Verifying Protocols in Concurrent Software Using AtomimBks
and Alias Control

Nels E. Beckman

December 2008

1 Introduction

In object-oriented programs, it is often the case that altjgres define usage protocols as an implicit part
of their interface. These protocols define legal orderingmethod calls, and must be respected at run-
time by code that uses objects of that type. Unfortunathigse protocols are implicit and are not checked
as part of the compilation process. Statically verifying ttorrect usage of object protocols would be
beneficial, because the violation of protocols at run-tilmwe iesult in undefined behavior, or in the throwing
of exceptions. But it's not an easy task. Statically tragkihe state of heap-based objects has proven
difficult because of aliasing, specifically the ability faneobject’s state to be modified through multiple
program references.

All of this is true for single-threaded programs. The vedfion of object protocol usage in concurrent
programs is an even more challenging task. In that casejpteuthreads may simultaneously refer to a
single object whose protocol must be obeyed. But given theeptstate of the computer world, this is an
important goal.

Currently the computer industry is in the midst of a transififrom a world in which single-CPU ma-
chines and single-threaded programs are the norm, to a wontlich multi-core machines and concurrent
programs are standard. If more and more developers arsgté&stwrite concurrent object-oriented pro-
grams, ensuring conformance to object protocols, alreadybthe most challenging parts of using a library
or framework, will become a high priority.

Already, researchers in the fields of programming languagdsomputer engineering have taken notice
of the influx of multi-core machines, and have begun exptppnogramming language features that will
make the development of concurrent software less burdemsadims thesis describes how we can use one
of these features, the atomic block, to simplify verificataf object protocols in concurrent programs.

1.1 Example: A Concurrent Queue

In order to motivate the verification of object protocols mncurrent systems, let us examine a blocking
gqueue class used as part of the Axyl-Lucene program. Axybhﬁ] iS an open-source program written in
Java that is designed to be a server wrapper around the Ahademe text search program. In order to
improve responsiveness, Axyl-Lucene is designed as a-thudtaded application, and includes a thread-
safe blocking queue cl&sThis class is designed to be used concurrently by one peodiizad, who puts
items into the queue, and multiple consumer threads thagurna those items. Furthermore, this queue
defines a protocol, which is described in Figure 1.

Ipackages.ubuntu.com/dapper/web/axyl-lucene
2Thanks to Allen Holub.

http://packages.ubuntu.com/dapper/web/axyl-lucene

is_closed() / return fal se

() e

STILLOPEN / enqueue(o)

S

enqueue_final _iteno)

cl ose()

[CLOSING dequeue()

dequeue()

L CLOSED }

is_closed() / return true

Figure 1: A simplified depiction of the protocol defined by Bleocki ng_queue class.

As the state diagram indicates, a queue starts out in araabstate, “OPEN,” during which time new
elements can be added to the queue and removed by consuntesemd point in time, the producer will
decide to stop putting items into the queue. The producer deaide to immediately close the queue by
calling thecl ose method. This puts the queue into the “CLOSED” abstract statd ensures that items
will be neither inserted nor removed from the queue. Theyredmay also decide that it wants to close the
queue, but that the elements that are still in the queue dhmutetrievable by the consumers. To do this,
the producer will call theenqueue_fi nal _i t emmethod, which puts the queue into the “CLOSING”
abstract state. During this period, and until the last iterms Iheen removed, the producer can add no more
new items, but the consumers can continue todatiueue to retrieve the remaining items. Finally, when
dequeue is called with only one item remaining in the queue, the quiealsitions to the “CLOSED”
abstract state. If this protocol is ever disobeyed at mmetiaCl osed exception will be thrown.

There are two things to point out about the description ofQueue’s protocol. The first is the nature
of thedequeue method, which is used in two different places in the statgrdia. Normally,dequeue
removes an element from the queue and returns the queuedtathét as in before the call. (In this sense,
this diagram represents an under-specification, since mtlicates is that the queue will go back to the
“STILLOPEN?" state.) Howeverdequeue can also transition the queue from the “CLOSING” state to the
“CLOSED?” state. The second thing to notice is the_cl osed method. If the consumer thread cannot
call dequeue when the queue is closed, it must have some way of knowingeifjtieue is closed or not!
Therefore, thé s_cl osed method can be called at run-time to determine whether oheagtieue is in the
closed state. It does not alter the current state of the quoemets return valuet r ue or f al se provides
information at run-time about the queue’s current absstate. We will refer to these sorts of methods as
dynamic state tests.

1.2 Using the Concurrent Queue (Incorrectly)

There are two ways in which protocols of thread-shared ébjean be abused that we want our static
analysis to catch. First, as clients use objects that defimegpls, they may inadvertently create race con-
ditions on the abstract state of those objects. Secondeimthlementation of those protocols, the objects

final Blocking_queue queue =ew Blocking_queue ();

(new Thread () {
@Override
public void run() {
while(!'queue.is_closed ())
System.out. println ("Gqtobject: " + queue.dequeue ());

1. start ();

for (int i=0;i<5;i++)
gqueue .enqueue ("Object + i);

queue.close ();

Figure 2: A usage of thBl ocki ng_queue class which contains a race on the abstract state of the queue

themselves may not atomically transition from one statentutteer, which may cause other threads to see
fields of that object in an inconsistent state. In an atteropliustrate the first point, Figurel 2 shows a
client of theBl ocki ng_queue class using the class to share information between twodkrednfor-
tunately, and even though the implementat®rocki ng_queue uses correct synchronization, there is a
race condition on the abstract state of the queue. In bettveenonsumer thread’s call fos_cl osed
and its call todequeue, it is possible for the producer to close the queue, causiagonsumer’s call to
dequeue to throw a run-time exception. The author of this class a&ttb this fact in comments, saying
thei s_cl osed method, “is inherently unreliable in a multithreaded dita’ and that to achieve cor-
rect behavior the client must, “must synchronize on the guiewhile the comments are helpful, because
the protocol is a very real part of the object’s interface d@uld be nice to ensure it is used correctly at
compile-time.

It is also important to verify that state transitions forghd-shared objects are performed atomically.
Figure[3 shows an implementation of tbeose method of theBl ocki ng_queue class that does not
atomically transition from the current state to the clogetks (Note that this isotthe actual implementation
used in the Axyl-Lucene project, but is used for illustratpurposes.) A design invariant of the queue is
that when it is closed, thel ement s field, which holds a list, is to be null-ed out, and thkeosed field
must be set to true. If the queue is thread-shared, it musditien atomically to the closed state otherwise
there is the risk of a null pointer dereference. The impldiat@n of thei s_cl osed method only checks
thecl osed field, and thedequeue method dereferenced enent s without checking whether or not it
is null. Therefore, two threads racing on the queue, onedsechnd one to dequeue, could inadvertently
cause a null pointer dereference even if the consumer aatignahecked for the open state and dequeued.

1.3 Tracking Abstract States Without Alias Control

Our goal is to track the abstract states of objects as theytAmugh methods in a program, and we want
to do this in a modular way, so that once a method has beenzaagitynever needs to be analyzed again.
Suppose we were to implement this analysis in a naive wagt, Fire will examine the un method of the
consumer thread from Figuré 2. At the outset, we would havielea which abstract state the queue is in.
Immediately after the condition expression in the whilepoour analysis would know that the queue was
“STILLOPEN.” Unfortunately, thequeue reference points to an object that has escaped from itsadilboc
context. Since we'd like our analysis to be sound, we’ll heo/assume that this or any other escaped object

boolean is_closed () {
atomic: {
return is_closed;

}
}

Object dequeue () {
atomic: {
if (elements.size() >0) {

}

}

void close () {
atomic: { elements =null; }
atomic: { closed =true; }

}

Figure 3: An implementation of thel ose method that does not atomically transition to the closettsta

could potentially be modified by any other number of threadsye have no information to tell our analysis
otherwise. Therefore, our analysis will discard informaatiabout the abstract states of objects that have
escaped. This will at least allow our naive analysis to firertice that we previously identified.

Of course, if we go back and try to verify the producer codefing that our decision to throw out state
information for every escaping object is much too impreciBee Bl ocki nhg_queue constructor creates
the queue in the “OPEN" state, and both #requeue andcl| ose methods require that the queue be in the
“OPEN?" state as a pre-condition. If our analysis discar@sf#ict that the queue is in the “OPEN?” state, after
gueue construction because a reference escapes to theremaglass, then our analysis will also flag both
calls as errors, since their pre-conditions can not be muas i too bad, because our program is designed
in such a way that only the producer will change the absttat¢ ©f the queue, and therefore the producer
should never have to assume that another thread might ctiamgeeue’s state. In order for our analysis to
know this without performing a global analysis, it will netrtk programmer to provide information about
the patterns of program sharing.

When checking that an object atomically transitions frore etate to another, a similar problem arises.
Without any information about whether or not the receiveamfanalyzed method is intended to be shared
amongst threads, we must conservatively assume that ito@ill This in turn would cause nearly every
analyzed method body to perform its work inside of an atonhick With modern implementations of
transactional memory, this would lead to quite a high ovadhand it something that we’d definitely like to
avoid.

1.4 Current Approaches

Existing work on data race detection [10] 34}, 14] does a gobdf ensuring that access to thread-shared
memory is protected by locks or other mutual exclusion gimes, but it does not prevent a program'’s
threads from interleaving in ways that destroy applicalivMariants.

Preventing thread interleavings that destroy programriamts is an important goal, because invari-
ants allow programmers to reason about the behavior of ghegrams. Toward this goal, several earlier

works [26,/27] 33, 41] attempt to statically prevent or prawpossible thread interactions that might in-
validate invariants. Compared to these approaches, ol altmws for a larger variety of thread-sharing

patterns, and additionally helps to ensure the proper usbjett protocols, an abstraction of object state
that forms an implicit but unchecked interface in many ob@ented programs.

1.5 Proposed Approach

This thesis proposes the following approach to modulafieation of concurrent object protocol use: First,
object references in method and type signatures will be tatewb by the programmer using a technology
called access permissions [5]. Access permissions aréi@dgacription of a.) whether or not a referenced
object can be referred to by other program references ansh®)her or not those other references, if they
exist, can be used to modify the state of that object. Accesmigsions also track the current abstract state
of the object to which the reference refers. Then our aralgah track the abstract state of each reference
as it flows through the body of a method, checking the requstatk indicated by pre-conditions at method
call sites. At any point in the program where the access @sion associated with a reference indicates
that another modifying reference to that same object existsanalysis will discard information about the
abstract state of the object. This will be done unless the t®ihside the lexical scope of an atomic block,
the mutual exclusion primitive given to us by transactiam&mory systems.

Finally, because current implementations of atomic bl@rksassociated with a large overhead, we will
use access permissions as a means of compile-time opfionizattomic blocks are often implemented us-
ing transactional memory, which must synchronize and lat) @emory access, since it may later be found
to be a conflicting one. Since access permissions providathstatic information about how memaory will
be read and written by different threads, we will use thisiinfation to remove unnecessary synchronization
and logging.

2 This Thesis

In an ideal world, programmers would know before running@gpam if the object protocols they use and
define are always used correctly and implemented condigtemen in the face of concurrent access. This
thesis makes progress towards that goal.

2.1 Thesis Statement

Access permissions, which statically describe the algplsehavior of program references in object-oriented
programs, provide a good basis for the verification of thelémgntation and usage of object protocols in
concurrent systems, allowing us to verify real programsganglide optimizations of the underlying runtime
system.

2.2 Hypotheses

We can break the thesis statement down into more concretenaasurable hypotheses.

2.2.1 Hypothesis: Formalization

We can develop and formalize an analysis that will guaraateencurrent program does not violate the
object protocols that it defines and prove that the systetmwafiproduce false negatives.

Validation This hypothesis will be validated by developing and forial) a type system and operational
semantics based on our permission system and proving thesysgbem sound with respect to its semantics.
The proof essentially says that no object in a program welelve required to be in some abstract state that
at runtime it will not actually be in.

2.2.2 Hypothesis: Specification Coverage

Our specification system can be used to specify the behavibingplementation of object protocols in real
concurrent, object-oriented programs.

Validation In order to validate this hypothesis, | will specify the befoa of object protocols in 6-8 small
and 2-4 large concurrent Java programs, collected from sperce projects. | will classify small programs
as being from zero to 1000 lines of source, and expect thera@se studies to be from 5000 to 30,000
lines of source. During this process | will note and repotureing and interesting patterns of protocols that
cannot be specified.

2.2.3 Hypothesis: Specification Burden

Our approach requires fewer and less complex specificati@mscomparable automated behavioral analy-
ses.

Validation On the same suite of small and large programs, | will recoedrithmber of annotations re-
quired per line and compare that with the reported numbera &imilar concurrent behavioral verification
techniques, specifically Spéand JML. In order to compare their relative complexities,ll measure, as

a proxy, the number of program states mentioned per anootaioth Spet and JML boast large feature
sets, including many features that have no analog in my approTherefore, for comparison purposes, |
will use numbers reported by these approaches from commyrspecific evaluations [26,/35].

2.2.4 Hypothesis: Analysis Precision

Our analysis will report a relatively low number of false fiess, on the order of the number of false-
positives reported by comparable automated behavioréyses

Validation In order to validate this hypothesis, | will build an autoetttatic analysis for Java that will
check the specifications on the suite of case studies. Theh ¢tampare the number of false positives
reported per line of source with that of similar concurreahdvioral verification techniques, specifically
Speé and JML.

2.2.5 Hypothesis: Mutual Exclusion Requirements
In order for a program to be verified, it should not requireeatjdeal more or much “wider” critical sections

than is strictly necessary for functional correctness.

Validation While this hypothesis may prove difficult to evaluate in afective manner, | will attempt to
observe and report on the number of times that my analysiedome to add an atomic block or increase
the size of an atomic block, assuming that the original @y were synchronized correctly.

2.2.6 Hypothesis: Optimization

Because access permissions describe aliasing behav@srajspion annotations can be used to optimize
transactional memory, improving its performance.

Validation Inorder to validate this hypothesis, | will modify a soutttesource implementation of transac-
tional memory for Java to remove unnecessary synchroaizaind logging based on the access permission
annotations. Again, using the same suite of verified programill compare performance with and without
the optimization.

3 Proposed Approach

Our approach, at a high level, is to specify and verify obpgotocols in concurrent programs using an alias
control technology known as access permissions [5]. Ageessission specifications will be provided by
the programmer at method boundaries in the form of pre andqooslitions in order that our analysis can
tell locally the ways in which parameters and the receivertzaaliased. These permissions, along with the
current abstract state of each reference, will be trackedegsflow through method bodies, as new aliases
are created, and as other methods, with their own assog@egethd post-conditions, are called. At any point
during the method when the permission on a reference iredidhagt the object to which it points could be
concurrently modified, we will discard known state inforfoatabout that reference. State information will
notbe discarded, however, if the code is within the lexical scofpan atomic block. State invariants, which
tie the abstract state of an object to the concrete or abstates of its fields, will also be verified in a similar
manner, but with the modular invariant verification meceanknown as packing/unpacking. Finally, these
same permissions, which could for example indicate thatr&ioeobject will never be read by another
thread, will be used to remove unnecessary synchronizatiohlogging in an optimized source-to-source
implementation of software transactional memory.

3.1 Specification Using Access Permissions

Access permissions![5] are predicates that are associdtieghrogram references. They are useful because
they soundly, statically and locally describe the aliadmdpavior of the references with which they are
associated. An access permission can answer three impqustions about the reference with which they
are associated:

1. Is the object to which this reference points referencedryyother references in the program?
2. Can this reference be used to modify the object to whichiittp?
3. Can other references to this object, if they exist, be tsedodify this object?

There are five permissions, each of which answers these@uest a different way:

Unique permissions are the only existing permission to the obgeuttich they refer. They can be used to
read and modify.

Full permissions are associated with references that can relad@atify the object to which they point, but
can exist simultaneously with other, read-only permission

Immutable permissions are associated with references that will oelyused to read an object. Other
references may exist to that same object, but they cannadabto modify either.

Pure permissions are associated with references that can onlgdskbto read an object. Other references
to that same object may exist, and they may be used to modifgttfect.

Share permissions are associated with references that can bewsead and modify the object to which
they point. Any other number of read-only or modifying refieces to the same object may exist
simultaneously.

Multiple different permission types can be associated diifierent references that at run-time will point
to the same object. This feature allows verified programséanieresting and common patterns of aliasing.
For example, in a “producer/consumer” pattern, one threigtitmse dull permission on a reference to write
to a shared object while, simultaneously, several othexatls usg@ure permissions associated with other
program references to read from that same object.

In order to statically track the state of an object that arezfee points to, we will also associate cur-
rent state of an object with our access permission. Thissgigean access permission that looks like the
following, wherek is the permissiony; is the reference name ands the current state:

kE(r)ins
e.g., full(blocking_queue) i n OPEN

At the moment of object creation, a singlaique, permission will be created for the new object, and
will be associated with thehi s reference inside the constructor body. But from here, iriotd allow the
programmer to actually create aliases to that object, ordardo call a method on the object that requires a
permission other thamnique in its pre-condition, we must “split” the permission. Sgg is the process by
which we soundly create one or many new permissions fromapeaimission of a different type. In order
to preserve the meaning of each permission, only certamipsion types can be split into other permission
types. Figuré 4 shows the legal splitting operations. No&t When a permission is split into one or many
new permissions, the old permission is destroyed in thegssoc

Finally, before we can specify methods, we will need corimestto combine our permissions, and to
describe the pre and post-conditions. For the underlyigg lof our system we will use linear logic [18],
which is a logic of resources. This will help ensure that gesinns are not inadvertently, and hence un-
soundly, duplicated. The decidable multiplicative, agidilinear logic provides us with linear implication
(—o), additive conjunction), internal choice$) and external choice&). Now, in a series of examples,
we will string these permissions together in order to forrmptete method specifications.

The specification of the constructor says that, given ngthirall, it will return a unique permission to
the newly allocated queue that is in the OPEN state.

Blocking_queue() 1 — unique(this) i n OPEN

Theenqueue method requires that the queue be in the open state, andlligrensast have full permis-
sion to the queue. In addition, the caller must pass in a dhaeemission to the enqueued element. This
permission is not returned, but the permission to the quse# is, and it remains in the OPEN state.

void enqueue(Object obj)full(this) i n OPEN ® share(obj) — full(this) i n OPEN

Theenqueue_| ast _i t emmethod has probably the most interesting specificatiorequires a full
permission to the queue in the OPEN state and a share paymissthe object, just like thenqueue
method. However, it returns only a pure permission, andgkanission is in the CLOSED state. In effect,
what is happening is that the full, modifying permission é&ng transferred from the producer side to the
consumer side. The last consumer, who is in charge of clakmmgueue, will need this permission in order
to modify the abstract state of the queue.

k = share|pure|immutable
Er)yins=k(r)ins®k(r)ins

S-Svm

k = full|share|pure|immutable

unique(r)ins= k(r)ins S-UNIQUE

k = share|pure|immutable
fullir)ins=k(r)ins

-FULL

immutable(r) i n s = pure(r)ins S-Imm

k = full|share
k(ryins=k(r)ins®pure(r)ins

S-ASYm

;AP P =P

T'AF P SUBST

Figure 4: The splitting operation defines which permissiqres can legally be converted into other permis-
sion types. The Subst rule explains that if we need to proaekiut cannot with the current permission,
we can attempt to split the permission to get the correct one.

void enqueue_last_item(Object objjull(this) i n OPEN ® share(obj) — pure(this) i n CLOSING

Thedequeue method needs only a pure permission to the queue. This is, ge@aduse we will be
giving this permission to all of the consumers. The queuetrbesomewhere in the STILLOPEN state.
In return, the caller will receive a share permission to tieeni dequeued. It will also receive the pure
permission back, but since the call could potentially clitequeue, it will be in an unknown state. While
this specification captures the behavior of the dequeueadethan intuitive level, in Sectidn 3.3 we will
have to revise it somewhat in order to account for the fadttttedequeue method actually modifies the
underlying structure of the queue.

Object dequeue() pure(this) i n STILLOPEN —o share(result) ® pure(this)

Thei s_cl osed method is a dynamic state test, which clients can use aimantb query the abstract
state of the object. It requires pure permission to the quiueturns two implications, and the caller can
choose to eliminate one of them. If the result is true, théecahn obtain a pure permission to the queue
in the CLOSED state. Otherwise, the caller can obtain a permigsion to the queue in the STILLOPEN
State.

booleanis_closed() pure(this) — (result = true — pure(this) i n CLOSED) &
(result = false — pure(this) i n STILLOPEN)

Finally, thecl ose method requires a full permission to the queue in the STILEQPstate. This
ensures that either the producer or the consumer (frommiitie dequeue method) can call it. It returns the
full permission to the queue, now in the CLOSED state.

9

void close() :full(this) i n STILLOPEN —o full(this) i n CLOSED

3.2 \Verification Using Access Permissions

Conceptually, the verification of a program that uses olpeatocols consists of client-side verification, in
which code that uses objects with protocols is verified, andiger-side verification, in which we verify
that the implementation of the methods of an object whichneeé protocol is correct. In practice, this
distinction may be blurred, since an object may define a pabtdut also in turn depend on its fields which
themselves define protocols.

The OOPSLA 2008 paperi[4] and accompanying technical ré@pidrm the most complete description
of this work. In particular, in order to prove soundnesss tyistem is formalized as a type system for a Java-
like language with an associated operational semanticghisnsection we will describe the verification
process without the benefit of this formalization, due tocgpeonstraints. Please see these works for full
details.

Figure[® illustrates the verification of the producer codginally presented in Figurie 2. At each pro-
gram point, it shows the state of the linear context, whicli$ithe currently known permissions for refer-
ences in the program. The program differs slightly from the originally presented in that we have pulled
the inner class up to the top level. The most important thingate about this example is that it correctly
verifies. Unlike in our naive verification strategy, back iecBon[1.8 because the producer thread retains
full permission, an exclusive modifying permission, to theeue, we are never forced to discard its abstract
state, and the pre-conditions of each method are satisfied.

final Blocking_queue queue rew Blocking _queue();
{ unique(queue) i n OPEN}
(new ConsumerThread(queue)).start();
{ full(queue) i n OPEN }
for (int i=0;i<5;i++) {
queue.enqueue("Object " +i);
{ full(queue) i n OPEN }
}
{ full(queue) i n OPEN }
gueue.close();
{ full(queue) i n CLOSED }

Figure 5: Verification of the producer thread. The definitispecification and verification of the consumer
thread is shown in Figufg 6.

The verification of the consumer thread, is another stofgjlg to correctly verify, which is a good thing.
The code for the ConsumerThread class, as well as its véigficappear in Figurgl6. To verify this class,
we must use a few features of the provider-side verificatiechmnism. These features will be discussed in
more detail in the next section. However, note that the Cmesihread class has an invariant for the state
alive, the only state that it ever inhabits. This invariant says the consumer thread will always have a
pure permission to the queue, a reference to which is storéeeiqueue field. This permission initially
comes from the constructor, whose specification dictatasitttonsumes a pure permission to the given
field which it does not return.

In the r un method, initially there is a unique permission to the reeeiwn the context, as given by
the method pre-condition. In order to call the_cl osed method, the receiver must be unpacked. This

10

final classConsumerThread {
invariant alive: pure(queue)
Blocking_queue queue;

ConsumerThread(Blocking_queue qure(q) — unique(this) {
this.queue = q;

}

public void start() :unique(this) — 1{
super.start();

}

public void run() : unique(this) — unique(this) {
{ unique(this) }
while(!queue.is_closed()) {
{ unpackedthis,alive), ® pure(queue) }
System.out.printin("Got object: " + queue.dequeue()Erfor! Not in STILLOPEN.
}
}
}

Figure 6: The specification and verification of the Consurheg@d class.

feature of provider-side verification will be discussedha thext section, but essentially it is a sound means
of providing a method with the facts implied by a state ingati Here this means we get the pure permission
to the queue. This pure permission is used to call thecl osed method, and while we can eliminate the
returned implication inside the true branch of the loop,dhalysis immediately discards the implied state
of the queue. This is done because the method’s permissitie gueuepure, implies that another thread
could be concurrently modifying the queue. Our analysi¢ ahklvays discard this information unless we
are inside an atomic block. Because this information wasagited, thelequeue method’s precondition
cannot be satisfied, and an error is signaled.

Finally, we present a corrected version of then method in Figur€l7. In this implementation, we use
an atomic block to eliminate the race on the abstract statieecjueue object. This time, in the else branch
of the conditional, we are able to retain the fact that theugus in the STILLOPEN state. While it is true
that other threads may have modifying permission to the guaat thread could not concurrently modify
the queue because we are inside of an atomic block, and thensiesof atomic blocks prevent this.

3.2.1 Provider-Side Verification

We touched on provider-side verification a bit in the pregi@ction, but in this section we will discuss
it in more detail, and in particular we will explain how ouraysis prevents non-atomic state transitions
for thread-shared objects. The goal of provider-side e&tion is to ensure that a given method actually
performs the state transition its specification claims. rteo to do this, our analysis allows the abstract
states that a class defines to be associated with an arhjiredicate over the fields of the receiver object.
For example, in Figurlel 6, we used the invaripate(queue) for the alive state, which tells us that whenever
the thread is in the alive state, (i.alyay9, it must have a pure permission to theeue field. (Note that
state invariants are private to the implementing class.li€ats, abstract states are indeed abstract.)

11

public void run() : unique(this) — unique(this) {
{ unique(this) }
while(true) { Object item;
atomic: {
if(queue.is_closed())
{ unpackedthis,alive), ® pure(queue) i n CLOSED }
return;
else
{ unpackedthis,alive), ® pure(queue) i n STILLOPEN }
System.out.printin("Got object: " + queue.dequeue());

Figure 7: Verification of a corrected version of then method from Figurél6 that uses an atomic block.

In order to verify that a state transition is correctly implented, we must be able to establish the truth
of the invariant of the post-condition state before the meétleturns. Fortunately, we can use the invariant
for the incoming state in order to help us prove it. In Sedfidghwe mentioned how, in our implementation
of the Bl ocki ng_queue, an invariant existed; when the queue is closedcthesed field should have
the valuet r ue, and theel enent s field should have the valueul | . We can specify this requirement
with the following state invariant:

invariant CLOSED : elements = null ® closed = true

In order to verify the implementation of thed osed method, we must ensure that this invariant is true
before the method returns. In order to do this, we use a metbgg known agpacking[2,/13]. The packing
methodology allows for the modular verification of classan&nts. This methodology requires us to unpack
an object at any point when its invariants may not hold. Whilpacked, we cannot return from the method,
and we cannot use the permission to the unpacked object. \idowge can use the state invariants over
the fields of the object associated with the abstract stat®liject was in when it was unpacked. Finally,
and in order to avoid the unsound duplication of permissiansobject cannot be unpacked if it is already
unpacked.

In order to ensure that thread-shared objects cannot bevelse an inconsistent state, our analysis adds
an additional restriction; the unpacking of any refererssmaiated withull, pure or share permission must
be performed entirely within the scope of an atomic blocke Bhiginal motivation behind this restriction
was the observation that the section of code where an olgectpacked corresponds with the section of
code where an object’s invariants might temporarily noth&Vhen an object is in an inconsistent state, and
that object is thread-shared, other threads should notibeeal to observe its state, and the atomic block
ensures just that. Given this intuition, one may wonder Wiy testriction is necessary for references of
pure permission, since it cannot be used to modify the objeqiue permission can still unpack invariants
from an abstract state, and it expects those facts to holerefdre, unpacking within an atomic block
ensures that the facts that are unpacked will not be modiGadwrently.

In Figure[8 we demonstrate provider-side verification onetkeemple from Figurgl3. Before the fields of
the queue can be reassigned, the receiver must be unpadkisds Tracked with theinpacked predicate.
This also introduces any predicates associated with theNOSR&e into the context. Thesl enent s is
reassigned. At this point, the atomic block closes. Assgrtiiiat the OPEN state requires theenent s

12

void close() :full(this) i n OPEN —o full(this) i n CLOSED {
{ full(this) i n OPEN }
atomic: {
{unpackedthis,OPEN), ...OPEN state invariants ...}
elements =ull;
{unpackedthis,OPEN), elements ==null, ...}
} /1 Error! Atomic block closed while receiver unpacked!
atomic: {
closed =true;

}

Figure 8: Verification of theel ose method fails because the atomic block ends before the eycean be
packed, and it is associated withil permission.

field to be non-null, this code will not verify; there are nobeigh facts in the context to pack the receiver
to any state, and it is associated witfud permission, which requires it to be packed outside of an &tom
block. Therefore an error is signaled. The important panihat a potentially thread-shared object was
about to become visible to other threads in a concrete statedid not correspond to any abstract state. If
the programmer instead had extended the atomic block abodssassignments, this method would verify.

3.3 State Dimensions and State Hierarchies

Sometimes it is necessary for objects to define more comptEgls than those | have shown here, and
for those we may need to make use of state dimensions anch&atechies. A full description of either
is outside of the scope of this document, as neither is aibotibn of this thesis. They are described in
full detail elsewhere [6]. However, adding both state disiens and state hierarchies to this work greatly
enriches the system, and therefore it is important to desdni some detail.

State Dimensionsallows one object to define several orthogonal protocols: ekample, an object that
models a wristwatch may have two protocols: one for an alavhich can be on or off, and another for a
light, which independently can be on or off. On the impleraéiot side, state dimensions are conceptually
similar to data groups [30]. Each orthogonal protocol defitestate invariants over a subset of the object’s
fields, where each set is disjoint from one another. From lieats perspective, it is possible to have
permission to just one dimension of an object if it definestipla protocols. Similarly, a client could hold
references of different permission types to different disiens of an object.

In fact, and as hinted in Sectidn B.1, we need state dimesswmwerify the original implementation of
theBl ocki ng_queue class. While only one thread (the producer) will modify thedds of the queue as-
sociated with the protocol, both producer and consumeatisrenodify the underlying linked list, producers
to insert items and consumers to remove them. Thereforerify the full blocking queue example, we map
theel enent s field, which points to the underlying linked list, into a seqt@ dimension, “STRUCTURE”
which defines no interesting proto@nBoth producer threads and consumer threads habmee permis-
sion to this dimension. As a result, each method signatuaegds slightly. The full queue specification is
shown in the appendix. Here, for example, is the proper ﬁpatibrﬂ of thedequeue method:

3Note that this makes the CLOSED state invariant we definecati@[3.2.1L very hard to verify, since te¢ enent s field
andcl osed field are mapped to two different dimensions. Fortunatéig, invariant does not exist in the actual implementation,
and was created just for presentation purposes.

“The fr notation indicates that this is a permission to the objemint, giving us permission to read fields of the object, as

13

Object dequeue()share(this! fr, STRUCTURE) ® pure(this! fr, PROTOCOL) i n OPEN —
share(this! fr, STRUCTURE) ® pure(this! fr, PROTOCOL)

State hierarchiesallow abstract states to be refined into multiple sub-stafEsis allows subclasses to
define more specific abstract states while still preservetgabioral subtyping on overridden methods. In
the example in Figurgl 1, the “OPEN” and “CLOSING” states refime “STILLOPEN” state. In fact, in the
implementation of our concurrent typestate analysis,yegbfect has one super-state, “alive” that it always
occupies, and which all other states implicitly refine. Whesndiscard knowledge about the state of an
object, for instance, because of the possibility of corentrmodification, we really are just dropping the
state to the “alive” state. Finally, a statg can be staticallguaranteedwhich tells a weak permission such
aspure that, while the modifying permission can transition theeaibjat will to any sub-state, it can never
leave theS, state.

Programmers familiar with UML.[8] will recognize both statanensions and state hierarchies, both of
which are features of the state diagram notion.

3.4 Permission-Based Optimization

Access permissions can also be used to optimize the penfiaera software transactional memory imple-
mentations, since they statically describe the aliasirigabiers of a program. Many software transactional
memory systems are implemented in an optimistic fashiorerevtransactions execute and roll back only
if it is later determined they observed an inconsistent mgrstate. In order to implement this behavior,
STM systems keep read and write sets which track which piefceemory were read from and written to
by which transactions, and what the original value of anahjes at the beginning of a transaction.

The fastest current approaches [1] “open” an object forimgifor reading) before fields of that object
are written to (or read from). A thread opens an object fotimgiby setting its transaction as the owner of
the object (using an atomic test and set), and copying thialialue of the object to a write log. Before the
transaction commits, a “version” number associated wighviinitten object will be incremented. A thread
opens an object for reading by checking to see if that obgowined (using an atomic test) and if not,
adding the current version number for the read object tortirestiction read set. In either case, if the object
is already owned by another thread, the opening thread nefist tb contention management to solve the
dispute.

Since access permissions tell us statically which objedtdesmodified and which will be shared, we
can remove synchronization and logging operations thanheiler be needed. The general principles of our
optimization are as follows:

e Objects ofimmutable permission will never be opened for reading, since no thvadadhange their
value.

e When writing to the fields of ainique object, it is not necessary to “open” that object for writing
(a process that requires synchronization) since no othlieadhcan concurrently access the object.
However, it is necessary to log the initial value of the objge the transaction still may be rolled
back.

¢ Neither objects ofinique nor full permission ever need to be opened for reading.

e We would like the above three rules to always be sound. Homvbeeauseinique andfull permis-
sions can be reached through fields of other thread-shajedtsbwe require that arshare, full, or
pure object be opened for writing before any method is called anigue or full field of that object.

opposed to a virtual permission, which gives us the rightbuirtual methods on an object.

14

Because of the last restriction, it is possible that ourmjaiation will decrease performance in some cir-
cumstances, since it must open objects for writing that bmgh otherwise be opened. We expect that our
optimization will improve performance by reducing overtiéa applications where objects ohique and
immutable permission are frequently modified inside of transactidng, where threads most commonly
access disjoint regions of memory.

We can use state dimensions to decrease the granularitglahépbelow that of the object level. At
the moment, most STM systems perform conflict detection treethe object or the word level. Conflict
detection on the word level can often impose too much ovekhedile the object level has the potential
to create increased contention. State dimensions dividdjat into groups of fields that will be accessed
as part of the same logical operations, and therefore mal@md gandidate for a granularity of conflict
detection that is finer than the object level, yet coarsear tha word level.

4 Related Work

In this section, we discuss related work. While there aregelaumber of competing approaches, we feel
that our work is significantly different, and provides a gabsial contribution. The mostimportant contribu-
tion over existing work is that of the full/pure permissiavhich allows one object to depend on knowledge
about another, thread-shared but unencapsulated objeetn Axample, consider tiér ead_pool class,
shown in Figuré 9, that also comes from the Axyl-Lucene mtojd his thread pool also defines an open-
closed protocol. Interestingly, the invariants of the open closed abstract state depend on the abstract
state of the underlying blocking queue (e.g., when the poat the open state, the queue must be in the
open state). Our approach allows this type of invariantpetieugh the thread pool is shared with several
instances of th&ool ed_t hr ead class. As we will show, this sort of invariant cannot be egpeal in
other approaches.

public classThread_pool {
statesalive = { open, closed }

private final Blocking_queue queue;
private booleanhas_closed;

invariant open: has_closed- false ®

share(queueSTRUCTURE) ® full(queuePROTOCOL) in open;
invariant closed: has_closed- true ®

share(queueSTRUCTURE) ® full(queue?PROTOCOL) in closed;

private classPooled_thread {

}...

Figure 9: The Thread_pool class, also from the Axyl-Lucerggaot, defines a state invariant that depends
on the abstract state of a thread-shared blocking queue.

15

4.1 Automated Verification of Concurrent Programs

The work that most closely resembles our own was developgdraof the Spet Project. Jacobs et al.
[2€] have also created a system that will preserve objeetriamts even in the face of concurrency. More-
over, our system uses a very similar unpacking methodologiztwcomes from a shared research her-
itage [2]. Nonetheless, we believe our work to be differenséveral important ways. First, they use
ownership as their underlying means of alias-control, Whimposes some hierarchical restrictions on
the architecture of an application. Our approach allowsofenership transfer between threads (e.g., the
enqueue_fi nal _obj ect method in the blocking queue. See Apperidix A.). On the othedhtheir
system allows more expressive specifications, as behav@rde specified in first-order predicate logic,
rather than typestate. This system does have a proof of seaadut provides neither formal typing rules
nor a formal semantics.

As mentioned, their approach cannot mention thread-shatvgatts in invariants. Once an object be-
comes thread-shared, a process which must be signified bislilaee” annotation, it can no longer be
mentioned in another object’s invariant. Therefore, eXamjike the one shown in Figuté 9 cannot be
verified.

Finally, our system uses atomic blocks while the Jacobsoagpris based on locks. While this may seem
like a minor detail, it actually provides our system withentmenefits. In their approach, in order to determine
whether it is the responsibility of the client or providerdnsure proper synchronization, there is a notion
of client-side lockingversusprovider-side locking Methods using client-side locking can provide more
information-laden post-conditions, while provider-sideking methods cannot. Because atomic blocks are
a composable primitive, it is sufficient in our system to teeane method with a full post-condition. This
method can then be type-checked correctly in atomic andab@mic contexts.

Some related work has also been done within the context afttieproject [35]. This work is mainly
focused on introducing new specifications useful for thoke would like to verify lock-based, concurrent
object-oriented programs. Some of the specifications cautmmatically verified, however due to the fact
that this verification is done with a model-checker, verifma failed to terminate on about half of their
examples.

Joshi and Sen _[28] attempt to solve the same problem, usengaime motivation. Their solution is a
dynamic analysis which has significantly lower burden orpteggrammer, but can miss some races and can
infer inaccurate typestate properties.

In recent work, Vaziri et al. [41] have proposed a system tp peogrammers preserve the consistency
of objects with a feature callegtomic sets In this approach, programmers specify that certain fiefds o
an object are related, and must be modified atomically. Aerfmbcedural static analysis then infers code
locations where synchronization is required. While a psang approach, it does not allow verification of
functional properties of code, such as the correct usagbjetoprotocols.

Finally, Harris and Jones [21] introduce a mechanism for 3Hddkell that ensures a data invariants will
not be violated during a given execution of a program. Howetgs is a dynamic technique that cannot
guarantee conformance for all executions.

4.2 Logics for Concurrency

There are a number of popular logics for concurrency, wheah loe used to prove important properties
of concurrent programs. These logics include the logic ofdRinand Gries|[33], Concurrent Separation
Logic [32], and Rely-Guarantee Logic [27]. All three allowogrammers to specify invariants over thread-
shared, mutable data in simple imperative languages. OW#dks and Concurrent Separation Logic are
similar, differing in the expressive power of the logicsyteach use. In these systems, one associates both
a lock and an invariant with a piece of thread-shared dataonlmtering a critical section, the invariants

16

over thread-shared data are revealed. These invariantsecased to prove other propositions, but must be
reestablished before the end of the critical section.

Concurrent separation logic has become extremely popatantly. Concurrent separation logic es-
sentially has ounnique andimmutable permissions, as well as a “critical-protected” permisdioat we
do not. This permission cannot be aliased and can only bessedanside of a critical region. (In fact,
it can only be referenced by multiple threads because adhsgawn is a nested syntactic construct in the
imperative language they use.) As has our work, separabigic has even been extended [9] with frac-
tional permissions [11], which allow weak permissions tdraeked and recombined to form stronger ones.
However, separation logic is usually used to reason abautldwel properties of programs, rather than
abstractions of state, and additionally does not have tkibiligy of the full/pure permission pair.

In the Rely-Guarantee approach, a thread must specifyiamtarwhich describe how it will not inter-
fere with particular conditions required by other threa@#multaneously a thread must specify the non-
interference conditions that it requires of other thredtffien a program is correct, the rely and guarantee
specifications of each thread weave together to form a gjmioalf of correctness. Rely-Guarantee is great
for reasoning about lock-free concurrent algorithms. Hmwethe approach suffers because system speci-
fications must be written in a global manner. A thread statgonly its pre and post conditions, but also
which invariants of other threads it promises to not invatéd These invariants could have nothing to do
with the memory that it modifies. Work on combining the two aggzhes|[15, 40] still contains many of
their original limitations. All three logics are pen and pafbased technigques and are not, as described in
these works, automated analyses.

Calvin-R [17] is an automation of the Rely-Guarantee cohospere the rely and guarantee predicate
for every thread is a conjunction atcess predicateslescribing which locks must be held when accessing
shared variables. Calvin-R uses this information, aloni wie Lipton [31] theory of reduction, to prove
method behavioral specifications. Calvin-R must assunteetrery method could be called concurrently,
and therefore variables must always be accessed in accerdathn their access predicate. Whereas in our
system, aunique permission to the receiver of a method call says that thecbbgnnot be thread-shared
for the duration of that call, and therefore fields do not megprotected access. Also, this work does not
mention the effect that aliasing might have on the validitaccess predicates, but presumably something
must be done to ensure soundness.

4.3 Race and Atomicity Checkers

There has been much work in the automated prevention of degsr

Dynamic race detectors [37,/42] check for unordered readsaites to the same location in memory
at execution time by instrumenting program code. Modekkhngy approaches have also been explared [23,
39]. These work by abstractly exploring possible threadriaavings in order to find ones in which there
is no ordering on a read and write to the same memory locafitvere have also been a number of static
analyses and type systems for data race prevention [10,0]12842 14] as well, each making trade-offs in
the number of false-positives and the complexity of anfmtatrequired.

The fundamental difference between each of these racetidetepproaches and our approach is the
presence or absence of behavioral specifications. None ofttter approaches require behavioral specifica-
tions, and therefore can check only an implicit specificgtibat the program should contain no data races.
In our system, typestate specifications, which describénteaded program behavior, allows us to prevent
more semantically meaningful race conditions.

Atomicity checkers|[16, 36, 24] help programmers achiewen&tity using locks, but can only ensure
the atomicity that the programmer deems necessary. Givgrgfication of a piece of code that must
execute as if atomic and specifications relating locks taribenory that they protect, an atomicity checker
will tell the programmer whether or not locks are used cdlyeaccording to the theory of reduction [31].

17

Once again, because atomicity checkers do not require toeabspecifications, they do not tell the program
which sections of code must execute atomically in order susnprogram correctness.

4.4 Optimization of STM

Since it has been noted that overhead is a major barrier tptiadofor transactional memory systems,
many researchers have worked to eliminate unnecessaryeatein transactional systems. Our approach is
primarily different in the number of annotations we requaknost every other approach is either dynamic,
or a completely automated approach requiring no progranangotations. We make the argument that,
because we giving programmers both a partial guaranteenofifual correctness and static optimization,
our annotations are somewhat more palatable. Moreovegiusemur approach uses programmer provided
annotations, we can do with an intra-procedural analysisnigations that in past have been done with a
whole program analysis.

Several basic optimizations work by identifying immutablgjects [[1]. For example, final fields of
objects cannot be maodified, and certain well-known typesh &1 strings, can never be modified. For these
objects, no logging is ever necessary. Other approaches byodynamically (or statically) identifying
objects that are allocated inside of a transaction [1] {[2RJare never shared with other threads [38].

The work of Shpeisman and others|[38] also proposes a, “Noegged Inside Transaction” analysis,
that removes reading and/or writing barriers for refereribat can never be accessed inside of a transaction.
This is done using a whole-program analysis which dependsvamole-program alias analysis. (Our analy-
sis essentially requires programmers to annotate this mffarmation.) Interestingly, the authors complain
about the fact that the thread object itself must be treatedthread-shared object, since it can additionally
be accessed by the thread that spawned it. They claim thaségelower performance because what are in
fact thread-local objects are often stored as fields of treathobject, and their analysis must assume them
to be thread-shared. In our optimization, programmers caotate the threadt art method as consum-
ing the permission to the thread object itself, allowingausptimize accesses to the newly spawned thread
object.

Finally, the workhorse of static optimization of concumrgns the escape analysis [7, 12], which iden-
tifies objects which cannot outlive their allocation contekhis in turn implies that the objects cannot be
shared with other threads. While an escape analysis caplghelaminate unnecessary synchronization, it
often fails to identify objects that are not thread-shaled still manage to escape their allocation context.

5 Research Plan

5.1 Time-line

Below is an estimated time-line for the completion of my thegork. This time-line begins in Fall 2008.
The total estimated time is 17 months.

Some work towards this thesis has already been completedmkgfized this analysis as a type system
for a core, Java-like language with threads and atomic Blo€kis language was proven sound with respect
to an operational semantics that models multi-threadimgshared memory. This work is described in detail
elsewhere [4,/3]. | implemented this analysis as Nll\&érintra-procedural, dataflow analysis for the Java
language. We have also implemented AtomicPower, whichasréfalization of optimizations described
in Section[3.4. This work was performed in cooperation withster's student Yoon Phil Kim_[29]. We
took AtomJaval[25], a source-to-source STM implementadioth modified it to use an optimistic read/pes-
simistic write approach, which in practice performs quitelM1]. This modified version was then further

®For, “Not in My Back Yard!”

18

Estimated Time Required \ Description

3 months Specification and verification of six to eight small, but feslistic
concurrent Java programs, for the purpose of identifyintepas
and deficiencies in my analysis. These programs will alscsked u
as benchmarks for the evaluation of the optimization.

5 months Feedback phase, during which I will improve the theory and im
plementation based on the programs the case studies fropndhe
ceeding phase. The goal of this phase is to use the knowledge
gained from these case studies in order to make the final gifiase
case studies a successful one.

5 months Specification and verification of two to four larger, real corrent
Java programs. During this phase, the expressivenesstagave
and rate of false positives for my approach will be evaluated

4 months Writing and defense.

extended with our optimizations. Finally, | have alreadguoespecifying, verifying, and benchmarking the
six to eight small applications using the NIMBY checker.

The feedback phase described in the time-line is meant patmgirove my analysis based on my experi-
ence verifying actual programs. There is no doubt that mjyaisawill produce false positives. We'd like to
reduce them. In order to do so, | will see what program pattéaguently occur that my analysis is not able
to handle, and find a way to add those features. For examptes sarly experience verifying concurrent
programs shows that many programs use a, “one referencérpeadt pattern. In this pattern, each thread
will have no more than one reference to a thread-shared toldjecan then treat this reference asique
when inside of an atomic block, which due to our effect sysa#imws for higher precision across method
calls. The result of this feedback phase will be the theod/the implementation necessary to verify two to
four larger, real concurrent Java programs.

5.2 Risks

In this section 1 list the major risks to the successful cagtiph of my thesis work and the steps I intend to
take to mitigate each of those risks.

5.2.1 Risk: Lack of Protocol-Based, Concurrent Programs

One risk is that there will not be any, or at least not many oarent, Object-Oriented programs that use
protocols. This is a risk because it would indicate that tlblgm | am trying to solve is not a particularly
important one. It would also make it difficult to choose enougal programs for the intended series of case
studies.

Mitigation | plan to mitigate this risk by immediately beginning to idién potential examples. This
process involves searching open-source code bases fourcenic programs that also use some kind of
object protocol, and then investigating whether or not theyld likely be susceptible to my approach.
Initially this seemed like a larger risk, but as of this wrgil have already identified and investigated 12
concurrent, open-source Java programs that | believe caearlfied by my approach. These programs vary
in size from 171 to 30,000 lines of source, with most being tbsn 2000 lines. | am also aware of a large
number of other potential candidates that | have not yet hbnto investigate.

19

5.2.2 Risk: Programs Cannot be Proven

Another risk is that the programs that | do find simply canmewbrified by my approach. In other words,
the automated analysis would produce too many false-pesito be useful.

Mitigation | am mitigating this risk by explicitly including a feedbagkase into my research plan. Af-
ter the initial collection, specification, and verificatioh six to eight concurrent programs, | will use the
knowledge that | have gained to expand the theory of the aisadnd improve the implementation. Then,
the results of this feedback phase would be used for anoghniessof case studies, this time on two to four
larger programs.

5.2.3 Risk: Poor Optimization Performance

As with any optimization, there is a risk that a good thegsdtidea simply fails to improve performance
in practice, for any number of practical reasons. While gotinoizations seem like they will improve
performance, our early results have been good but not odis

Mitigation ~ While the optimizations represent a relatively small cidmitiion of this thesis, | would still
like the optimizations to be successful. To this end, | wiémpt to identify the behaviors of programs that
will be improved by our optimizations, and start early inleoting examples of this sort.

6 Conclusion

In conclusion, | propose for a thesis a verification systeat thquires programmers to annotate program
references with an alias control mechanism known as acegssgsions. Given these annotations, we can
automatically verify the correct use of object protocolsconcurrent, object-oriented programs. This is
possible because access permissions tell us which progfamemces will be used to modify references,
and whether or not they are aliased. This in turn helps ugrdete whether or not an object might be

thread-shared. All this is done with the help of the atomimck] a mutual exclusion primitive provided

by transactional memory systems whose semantics is easynalize. Finally, as an added benefit for the
programmer’s annotation effort, we will use access pelionissnnotations in order to reduce the overhead of
an implementation of software transactional memory by r@ngounnecessary synchronization and logging.

References

[1] Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon, Bn R. Murphy, Bratin Saha, and Tatiana
Shpeisman. Compiler and runtime support for efficient safeantransactional memory. rhe 2006
ACM SIGPLAN conference on Programming language designraptémentationpages 26—-37. ACM
Press, 2006.

[2] Mike Barnett, Robert DeLine, Manuel Fahndrich, K. Rumska. Leino, and Wolfram Schulte. Verifica-
tion of object-oriented programs with invarianfmurnal of Object Technology Special Issue: ECOOP
2003 workshop on Formal Techniques for Java-like Progre®®):27-56, June 2004.

[3] Nels E. Beckman and Jonathan Aldrich. Verifying correistage of atomic blocks and types-
tate: Technical companion. Technical Report CMU-ISR-@8;1Carnegie Mellon University, 2008.
http://reports-archive. adm cs. cnmu. edu/ anon/ 1 sr 2008/ CMUJ- | SR- 08- 126. pdf.

20

http://reports-archive.adm.cs.cmu.edu/anon/isr2008/CMU-ISR-08-126.pdf

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Nels E. Beckman, Kevin Bierhoff, and Jonathan Aldricher¥ying correct usage of atomic blocks
and typestate. IThe 2008 Conference on Object-Oriented Programming Sgsteanguages and
Applications ACM Press, 2008.

Kevin Bierhoff and Jonathan Aldrich. Modular typestateecking of aliased objects. [fhe 22nd
annual ACM SIGPLAN conference on Object oriented programgmystems and applicationsages
301-320. ACM Press, 2007.

Kevin Bierhoff and Jonathan Aldrich. Lightweight objespecification with typestates. ESEC/FSE-
13: Proceedings of the 10th European software engineerorgecence held jointly with 13th ACM
SIGSOFT international symposium on Foundations of so@iveargineering pages 217-226. ACM
Press, 2005.

Bruno Blanchet. Escape analysis for object-orientedjleages: application to java. Trhe 14th ACM
SIGPLAN conference on Object-oriented programming, systéanguages, and applicatigngages
20-34. ACM Press, 1999.

Grady Booch, James Rumbaugh, and Ivar Jacobsdmified Modeling Language User Guide, The
(2nd Edition) (Addison-Wesley Object Technology Serigdilison-Wesley Professional, 2005.

Richard Bornat, Cristiano Calcagno, Peter O’Hearn, Biadthew Parkinson. Permission accounting
in separation logic. IlPOPL '05: Proceedings of the 32nd ACM SIGPLAN-SIGACT syimposn
Principles of programming language2005.

Chandrasekhar Boyapati, Robert Lee, and Martin RingBdvnership types for safe programming:
preventing data races and deadlocksO@PSLA '02: Proceedings of the 17th ACM SIGPLAN con-
ference on Object-oriented programming, systems, langgiaand applicationgages 211-230. ACM
Press, 2002.

John Boyland. Checking interference with fractionatrpissions. In R. Cousot, edit@tatic Analysis:
10th International Symposiunvolume 2694 ofLecture Notes in Computer Sciengemges 55-72,
Berlin, Heidelberg, New York, 2003. Springer.

Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vagira C. Sreedhar, and Sam Midkiff. Escape
analysis for java. IMThe 14th ACM SIGPLAN conference on Object-oriented prograng, systems,
languages, and applicationpages 1-19. ACM Press, 1999.

Robert DeLine and Manuel Fahndrich. Typestates foecisj INECOOP '04: European Conference
on Object-Oriented Programmingages 465-490. Springer, 2004.

Dawson Engler and Ken Ashcraft. RacerX: effectivetistdetection of race conditions and deadlocks.
In SOSP '03: Proceedings of the nineteenth ACM symposium orafdesystems principlepages
237-252. ACM Press, 2003.

Xinyu Feng. Local rely-guarantee reasoning. AGM Conference on Principles of Programming
LanguagesACM Press, 20009.

Cormac Flanagan and Shaz Qadeer. A type and effecinsysteatomicity. InPLDI '03: Proceedings
of the ACM SIGPLAN 2003 conference on Programming languag&d and implementatiopages
338-349. ACM Press, 2003.

Stephen Freund and Shaz Qadeer. Checking concisdispgans for multithreaded software. In
Workshop on Formal Techniques for Java-like Progragt3.

21

[18] Jean-Yves Girard. Linear logid.heor. Comput. S¢i50(1):1-102, 1987.

[19] Aaron Greenhouse and William L. Scherlis. Assuring axdlving concurrent programs: annotations
and policy. InICSE '02: Proceedings of the 24th International ConfereaneSoftware Engineering
pages 453-463. ACM Press, 2002.

[20] Dan Grossman. Type-safe multithreading in cyclone.TiDI '03: Proceedings of the 2003 ACM
SIGPLAN international workshop on Types in languages deaigd implementatignpages 13-25.
ACM Press, 2003.

[21] Tim Harris and Simon Peyton Jones. Transactional mgmith data invariants. ITRANSACT '06:
First ACM SIGPLAN Workshop on Languages, Compilers, anddiare Support for Transactional
Computing 2006.

[22] Tim Harris, Mark Plesko, Avraham Shinnar, and Davidditr Optimizing memory transactions.
SIGPLAN Not.41(6):14-25, 2006.

[23] Thomas A. Henzinger, Ranjit Jhala, and Rupak MajumdRace checking by context inference. In
PLDI '04: Proceedings of the ACM SIGPLAN 2004 conference mgiRmming language design and
implementationpages 1-13. ACM Press, 2004.

[24] Michael Hicks, Jeffrey S. Foster, and Polyvios Prdtika Lock inference for atomic sections. In
TRANSACT '06: First ACM SIGPLAN Workshop on Languages, @erapand Hardware Support
for Transactional Computing2006.

[25] Benjamin Hindman and Dan Grossman. Atomicity via setfi@:source translation. Ifihe 2006
workshop on Memory system performance and correctipesges 82—91. ACM Press, 2006.

[26] Bart Jacobs, Frank Piessens, K. Rustan M. Leino, andravblSchulte. Safe concurrency for aggre-
gate objects with invariants. IBEFM '05: Proceedings of the Third IEEE International Caefece
on Software Engineering and Formal Methpgsges 137-147, Washington, DC, USA, 2005. IEEE
Computer Society.

[27] CIiff B. Jones. Specification and design of (paralletpgrams. InProceedings of IFIP’83pages
321-332. North-Holland, 1983.

[28] Pallavi Joshi and Koushik Sen. Predictive typestatecking of multithreaded java programéuto-
mated Software Engineering, 2008. ASE 2008. 23rd IEEE/AQbrational Conference grpages
288-296, Sept. 2008.

[29] Yoon Phil Kim. Permission-based optimization for effnt software transactional memory. Master’s
thesis, Carnegie Mellon University, 2008.

[30] K. Rustan M. Leino. Data groups: specifying the modifima of extended state. Ifihe 13th ACM
SIGPLAN conference on Object-oriented programming, systéanguages, and applicatignsages
144-153. ACM Press, 1998.

[31] Richard J. Lipton. Reduction: a method of proving pntigs of parallel programsCommun. ACM
18(12):717-721, 1975.

[32] Peter W. O’'Hearn. Resources, concurrency, and loeaaeing. Theor. Comput. S¢i375(1-3):271—
307, 2007.

22

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Susan Owicki and David Gries. Verifying properties @rgllel programs: an axiomatic approach.
Commun. ACM19(5):279-285, 1976.

Polyvios Pratikakis, Jeffrey S. Foster, and Michaetkdi Locksmith: context-sensitive correlation
analysis for race detection. IRLDI '06: Proceedings of the 2006 ACM SIGPLAN conference on
Programming language design and implementatjgages 320-331. ACM Press, 2006.

Edwin Rodriguez, Matthew B. Dwyer, Cormac Flanagamnlblatcliff, Gary T. Leavens, and Robby.
Extending JML for modular specification and verification afltrthreaded programs. BECOOP ‘05:
Object-Oriented Programming 19th European Conferempages 551-576, 2005.

Amit Sasturkar, Rahul Agarwal, Ligiang Wang, and Sd&tiStoller. Automated type-based analysis
of data races and atomicity. PPoPP '05: Proceedings of the tenth ACM SIGPLAN symposium on
Principles and practice of parallel programmingages 83—-94. ACM Press, 2005.

Stefan Savage, Michael Burrows, Greg Nelson, Patrmsafsarro, and Thomas Anderson. Eraser: a
dynamic data race detector for multithreaded progra&@GM Trans. Comput. Syst15(4):391-411,
1997.

Tatiana Shpeisman, Vijay Menon, Ali-Reza AdI-TabatabSteven Balensiefer, Dan Grossman,
Richard L. Hudson, Katherine F. Moore, and Bratin Saha. Eirig isolation and ordering in stm.
SIGPLAN Notices42(6):78-88, 2007.

Scott D. Stoller. Model-checking multi-threaded distited Java programs. IRroceedings of the
7th International SPIN Workshop on SPIN Model Checking avfthare Verification pages 224-244,
London, UK, 2000. Springer-Verlag.

Viktor Vafeiadis and Matthew Parkinson. A marriage efiyguarantee and separation logiclnril8th
CONCUR Springer, 2007.

Mandana Vaziri, Frank Tip, and Julian Dolby. Assoaigtisynchronization constraints with data in
an object-oriented language. ROPL '06: Conference record of the 33rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languagesges 334-345. ACM, 2006.

Yuan Yu, Tom Rodeheffer, and Wei Chen. Racetrack: efficdetection of data race conditions via
adaptive tracking. I'8OSP '05: Proceedings of the twentieth ACM symposium onafipgrsystems
principles pages 221-234. ACM Press, 2005.

Appendices

A

Full Specification of the Blocking _queue

In this appendix we provide the full specification of tBeocki ng_queue class. Note that th&TIL-
LOPEN state does not appear, as its presence was unnecessarréot gerification of the queue.

final classBlocking_queue {
statesSTRUCTURE = { structurestate }
statesPROTOCOL = { open, closed }

23

private LinkedList elementsin STRUCTURE;

private booleanclosed;in PROTOCOL;

private booleanreject_enqueue_requesis;PROTOCOL;
private int waiting_threadsin STRUCTURE;

invariant STRUCTURE: share(elements)? reject_enqueue_requests full(this,PROTOCOL)
invariant closed: closed= true;
invariant open: closed= false
public Blocking_queue() 1 — unique(this! fr) in open, structurestate
public void enqueue(Object o) :
share(0) ® full(this, PROTOCOL) in open ® share(this, STRUCTURE) —
full(this, PROTOCOL) in open ® share(this, STRUCTURE)

public void enqueue_final_item(Object o) :
share(o) ® full(this, PROTOCOL) in open ® share(this, STRUCTURE) — 1

public Object dequeue() :

pure(this! fr, PROTOCOL) in open ® share(this! fr, STRUCTURE) —o

pure(this! fr, PROTOCOL) ® share(this! fr, STRUCTURE) ® share(result)
public booleanis_empty() :pure(this, STRUCTURE) — pure(this, STRUCTURE)
booleanis_closed() pure(this) —

(result = true —o pure(this! fr, PROTOCOL) i n closed) &

(result = false — pure(this! fr,PROTOCOL) i n open)

public void close() :full(this, PROTOCOL) in open — full(this, PROTOCOL) in closed

24

	Introduction
	Example: A Concurrent Queue
	Using the Concurrent Queue (Incorrectly)
	Tracking Abstract States Without Alias Control
	Current Approaches
	Proposed Approach

	This Thesis
	Thesis Statement
	Hypotheses
	Hypothesis: Formalization
	Hypothesis: Specification Coverage
	Hypothesis: Specification Burden
	Hypothesis: Analysis Precision
	Hypothesis: Mutual Exclusion Requirements
	Hypothesis: Optimization

	Proposed Approach
	Specification Using Access Permissions
	Verification Using Access Permissions
	Provider-Side Verification

	State Dimensions and State Hierarchies
	Permission-Based Optimization

	Related Work
	Automated Verification of Concurrent Programs
	Logics for Concurrency
	Race and Atomicity Checkers
	Optimization of STM

	Research Plan
	Time-line
	Risks
	Risk: Lack of Protocol-Based, Concurrent Programs
	Risk: Programs Cannot be Proven
	Risk: Poor Optimization Performance

	Conclusion
	Full Specification of the Blocking_queue

