 disjointness" in separation logic, we propose a simple
 and flexible way of enabling any module in a program to
 create its own custom type of splittable resource
 (represented as a commutative monoid), thus providing
 fine-grained control over how the module's private state
 is shared with its clients. This functionality can be
 incorporated into an otherwise standard substructural
 type system by means of a new typing rule we call
 the sharing rule, whose soundness we prove
 semantically via a novel resource-oriented Kripke
 logical relation.

	
	
	 @inproceedings{krishnaswami-turon-dreyer-garg:superficial,
	 title = {Superficially Substructural Types},
	 author = {Neelakantan R. Krishnaswami and Aaron Turon and Derek Dreyer and Deepak Garg},
	 	booktitle = {Proceedings of the 17th annual ACM SIGPLAN-SIGACT International Conference on Functional Programming},
	 	series = {ICFP '12},
	 year = {2012},
	 month = {September},
	 day = {10-12},
	 location = {Copenhagen, Denmark},
	 	publisher = {ACM},
	 	address = {New York, NY, USA},
	 	keywords = {linear logic, aliasing, separation logic, sharing, step-indexing, logical relations},
	 }
	

	

	Adding Equations to System F Types, Neelakantan R. Krishnaswami, Nick Benton. Appeared at ESOP 2012.

	
	
	 → Abstract
	 → BibTeX
	

	
	 We present an extension of System F with types for
	 term-level equations. This internalization of the rich
	 equational theory of the polymorphic lambda calculus
	 yields an expressive core language, suitable for
	 formalizing features such as Haskell's rewriting rules
	 mechanism or Extended ML signatures.

	

	
	
	 @inproceedings{krishnaswami-benton:feqn,
	 title = {Adding Equations to System F Types},
	 author = {Neelakantan R. Krishnaswami and Nick Benton},
	 year = {2012},
	 month = {March},
	 day = {26},
	 location = {Tallinn, Estonia},
	 booktitle = {21st European Symposium on Programming (ESOP 2012)},
	 series = {Lecture Notes in Computer Science},
	 publisher = {Springer-Verlag}
	 }
	

	

	

	Higher-Order Functional Reactive Programming in Bounded Space, Neelakantan R. Krishnaswami, Nick Benton, Jan Hoffmann. Accepted for publication at POPL 2012.

	
	
	 → Abstract
	 → BibTeX
	

	
	 Functional reactive programming (FRP) is an elegant and
	 successful approach to programming reactive systems
	 declaratively. The high levels of abstraction and
	 expressivity that make FRP attractive as a programming
	 model do, however, often lead to programs whose resource
	 usage is excessive and hard to predict.

	 In this paper, we address the problem of space leaks in
	 discrete-time functional reactive programs. We present a
	 functional reactive programming language that statically
	 bounds the size of the dataflow graph a reactive program
	 creates, while still permitting use of higher-order
	 functions and higher-type streams such as streams of
	 streams. We achieve this with a novel linear type theory
	 that both controls allocation and ensures that all
	 recursive definitions are well-founded.

	 We also give a denotational semantics for our language
	 by combining recent work on metric spaces for the
	 interpretation of higher-order causal functions with
	 length-space models of space-bounded computation. The
	 resulting category is doubly closed and hence forms a
	 model of the logic of bunched implications.

	

	
	
	 @inproceedings{krishnaswami-benton-hoffmann:ho-frp,
	 	author = {Krishnaswami, Neelakantan R. and Benton, Nick and Hoffmann, Jan},
	 	title = {Higher-order functional reactive programming in bounded space},
	 	booktitle = {Proceedings of the 39th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages},
	 	series = {POPL '12},
	 	year = {2012},
	 	isbn = {978-1-4503-1083-3},
	 	location = {Philadelphia, PA, USA},
	 	pages = {45--58},
	 	numpages = {14},
	 	url = {https://doi.acm.org/10.1145/2103656.2103665},
	 	doi = {10.1145/2103656.2103665},
	 	acmid = {2103665},
	 	publisher = {ACM},
	 	address = {New York, NY, USA},
	 	keywords = {bunched implications, dataflow, functional reactive programming, linear logic, space-bounded computation},
	 }
	

	

	A Semantic Model for Graphical User Interfaces, Neelakantan R. Krishnaswami, Nick Benton. Appeared in ICFP 2011.

	
	
	 → Abstract
	 → BibTeX
	

	
	 We give a denotational model for graphical user
	 interface (GUI) programming using the Cartesian closed
	 category of ultrametric spaces. The ultrametric
	 structure enforces causality restrictions on reactive
	 systems and allows well-founded recursive definitions by
	 a generalization of guardedness. We capture the
	 arbitrariness of user input (e.g., a user gets to
	 \emph{decide} the stream of clicks she sends to a
	 program) by making use of the fact that the closed
	 subsets of an ultrametric space themselves form an
	 ultrametric space, allowing us to interpret
	 nondeterminism with a ``powerspace'' monad.

	 Algebras for the powerspace monad yield a model of
	 intuitionistic linear logic, which we exploit in the
	 definition of a mixed linear/non-linear domain-specific
	 language for writing GUI programs. The non-linear part
	 of the language is used for writing reactive
	 stream-processing functions whilst the linear
	 sublanguage naturally captures the generativity and
	 usage constraints on the various linear objects in GUIs,
	 such as the elements of a DOM or scene graph.

	 We have implemented this DSL as an extension to OCaml,
	 and give examples demonstrating that programs in this
	 style can be short and readable.

	

	
	
	 @inproceedings{krishnaswami-benton:gui-semantics,
	 	author = {Krishnaswami, Neelakantan R. and Benton, Nick},
	 	title = {A semantic model for graphical user interfaces},
	 	booktitle = {Proceedings of the 16th ACM SIGPLAN international conference on Functional programming},
	 	series = {ICFP '11},
	 	year = {2011},
	 	isbn = {978-1-4503-0865-6},
	 	location = {Tokyo, Japan},
	 	pages = {45--57},
	 	numpages = {13},
	 	url = {https://doi.acm.org/10.1145/2034773.2034782},
	 	doi = {10.1145/2034773.2034782},
	 	acmid = {2034782},
	 	publisher = {ACM},
	 	address = {New York, NY, USA},
	 	keywords = {denotational semantics, functional reactive programming, guarded recursion, linear logic, ultrametric spaces},
	 }
	

	

	

	Ultrametric Semantics of Reactive Programs, Neelakantan R. Krishnaswami, Nick Benton. Preprint. Appeared in LICS 2011.
	
You can download the source code for the implementation of the language in the paper. You need Ocaml 3.11 or higher, and the Lablgtk2 GUI library.
	

	
	 → Abstract
	 → BibTeX
	

	
	 We describe a denotational model of higher-order
	 functional reactive programming using ultrametric spaces
	 and nonexpansive maps, which provide a natural Cartesian
	 closed generalization of causal stream functions and
	 guarded recursive definitions. We define a type theory
	 corresponding to this semantics and show that it
	 satisfies normalization. Finally, we show how to
	 efficiently implement reactive programs written in this
	 language using an imperatively updated dataflow graph,
	 and give a separation logic proof that this low-level
	 implementation is correct with respect to the high-level
	 semantics.
	

	

	
	
	 @inproceedings{krishnaswami-benton:ultrametric-frp,
	 	author = {Krishnaswami, Neelakantan R. and Benton, Nick},
	 	title = {Ultrametric Semantics of Reactive Programs},
	 	booktitle = {Proceedings of the 2011 IEEE 26th Annual Symposium on Logic in Computer Science},
	 	series = {LICS '11},
	 	year = {2011},
	 	isbn = {978-0-7695-4412-0},
	 	pages = {257--266},
	 	numpages = {10},
	 	url = {https://dx.doi.org/10.1109/LICS.2011.38},
	 	doi = {10.1109/LICS.2011.38},
	 	acmid = {2059621},
	 	publisher = {IEEE Computer Society},
	 	address = {Washington, DC, USA},
	 }
	

	

	

	Focusing on Pattern Matching, Neelakantan R. Krishnaswami. Appeared in POPL 2009.

	
	
	 → Abstract
	 → BibTeX
	

	
	 In this paper, we show how pattern matching can be seen
	 to arise from a proof term assignment for the focused
	 sequent calculus. This use of the Curry-Howard
	 correspondence allows us to give a novel coverage
	 checking algorithm, and makes it possible to give a
	 rigorous correctness proof for the classical pattern
	 compilation strategy of building decision trees via
	 matrices of patterns.
	

	

	
	
	 @inproceedings{krishnaswami:pattern-matching,
	 	author = {Krishnaswami, Neelakantan R.},
	 	title = {Focusing on pattern matching},
	 	booktitle = {Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages},
	 	series = {POPL '09},
	 	year = {2009},
	 	isbn = {978-1-60558-379-2},
	 	location = {Savannah, GA, USA},
	 	pages = {366--378},
	 	numpages = {13},
	 	url = {https://doi.acm.org/10.1145/1480881.1480927},
	 	doi = {10.1145/1480881.1480927},
	 	acmid = {1480927},
	 	publisher = {ACM},
	 	address = {New York, NY, USA},
	 	keywords = {curry-howard, focusing, pattern matching, type theory},
	 }
	

	

	

	Permission-Based Ownership: Encapsulating State in Higher-Order Typed Languages, Neel Krishnaswami and Jonathan Aldrich. Appeared in PLDI 2005.
	

	
	 → Abstract
	 → BibTeX
	

	
	 Today's module systems do not effectively support
	 information hiding in the presence of shared mutable
	 objects, causing serious problems in the development and
	 evolution of large software systems. Ownership types
	 have been proposed as a solution to this problem, but
	 current systems have ad-hoc access restrictions and are
	 limited to Java-like languages. In this paper, we
	 describe System Fown, an extension of System F with
	 references and ownership. Our design shows both how
	 ownership fits into standard type theory and the
	 encapsulation benefits it can provide in languages with
	 firstclass functions, abstract data types, and
	 parametric polymorphism. By looking at ownership in the
	 setting of System F, we were able to develop a design
	 that is more principled and flexible than previous
	 ownership type systems, while also providing stronger
	 encapsulation guarantees.
	

	

	
	
	 @inproceedings{Krishnaswami:2005:POE:1065010.1065023,
	 	author = {Krishnaswami, Neel and Aldrich, Jonathan},
	 	title = {Permission-based ownership: encapsulating state in higher-order typed languages},
	 	booktitle = {Proceedings of the 2005 ACM SIGPLAN conference on Programming language design and implementation},
	 	series = {PLDI '05},
	 	year = {2005},
	 	isbn = {1-59593-056-6},
	 	location = {Chicago, IL, USA},
	 	pages = {96--106},
	 	numpages = {11},
	 	url = {https://doi.acm.org/10.1145/1065010.1065023},
	 	doi = {10.1145/1065010.1065023},
	 	acmid = {1065023},
	 	publisher = {ACM},
	 	address = {New York, NY, USA},
	 	keywords = {domains, lambda calculus, modularity, ownership types, permissions, state, system f, type theory},
	 }
	

	

	

	The Inverse Method for the Logic of Bunched Implications, Kevin Donnelly, Tyler Gibson, Neel Krishnaswami, Steven Magill and Sungwoo Park. Appeared in LPAR 2004. (Copyright Springer-Verlag)
	

	
	 → Abstract
	 → BibTeX
	

	
	 The inverse method, due to Maslov, is a forward theorem
	 proving method for cut-free sequent calculi that relies
	 on the subformula property. The Logic of Bunched
	 Implications (BI), due to Pym and O'Hearn, is a logic
	 which freely combines the familiar connectives of
	 intuitionistic logic with multiplicative linear
	 conjunction and its adjoint implication. We present the
	 first formulation of an inverse method for propositional
	 BI without units. We adapt the sequent calculus for BI
	 into a forward calculus. The soundness and completeness
	 of the calculus are proved, and a canonical form for
	 bunches is given.

	

	
	
	 @inproceedings{donnelly-gibson-krishnaswami-magill-park:bi,
	 author = {Kevin Donnelly and
	 Tyler Gibson and
	 Neel Krishnaswami and
	 Stephen Magill and
	 Sungwoo Park},
	 title = {The Inverse Method for the Logic of Bunched Implications},
	 booktitle = {Logic for Programming, Artificial Intelligence, and Reasoning,
	 11th International Conference, LPAR 2004},
	 year = {2004},
	 pages = {466-480},
	 url = {https://dx.doi.org/10.1007/978-3-540-32275-7_31},
	 series = {Lecture Notes in Computer Science},
	 volume = {3452},
	 location = {Montevideo, Uraguay},
	 publisher = {Springer-Verlag},
	 keywords = {bunched implications, inverse method, theorem proving}
	 }
	

	

	

 Workshop Papers

 	Representing Music with Prefix Trees, Yan Han, Nada Amin, Neel Krishnaswami. FARM 2019.
	

	
	 → Abstract
	 → BibTeX
	

	
	 Tonal music contains repeating or varying patterns that
	 occur at various scales, exist at multiple locations,
	 and embody diverse properties of musical notes. We
	 define a language for representing music that expresses
	 such patterns as musical transformations applied to
	 multiple locations in a score. To concisely represent
	 collections of patterns with shared struc- ture, we
	 organize them into prefix trees. We demonstrate the
	 effectiveness of this approach by using it to recreate a
	 complete piece of tonal music.

	

	
	
	 @inproceedings{krishnaswami-birkedal-aldrich:ramified-frames,
	 	author = {Han, Yan and Amin, Nada and Krishnaswami, Neel},
	 	title = {Representing Music with Prefix Trees},
	 	booktitle = {The ACM SIGPLAN International Workshop on Functional Art, Music, Modelling and Design (FARM)},
	 	series = {FARM '19},
	 	year = {2019},
	 	location = {Berlin, Germany},
	 	numpages = {12},
	 	publisher = {ACM},
	 	address = {New York, NY, USA},
	 	keywords = {prefix tree, music representation, Haskell},
	 }
	

	

	

	Verifying Event-Driven Programs using Ramified Frame Properties, Neelakantan R. Krishnaswami, Jonathan Aldrich, Lars Birkedal. Appeared in TLDI 2010.
	

	
	 → Abstract
	 → BibTeX
	

	
	 Interactive programs, such as GUIs or spreadsheets,
	 often maintain dependency information over
	 dynamically-created networks of objects. That is, each
	 imperative object tracks not only the objects its own
	 invariant depends on, but also all of the objects which
	 depend upon it, in order to notify them when it changes.

	 These bidirectional linkages pose a serious challenge
	 to verification, because their correctness relies upon a
	 global invariant over the object graph.

	 We show how to modularly verify programs
	 written using dynamically-generated bidirectional
	 dependency information. The critical idea is to
	 distinguish between the footprint of a command, and the
	 state whose invariants depends upon the footprint. To do
	 so, we define an application-specific semantics of
	 updates, and introduce the concept of a ramification
	 operator to explain how local changes can alter our
	 knowledge of the rest of the heap. We illustrate the
	 applicability of this style of proof with a case study
	 from functional reactive programming, and formally
	 justify reasoning about an extremely imperative
	 implementation as if it were pure.
	

	

	
	
	 @inproceedings{krishnaswami-birkedal-aldrich:ramified-frames,
	 	author = {Krishnaswami, Neel R. and Birkedal, Lars and Aldrich, Jonathan},
	 	title = {Verifying event-driven programs using ramified frame properties},
	 	booktitle = {Proceedings of the 5th ACM SIGPLAN workshop on Types in language design and implementation},
	 	series = {TLDI '10},
	 	year = {2010},
	 	isbn = {978-1-60558-891-9},
	 	location = {Madrid, Spain},
	 	pages = {63--76},
	 	numpages = {14},
	 	url = {https://doi.acm.org/10.1145/1708016.1708025},
	 	doi = {10.1145/1708016.1708025},
	 	acmid = {1708025},
	 	publisher = {ACM},
	 	address = {New York, NY, USA},
	 	keywords = {dataflow, frame rule, functional reactive programming, ramification problem, separation logic, subject-observer},
	 }
	

	

	

	Design Patterns in Separation Logic, Neelakantan R. Krishnaswami, Jonathan Aldrich, Lars Birkedal, Kasper Svendsen, Alexandre Buisse. Appeared in TLDI 2009.

	
	
	 → Abstract
	 → BibTeX
	

	
	
	 Object-oriented programs are notable for making use of
	 both higher-order abstractions and mutable, aliased
	 state. Either feature alone is challenging for formal
	 verification, and the combination yields very flexible
	 program designs and correspondingly difficult
	 verification problems. In this paper, we show how to
	 formally specify and verify programs that use several
	 common design patterns in concert.
	

	

	
	
	 @inproceedings{krishnaswami-aldrich-birkedal-svendsen-buisse:design-patterns,
	 	author = {Krishnaswami, Neelakantan R. and Aldrich, Jonathan and Birkedal, Lars and Svendsen, Kasper and Buisse, Alexandre},
	 	title = {Design patterns in separation logic},
	 	booktitle = {Proceedings of the 4th international workshop on Types in language design and implementation},
	 	series = {TLDI '09},
	 	year = {2009},
	 	isbn = {978-1-60558-420-1},
	 	location = {Savannah, GA, USA},
	 	pages = {105--116},
	 	numpages = {12},
	 	url = {https://doi.acm.org/10.1145/1481861.1481874},
	 	doi = {10.1145/1481861.1481874},
	 	acmid = {1481874},
	 	publisher = {ACM},
	 	address = {New York, NY, USA},
	 	keywords = {design patterns, separation logic},
	 }
	

	

	

 Thesis

 	
	Verifying Higher-Order Imperative Programs with Higher-Order Separation Logic, Neel Krishnaswami. 2011.

	
	
	 → Abstract
	 → BibTeX
	

	
	 In this thesis I show is that it is possible to give modular correctness proofs of
	 interesting higher-order imperative programs using higher-order separation logic.

	 To do this, I develop a model higher-order imperative
	 programming language, and develop a program logic for
	 it. I demonstrate the power of my program logic by
	 verifying a series of examples. This includes both
	 realistic patterns of higher-order imperative
	 programming such as the subject-observer pattern, as
	 well as examples demonstrating the use of higher-order
	 logic to reason modularly about highly aliased data
	 structures such as the union-find disjoint set
	 algorithm.

	

	
	
	 @phdthesis{phdthesis,
	 	author = {Neelakantan R. Krishnaswami},
	 	title = {Verifying Higher-Order Imperative Programs with Higher-Order Separation Logic},
	 	school = {Carnegie Mellon University},
	 	year = 2011,
	 	address = {Pittsburgh, PA, USA.},
	 	month = 7
	 }
	

	

	

	
	
 Working Drafts

 	Explicit Refinement Types, Jad Ghalayini, Neel Krishnaswami. Draft.

	

	 → Abstract
	

	
	
		We present 𝜆ert, a type theory supporting refinement
		types with explicit proofs. Instead of solving
		refinement constraints with an SMT solver like DML and
		Liquid Haskell, our system requires and permits
		programmers to embed proofs of properties within the
		program text, letting us support a rich logic of
		properties including quantifiers and induction. We
		show that the type system is sound by showing that
		every refined program erases to a simply-typed
		program, and by means of a denotational semantics, we
		show that every erased program has all of the
		properties demanded by its refined type. All of our
		proofs are formalised in Lean 4.
	

	

 	

	Focusing on Liquid Refinement Typing, Dimitrios J. Economou, Neel Krishnaswami, Jana Dunfield. Draft.

	

	 → Abstract
	

	
	
		We present a foundation systematizing, in a way that
		works for any evaluation order, the variety of
		mechanisms for SMT constraint generation found in
		index refinement and liquid type systems. Using
		call-by-push-value, we design a polarized subtyping
		relation allowing us to prove that our logically
		focused typing algorithm is sound, complete, and
		decidable, even in cases seemingly likely to produce
		constraints with existential variables. We prove type
		soundness with respect to an elementary
		domain-theoretic denotational semantics. Soundness
		implies, relatively simply, our system’s totality and
		logical consistency.
	

	

 	

	Implicit Polarized F: Local Type Inference for Impredicativity, Henry Mercer, Cameron Ramsay, and Neel Krishnaswami. Draft.

	

	 → Abstract
	

	
	
		System F, the polymorphic lambda calculus, features
		the principle of impredicativity: polymorphic types
		may be explicitly instantiated at other types,
		enabling many powerful idioms such as Church encoding
		and data abstraction. Unfortunately, type applications
		need to be implicit for a language to be human-usable,
		and the problem of inferring all type applications in
		System F is undecidable. As a result, language
		designers have historically avoided impredicative type
		inference.
	

	
		We reformulate System F in terms of
		call-by-push-value, and study type inference for
		it. Surprisingly, this new perspective yields a novel
		type inference algorithm which is extremely simple to
		implement (not even requiring unification), infers
		many types, and has a simple declarative
		specification. Furthermore, our approach offers type
		theoretic explanations of how many of the heuristics
		used in existing algorithms for impredicative
		polymorphism arise.
	

	

 	

 Older Drafts

 	Mechanised Metatheory for the Sail ISA Specification
Language, Mark Wassell, Alasdair Armstrong, Neel Krishnaswami, Peter Sewell. Draft.

	

	 → Abstract
	

	
	
		Sail is a language for rigorous specification of
		instruction set architectures (ISAs); it has been used
		to model various production and research
		architectures, including ARMv8-A, RISC-V, and
		CHERI-MIPS, sufficiently completely to boot multiple
		operating systems. Intended to be engineer friendly,
		Sail is an imperative first-order language with a
		light-weight dependent type system; it can generate
		OCaml and C emulators and Isabelle, HOL4, and Coq
		definitions. A recent substantial redesign of the Sail
		type system has been done in conjunction with the
		development of a core calculus, Mini- Sail, along with
		paper proofs of type safety.
	

	
		This paper presents further work to mechanise MiniSail
		in the Isabelle theorem prover, making use of the
		Nominal2 Isabelle library to address binding
		structures and alpha-equivalence; it includes the
		definition of the MiniSail type system and operational
		semantics and proofs of preservation and progress. We
		discuss how the mechanisation and paper formalisations
		relate to each other, including the benefits and
		pitfalls of each, and comment on how these have
		influenced and been influenced by the Sail
		implementation redesign. We also comment on whether
		the use of Nominal Isabelle allows us to write proofs
		of programming language safety that are human readable
		as well as being machine verified. This mechanisation
		should in future provide a platform for the mechanical
		generation of a verified implementation of a type
		checker and evaluator for the language.
	

	

 	

	The Essence of Event-Driven Programming, Jennifer Paykin, Neelakantan R. Krishnaswami, and Steve Zdancewic. Draft.
	

	 → Abstract
	

	
	 Event-driven programming is based on a natural abstraction: an event is a computation that
		can eventually return a value. This paper exploits the intuition relating events and time by
		drawing a Curry-Howard correspondence between a functional event-driven programming language
		and a linear-time temporal logic. In this logic, the eventually proposition ◇A describes
		the type of events, and Girard’s linear logic describes the effectful and concurrent nature of
		the programs. The correspondence reveals many interesting insights into the nature of event-
		driven programming, including a generalization of selective choice for synchronizing events, and
		an implementation in terms of callbacks where ◇A is just ¬□¬A.
	

	

 	

	Curry-Howard for GUIs: Or, User Interfaces via Linear Temporal, Classical Linear Logic, Jennifer Paykin, Neel Krishnaswami, Steve Zdancewic. Unpublished draft.

	Modular Verification of the Subject-Observer Pattern via Higher-Order Separation Logic, Neelakantan R. Krishnaswami, Lars Birkedal, and Jonathan Aldrich. Unpublished draft, presented at the FTFJP 2007 workshop.

	Separation Logic for a Higher-Order Typed Language, Neel Krishnaswami. Unpublished draft, presented at SPACE 2006 workshop.

	A Modal Sequent Calculus for Propositional Separation Logic, Neelakantan R. Krishnaswami. Unpublished draft, presented at IMLA 2008 workshop (Intuitionistic Modal Logic and Applications). Note: the sequent calculus in this paper, while satisfying cut-elimination, is NOT sound with respect to the Kripke semantics of separation logic! The proof in the draft is incorrect.

	Idealized ML and Its Separation Logic, Neelakantan R. Krishnaswami, Lars Birkedal, Jonathan Aldrich, John C. Reynolds. Submitted for publication to POPL 2007.

	
	

	
	 Students

	 PhD Students

	 	Michael Arntzenius (2015-2021)
	
	Dima Szamozvancev (2018-) (with Marcelo Fiore)
	
	Andrej Ivašković (2018-) (with Alan Mycroft)
	
	Faustyna Krawiec (2020-)
	
	Dhruv Makwana (2019-)
	
	Angus Hammond (2020-)
	
	Ilia Kaisin (2021-)
	
	Jad Ghalayini (2021-)
	

 	 Master's Students

	 	Matthew Sirman (2022-23)
	
	Ondrej Baranovic (2022-23)
	
	Rosie Baish (2020-2021)
	
	Wojiech Nawrocki (2019-2020)
	
	Cameron Ramsay (2019-2020)
	
	Simon P. Spies (2019-2020)
	
	Henry Mercer (2018-19)
	
	Yan Han (2018-19)
	
	Dhruv Makwana (2017-18)
	
	Dima Szamozvancev (2017-18)
	
	Jan Christian Menz (2016-17)
	

	

	
	 Personal History

	 Before coming to Cambridge, I was a Birmingham Fellow at
	 the University
	 of Birmingham, in
	 the Theory
	 Group. Before that, I was a postdoc at
	 the Max Planck
	 Institute for Software Systems, working
	 with Derek
	 Dreyer. Before that, I was a postdoc
	 at Microsoft
	 Research, working
	 with Nick
	 Benton, and before that, I was a Ph.D. student under
	 the supervision
	 of John
	 C. Reynolds
	 and Jonathan
	 Aldrich.

	 Actual History

	 	Gordon Plotkin, Lambda-definability and Logical Relations,
		unpublished manuscript, Edinburgh 1973.

	 This is where, as far as I know, the phrase "logical relation" originates.

	 Update: Rick Statman tells me that Mike Gordon coined the phrase logical relation, and that he and Gordon Plotkin picked it up from him.

	

	

