
Verifying Protocols in Concurrent Software Using Atomic Blocks
and Alias Control

Nels E. Beckman

December 2008

1 Introduction

In object-oriented programs, it is often the case that object types define usage protocols as an implicit part
of their interface. These protocols define legal orderings of method calls, and must be respected at run-
time by code that uses objects of that type. Unfortunately, these protocols are implicit and are not checked
as part of the compilation process. Statically verifying the correct usage of object protocols would be
beneficial, because the violation of protocols at run-time can result in undefined behavior, or in the throwing
of exceptions. But it’s not an easy task. Statically tracking the state of heap-based objects has proven
difficult because of aliasing, specifically the ability for one object’s state to be modified through multiple
program references.

All of this is true for single-threaded programs. The verification of object protocol usage in concurrent
programs is an even more challenging task. In that case, multiple threads may simultaneously refer to a
single object whose protocol must be obeyed. But given the current state of the computer world, this is an
important goal.

Currently the computer industry is in the midst of a transition, from a world in which single-CPU ma-
chines and single-threaded programs are the norm, to a worldin which multi-core machines and concurrent
programs are standard. If more and more developers are starting to write concurrent object-oriented pro-
grams, ensuring conformance to object protocols, already one of the most challenging parts of using a library
or framework, will become a high priority.

Already, researchers in the fields of programming languagesand computer engineering have taken notice
of the influx of multi-core machines, and have begun exploring programming language features that will
make the development of concurrent software less burdensome. This thesis describes how we can use one
of these features, the atomic block, to simplify verification of object protocols in concurrent programs.

1.1 Example: A Concurrent Queue

In order to motivate the verification of object protocols in concurrent systems, let us examine a blocking
queue class used as part of the Axyl-Lucene program. Axyl-Lucene1 is an open-source program written in
Java that is designed to be a server wrapper around the ApacheLucene text search program. In order to
improve responsiveness, Axyl-Lucene is designed as a multi-threaded application, and includes a thread-
safe blocking queue class2. This class is designed to be used concurrently by one producer thread, who puts
items into the queue, and multiple consumer threads that consume those items. Furthermore, this queue
defines a protocol, which is described in Figure 1.

1packages.ubuntu.com/dapper/web/axyl-lucene
2Thanks to Allen Holub.

1

http://packages.ubuntu.com/dapper/web/axyl-lucene

is_closed() / return true

OPEN

CLOSING

CLOSED

STILLOPEN enqueue(o)

dequeue()

dequeue()

enqueue_final_item(o)close()

is_closed() / return false

Figure 1: A simplified depiction of the protocol defined by theBlocking_queue class.

As the state diagram indicates, a queue starts out in an abstract state, “OPEN,” during which time new
elements can be added to the queue and removed by consumers. At some point in time, the producer will
decide to stop putting items into the queue. The producer maydecide to immediately close the queue by
calling theclose method. This puts the queue into the “CLOSED” abstract state, and ensures that items
will be neither inserted nor removed from the queue. The producer may also decide that it wants to close the
queue, but that the elements that are still in the queue should be retrievable by the consumers. To do this,
the producer will call theenqueue_final_item method, which puts the queue into the “CLOSING”
abstract state. During this period, and until the last item has been removed, the producer can add no more
new items, but the consumers can continue to calldequeue to retrieve the remaining items. Finally, when
dequeue is called with only one item remaining in the queue, the queuetransitions to the “CLOSED”
abstract state. If this protocol is ever disobeyed at run-time, aClosed exception will be thrown.

There are two things to point out about the description of theQueue’s protocol. The first is the nature
of thedequeue method, which is used in two different places in the state diagram. Normally,dequeue
removes an element from the queue and returns the queue to thestate it as in before the call. (In this sense,
this diagram represents an under-specification, since all it indicates is that the queue will go back to the
“STILLOPEN” state.) However,dequeue can also transition the queue from the “CLOSING” state to the
“CLOSED” state. The second thing to notice is theis_closed method. If the consumer thread cannot
call dequeue when the queue is closed, it must have some way of knowing if the queue is closed or not!
Therefore, theis_closedmethod can be called at run-time to determine whether or not the queue is in the
closed state. It does not alter the current state of the queue, but its return value,true or false provides
information at run-time about the queue’s current abstractstate. We will refer to these sorts of methods as
dynamic state tests.

1.2 Using the Concurrent Queue (Incorrectly)

There are two ways in which protocols of thread-shared objects can be abused that we want our static
analysis to catch. First, as clients use objects that define protocols, they may inadvertently create race con-
ditions on the abstract state of those objects. Second, in the implementation of those protocols, the objects

2

f i n a l Block ing_queue queue =new Block ing_queue () ;

(new Thread () {
@Override
pub l i c void run () {

whi le (! queue . i s _ c l o s e d ())
System . ou t . p r i n t l n (" Got o b j e c t : " + queue . dequeue ()) ;

} }) . s t a r t () ;

f o r (i n t i =0; i <5; i ++)
queue . enqueue (" Ob jec t" + i) ;

queue . c l o s e () ;

Figure 2: A usage of theBlocking_queue class which contains a race on the abstract state of the queue.

themselves may not atomically transition from one state to another, which may cause other threads to see
fields of that object in an inconsistent state. In an attempt to illustrate the first point, Figure 2 shows a
client of theBlocking_queue class using the class to share information between two threads. Unfor-
tunately, and even though the implementationBlocking_queue uses correct synchronization, there is a
race condition on the abstract state of the queue. In betweenthe consumer thread’s call tois_closed
and its call todequeue, it is possible for the producer to close the queue, causing the consumer’s call to
dequeue to throw a run-time exception. The author of this class alludes to this fact in comments, saying
the is_closed method, “is inherently unreliable in a multithreaded situation” and that to achieve cor-
rect behavior the client must, “must synchronize on the queue.” While the comments are helpful, because
the protocol is a very real part of the object’s interface it would be nice to ensure it is used correctly at
compile-time.

It is also important to verify that state transitions for thread-shared objects are performed atomically.
Figure 3 shows an implementation of theclose method of theBlocking_queue class that does not
atomically transition from the current state to the closed state. (Note that this isnot the actual implementation
used in the Axyl-Lucene project, but is used for illustrative purposes.) A design invariant of the queue is
that when it is closed, theelements field, which holds a list, is to be null-ed out, and theclosed field
must be set to true. If the queue is thread-shared, it must transition atomically to the closed state otherwise
there is the risk of a null pointer dereference. The implementation of theis_closedmethod only checks
theclosed field, and thedequeue method dereferenceselements without checking whether or not it
is null. Therefore, two threads racing on the queue, one to close and one to dequeue, could inadvertently
cause a null pointer dereference even if the consumer atomically checked for the open state and dequeued.

1.3 Tracking Abstract States Without Alias Control

Our goal is to track the abstract states of objects as they flowthrough methods in a program, and we want
to do this in a modular way, so that once a method has been analyzed it never needs to be analyzed again.
Suppose we were to implement this analysis in a naive way. First, we will examine therun method of the
consumer thread from Figure 2. At the outset, we would have noidea which abstract state the queue is in.
Immediately after the condition expression in the while loop, our analysis would know that the queue was
“STILLOPEN.” Unfortunately, thequeue reference points to an object that has escaped from its allocation
context. Since we’d like our analysis to be sound, we’ll haveto assume that this or any other escaped object

3

boolean i s _ c l o s e d () {
a tomic : {

re tu rn i s _ c l o s e d ;
}

}

Ob jec t dequeue () {
a tomic : {

i f (e l e m e n t s . s i z e () > 0) {
. . .

}
}

void c l o s e () {
a tomic : { e l e m e n t s = n u l l ; }
a tomic : { c l o s e d = t rue ; }

}

Figure 3: An implementation of theclose method that does not atomically transition to the closed state.

could potentially be modified by any other number of threads,as we have no information to tell our analysis
otherwise. Therefore, our analysis will discard information about the abstract states of objects that have
escaped. This will at least allow our naive analysis to find the race that we previously identified.

Of course, if we go back and try to verify the producer code, wefind that our decision to throw out state
information for every escaping object is much too imprecise. TheBlocking_queue constructor creates
the queue in the “OPEN” state, and both theenqueue andclosemethods require that the queue be in the
“OPEN” state as a pre-condition. If our analysis discards the fact that the queue is in the “OPEN” state, after
queue construction because a reference escapes to the anonymous class, then our analysis will also flag both
calls as errors, since their pre-conditions can not be met. This is too bad, because our program is designed
in such a way that only the producer will change the abstract state of the queue, and therefore the producer
should never have to assume that another thread might changethe queue’s state. In order for our analysis to
know this without performing a global analysis, it will needthe programmer to provide information about
the patterns of program sharing.

When checking that an object atomically transitions from one state to another, a similar problem arises.
Without any information about whether or not the receiver ofan analyzed method is intended to be shared
amongst threads, we must conservatively assume that it willbe. This in turn would cause nearly every
analyzed method body to perform its work inside of an atomic block. With modern implementations of
transactional memory, this would lead to quite a high overhead, and it something that we’d definitely like to
avoid.

1.4 Current Approaches

Existing work on data race detection [10, 34, 14] does a good job of ensuring that access to thread-shared
memory is protected by locks or other mutual exclusion primitives, but it does not prevent a program’s
threads from interleaving in ways that destroy applicationinvariants.

Preventing thread interleavings that destroy program invariants is an important goal, because invari-
ants allow programmers to reason about the behavior of theirprograms. Toward this goal, several earlier

4

works [26, 27, 33, 41] attempt to statically prevent or proveimpossible thread interactions that might in-
validate invariants. Compared to these approaches, our work allows for a larger variety of thread-sharing
patterns, and additionally helps to ensure the proper use ofobject protocols, an abstraction of object state
that forms an implicit but unchecked interface in many object-oriented programs.

1.5 Proposed Approach

This thesis proposes the following approach to modular verification of concurrent object protocol use: First,
object references in method and type signatures will be annotated by the programmer using a technology
called access permissions [5]. Access permissions are a static description of a.) whether or not a referenced
object can be referred to by other program references and b.)whether or not those other references, if they
exist, can be used to modify the state of that object. Access permissions also track the current abstract state
of the object to which the reference refers. Then our analysis can track the abstract state of each reference
as it flows through the body of a method, checking the requiredstate indicated by pre-conditions at method
call sites. At any point in the program where the access permission associated with a reference indicates
that another modifying reference to that same object exists, the analysis will discard information about the
abstract state of the object. This will be done unless the code is inside the lexical scope of an atomic block,
the mutual exclusion primitive given to us by transactionalmemory systems.

Finally, because current implementations of atomic blocksare associated with a large overhead, we will
use access permissions as a means of compile-time optimization. Atomic blocks are often implemented us-
ing transactional memory, which must synchronize and log each memory access, since it may later be found
to be a conflicting one. Since access permissions provide us with static information about how memory will
be read and written by different threads, we will use this information to remove unnecessary synchronization
and logging.

2 This Thesis

In an ideal world, programmers would know before running a program if the object protocols they use and
define are always used correctly and implemented consistently, even in the face of concurrent access. This
thesis makes progress towards that goal.

2.1 Thesis Statement

Access permissions, which statically describe the aliasing behavior of program references in object-oriented
programs, provide a good basis for the verification of the implementation and usage of object protocols in
concurrent systems, allowing us to verify real programs andprovide optimizations of the underlying runtime
system.

2.2 Hypotheses

We can break the thesis statement down into more concrete, and measurable hypotheses.

2.2.1 Hypothesis: Formalization

We can develop and formalize an analysis that will guaranteea concurrent program does not violate the
object protocols that it defines and prove that the system will not produce false negatives.

5

Validation This hypothesis will be validated by developing and formalizing a type system and operational
semantics based on our permission system and proving the type system sound with respect to its semantics.
The proof essentially says that no object in a program will even be required to be in some abstract state that
at runtime it will not actually be in.

2.2.2 Hypothesis: Specification Coverage

Our specification system can be used to specify the behavior and implementation of object protocols in real
concurrent, object-oriented programs.

Validation In order to validate this hypothesis, I will specify the behavior of object protocols in 6-8 small
and 2-4 large concurrent Java programs, collected from opensource projects. I will classify small programs
as being from zero to 1000 lines of source, and expect the larger case studies to be from 5000 to 30,000
lines of source. During this process I will note and report recurring and interesting patterns of protocols that
cannot be specified.

2.2.3 Hypothesis: Specification Burden

Our approach requires fewer and less complex specificationsthan comparable automated behavioral analy-
ses.

Validation On the same suite of small and large programs, I will record the number of annotations re-
quired per line and compare that with the reported numbers from similar concurrent behavioral verification
techniques, specifically Spec# and JML. In order to compare their relative complexities, I will measure, as
a proxy, the number of program states mentioned per annotation. Both Spec# and JML boast large feature
sets, including many features that have no analog in my approach. Therefore, for comparison purposes, I
will use numbers reported by these approaches from concurrency-specific evaluations [26, 35].

2.2.4 Hypothesis: Analysis Precision

Our analysis will report a relatively low number of false positives, on the order of the number of false-
positives reported by comparable automated behavioral analyses.

Validation In order to validate this hypothesis, I will build an automated static analysis for Java that will
check the specifications on the suite of case studies. Then I will compare the number of false positives
reported per line of source with that of similar concurrent behavioral verification techniques, specifically
Spec# and JML.

2.2.5 Hypothesis: Mutual Exclusion Requirements

In order for a program to be verified, it should not require a great deal more or much “wider” critical sections
than is strictly necessary for functional correctness.

Validation While this hypothesis may prove difficult to evaluate in an objective manner, I will attempt to
observe and report on the number of times that my analysis forced me to add an atomic block or increase
the size of an atomic block, assuming that the original programs were synchronized correctly.

6

2.2.6 Hypothesis: Optimization

Because access permissions describe aliasing behaviors, permission annotations can be used to optimize
transactional memory, improving its performance.

Validation In order to validate this hypothesis, I will modify a source-to-source implementation of transac-
tional memory for Java to remove unnecessary synchronization and logging based on the access permission
annotations. Again, using the same suite of verified programs, I will compare performance with and without
the optimization.

3 Proposed Approach

Our approach, at a high level, is to specify and verify objectprotocols in concurrent programs using an alias
control technology known as access permissions [5]. Accesspermission specifications will be provided by
the programmer at method boundaries in the form of pre and post-conditions in order that our analysis can
tell locally the ways in which parameters and the receiver can be aliased. These permissions, along with the
current abstract state of each reference, will be tracked asthey flow through method bodies, as new aliases
are created, and as other methods, with their own associatedpre and post-conditions, are called. At any point
during the method when the permission on a reference indicates that the object to which it points could be
concurrently modified, we will discard known state information about that reference. State information will
not be discarded, however, if the code is within the lexical scope of an atomic block. State invariants, which
tie the abstract state of an object to the concrete or abstract states of its fields, will also be verified in a similar
manner, but with the modular invariant verification mechanism known as packing/unpacking. Finally, these
same permissions, which could for example indicate that a certain object will never be read by another
thread, will be used to remove unnecessary synchronizationand logging in an optimized source-to-source
implementation of software transactional memory.

3.1 Specification Using Access Permissions

Access permissions [5] are predicates that are associated with program references. They are useful because
they soundly, statically and locally describe the aliasingbehavior of the references with which they are
associated. An access permission can answer three important questions about the reference with which they
are associated:

1. Is the object to which this reference points referenced byany other references in the program?

2. Can this reference be used to modify the object to which it points?

3. Can other references to this object, if they exist, be usedto modify this object?

There are five permissions, each of which answers these questions in a different way:

Unique permissions are the only existing permission to the object to which they refer. They can be used to
read and modify.

Full permissions are associated with references that can read and modify the object to which they point, but
can exist simultaneously with other, read-only permissions.

Immutable permissions are associated with references that will only be used to read an object. Other
references may exist to that same object, but they cannot be used to modify either.

7

Pure permissions are associated with references that can only beused to read an object. Other references
to that same object may exist, and they may be used to modify the object.

Share permissions are associated with references that can be usedto read and modify the object to which
they point. Any other number of read-only or modifying references to the same object may exist
simultaneously.

Multiple different permission types can be associated withdifferent references that at run-time will point
to the same object. This feature allows verified programs to use interesting and common patterns of aliasing.
For example, in a “producer/consumer” pattern, one thread might use afull permission on a reference to write
to a shared object while, simultaneously, several other threads usepure permissions associated with other
program references to read from that same object.

In order to statically track the state of an object that a reference points to, we will also associate cur-
rent state of an object with our access permission. This gives us an access permission that looks like the
following, wherek is the permission,r is the reference name ands is the current state:

k(r) in s

e.g., full(blocking_queue) in OPEN

At the moment of object creation, a singleunique, permission will be created for the new object, and
will be associated with thethis reference inside the constructor body. But from here, in order to allow the
programmer to actually create aliases to that object, or in order to call a method on the object that requires a
permission other thanunique in its pre-condition, we must “split” the permission. Splitting is the process by
which we soundly create one or many new permissions from an old permission of a different type. In order
to preserve the meaning of each permission, only certain permission types can be split into other permission
types. Figure 4 shows the legal splitting operations. Note that when a permission is split into one or many
new permissions, the old permission is destroyed in the process.

Finally, before we can specify methods, we will need connectives to combine our permissions, and to
describe the pre and post-conditions. For the underlying logic of our system we will use linear logic [18],
which is a logic of resources. This will help ensure that permissions are not inadvertently, and hence un-
soundly, duplicated. The decidable multiplicative, additive linear logic provides us with linear implication
(⊸), additive conjunction (⊗), internal choice (⊕) and external choice (&). Now, in a series of examples,
we will string these permissions together in order to form complete method specifications.

The specification of the constructor says that, given nothing at all, it will return a unique permission to
the newly allocated queue that is in the OPEN state.

Blocking_queue() :1 ⊸ unique(this) in OPEN

Theenqueuemethod requires that the queue be in the open state, and the caller must have full permis-
sion to the queue. In addition, the caller must pass in a shared permission to the enqueued element. This
permission is not returned, but the permission to the queue itself is, and it remains in the OPEN state.

void enqueue(Object obj) :full(this) in OPEN ⊗ share(obj) ⊸ full(this) in OPEN

Theenqueue_last_itemmethod has probably the most interesting specification. It requires a full
permission to the queue in the OPEN state and a share permission to the object, just like theenqueue
method. However, it returns only a pure permission, and thatpermission is in the CLOSED state. In effect,
what is happening is that the full, modifying permission is being transferred from the producer side to the
consumer side. The last consumer, who is in charge of closingthe queue, will need this permission in order
to modify the abstract state of the queue.

8

k = share|pure|immutable
k(r) in s ⇛ k(r) in s ⊗ k(r) in s

S-SYM

k = full|share|pure|immutable
unique(r) in s ⇛ k(r) in s

S-UNIQUE

k = share|pure|immutable
full(r) in s ⇛ k(r) in s

S-FULL

immutable(r) in s ⇛ pure(r) in s
S-IMM

k = full|share
k(r) in s ⇛ k(r) in s ⊗ pure(r) in s

S-ASYM

Γ;∆ ⊢ P ′ P ′
⇛ P

Γ;∆ ⊢ P
SUBST

Figure 4: The splitting operation defines which permission types can legally be converted into other permis-
sion types. The Subst rule explains that if we need to prove a fact but cannot with the current permission,
we can attempt to split the permission to get the correct one.

void enqueue_last_item(Object obj) :full(this) in OPEN ⊗ share(obj) ⊸ pure(this) in CLOSING

Thedequeue method needs only a pure permission to the queue. This is good, because we will be
giving this permission to all of the consumers. The queue must be somewhere in the STILLOPEN state.
In return, the caller will receive a share permission to the item dequeued. It will also receive the pure
permission back, but since the call could potentially closethe queue, it will be in an unknown state. While
this specification captures the behavior of the dequeue method at an intuitive level, in Section 3.3 we will
have to revise it somewhat in order to account for the fact that thedequeue method actually modifies the
underlying structure of the queue.

Object dequeue() :pure(this) in STILLOPEN ⊸ share(result) ⊗ pure(this)

Theis_closedmethod is a dynamic state test, which clients can use at run-time to query the abstract
state of the object. It requires pure permission to the queue. It returns two implications, and the caller can
choose to eliminate one of them. If the result is true, the caller can obtain a pure permission to the queue
in the CLOSED state. Otherwise, the caller can obtain a pure permission to the queue in the STILLOPEN
state.

booleanis_closed() :pure(this) ⊸ (result = true ⊸ pure(this) in CLOSED) &
(result = false⊸ pure(this) in STILLOPEN)

Finally, theclose method requires a full permission to the queue in the STILLOPEN state. This
ensures that either the producer or the consumer (from within the dequeue method) can call it. It returns the
full permission to the queue, now in the CLOSED state.

9

void close() :full(this) in STILLOPEN ⊸ full(this) in CLOSED

3.2 Verification Using Access Permissions

Conceptually, the verification of a program that uses objectprotocols consists of client-side verification, in
which code that uses objects with protocols is verified, and provider-side verification, in which we verify
that the implementation of the methods of an object which define a protocol is correct. In practice, this
distinction may be blurred, since an object may define a protocol, but also in turn depend on its fields which
themselves define protocols.

The OOPSLA 2008 paper [4] and accompanying technical report[3] form the most complete description
of this work. In particular, in order to prove soundness, this system is formalized as a type system for a Java-
like language with an associated operational semantics. Inthis section we will describe the verification
process without the benefit of this formalization, due to space constraints. Please see these works for full
details.

Figure 5 illustrates the verification of the producer code originally presented in Figure 2. At each pro-
gram point, it shows the state of the linear context, which holds the currently known permissions for refer-
ences in the program. The program differs slightly from the one originally presented in that we have pulled
the inner class up to the top level. The most important thing to note about this example is that it correctly
verifies. Unlike in our naive verification strategy, back in Section 1.3 because the producer thread retains
full permission, an exclusive modifying permission, to thequeue, we are never forced to discard its abstract
state, and the pre-conditions of each method are satisfied.

final Blocking_queue queue =newBlocking_queue();
{ unique(queue) in OPEN }
(new ConsumerThread(queue)).start();
{ full(queue) in OPEN }
for (int i=0;i<5;i++) {

queue.enqueue("Object " + i);
{ full(queue) in OPEN }

}
{ full(queue) in OPEN }
queue.close();
{ full(queue) in CLOSED }

Figure 5: Verification of the producer thread. The definition, specification and verification of the consumer
thread is shown in Figure 6.

The verification of the consumer thread, is another story; itfails to correctly verify, which is a good thing.
The code for the ConsumerThread class, as well as its verification, appear in Figure 6. To verify this class,
we must use a few features of the provider-side verification mechanism. These features will be discussed in
more detail in the next section. However, note that the ConsumerThread class has an invariant for the state
alive, the only state that it ever inhabits. This invariant says that the consumer thread will always have a
pure permission to the queue, a reference to which is stores in thequeue field. This permission initially
comes from the constructor, whose specification dictates that it consumes a pure permission to the given
field which it does not return.

In the run method, initially there is a unique permission to the receiver in the context, as given by
the method pre-condition. In order to call theis_closed method, the receiver must be unpacked. This

10

final classConsumerThread {
invariant alive: pure(queue)
Blocking_queue queue;

ConsumerThread(Blocking_queue q) :pure(q) ⊸ unique(this) {
this.queue = q;

}
public void start() :unique(this) ⊸ 1 {

super.start();
}

public void run() : unique(this) ⊸ unique(this) {
{ unique(this) }
while(!queue.is_closed()) {

{ unpacked(this,alive), ⊗ pure(queue) }
System.out.println("Got object: " + queue.dequeue()); //Error! Not in STILLOPEN.

}
}

}

Figure 6: The specification and verification of the ConsumerThread class.

feature of provider-side verification will be discussed in the next section, but essentially it is a sound means
of providing a method with the facts implied by a state invariant. Here this means we get the pure permission
to the queue. This pure permission is used to call theis_closedmethod, and while we can eliminate the
returned implication inside the true branch of the loop, theanalysis immediately discards the implied state
of the queue. This is done because the method’s permission tothe queue,pure, implies that another thread
could be concurrently modifying the queue. Our analysis will always discard this information unless we
are inside an atomic block. Because this information was discarded, thedequeue method’s precondition
cannot be satisfied, and an error is signaled.

Finally, we present a corrected version of therun method in Figure 7. In this implementation, we use
an atomic block to eliminate the race on the abstract state ofthe queue object. This time, in the else branch
of the conditional, we are able to retain the fact that the queue is in the STILLOPEN state. While it is true
that other threads may have modifying permission to the queue, that thread could not concurrently modify
the queue because we are inside of an atomic block, and the semantics of atomic blocks prevent this.

3.2.1 Provider-Side Verification

We touched on provider-side verification a bit in the previous section, but in this section we will discuss
it in more detail, and in particular we will explain how our analysis prevents non-atomic state transitions
for thread-shared objects. The goal of provider-side verification is to ensure that a given method actually
performs the state transition its specification claims. In order to do this, our analysis allows the abstract
states that a class defines to be associated with an arbitrarypredicate over the fields of the receiver object.
For example, in Figure 6, we used the invariantpure(queue) for the alive state, which tells us that whenever
the thread is in the alive state, (i.e.,always), it must have a pure permission to thequeue field. (Note that
state invariants are private to the implementing class. To clients, abstract states are indeed abstract.)

11

public void run() : unique(this) ⊸ unique(this) {
{ unique(this) }
while(true) { Object item;

atomic: {
if (queue.is_closed())

{ unpacked(this,alive), ⊗ pure(queue) in CLOSED }
return ;

else
{ unpacked(this,alive), ⊗ pure(queue) in STILLOPEN }
System.out.println("Got object: " + queue.dequeue());

}
}

}

Figure 7: Verification of a corrected version of therun method from Figure 6 that uses an atomic block.

In order to verify that a state transition is correctly implemented, we must be able to establish the truth
of the invariant of the post-condition state before the method returns. Fortunately, we can use the invariant
for the incoming state in order to help us prove it. In Section1.2 we mentioned how, in our implementation
of theBlocking_queue, an invariant existed; when the queue is closed, theclosed field should have
the valuetrue, and theelements field should have the valuenull. We can specify this requirement
with the following state invariant:

invariant CLOSED : elements = null ⊗ closed = true

In order to verify the implementation of theclosed method, we must ensure that this invariant is true
before the method returns. In order to do this, we use a methodology known aspacking[2, 13]. The packing
methodology allows for the modular verification of class invariants. This methodology requires us to unpack
an object at any point when its invariants may not hold. Whileunpacked, we cannot return from the method,
and we cannot use the permission to the unpacked object. However, we can use the state invariants over
the fields of the object associated with the abstract state the object was in when it was unpacked. Finally,
and in order to avoid the unsound duplication of permissions, an object cannot be unpacked if it is already
unpacked.

In order to ensure that thread-shared objects cannot be observed in an inconsistent state, our analysis adds
an additional restriction; the unpacking of any reference associated withfull, pure or share permission must
be performed entirely within the scope of an atomic block. The original motivation behind this restriction
was the observation that the section of code where an object is unpacked corresponds with the section of
code where an object’s invariants might temporarily not hold. When an object is in an inconsistent state, and
that object is thread-shared, other threads should not be allowed to observe its state, and the atomic block
ensures just that. Given this intuition, one may wonder why this restriction is necessary for references of
pure permission, since it cannot be used to modify the object. Apure permission can still unpack invariants
from an abstract state, and it expects those facts to hold. Therefore, unpacking within an atomic block
ensures that the facts that are unpacked will not be modified concurrently.

In Figure 8 we demonstrate provider-side verification on theexample from Figure 3. Before the fields of
the queue can be reassigned, the receiver must be unpacked. This is tracked with theunpackedpredicate.
This also introduces any predicates associated with the OPEN state into the context. Thenelements is
reassigned. At this point, the atomic block closes. Assuming that the OPEN state requires theelements

12

void close() :full(this) in OPEN ⊸ full(this) in CLOSED {
{ full(this) in OPEN }
atomic: {

{ unpacked(this,OPEN), . . .OPEN state invariants . . . }
elements =null ;
{ unpacked(this,OPEN), elements == null , . . . }

} // Error! Atomic block closed while receiver unpacked!
atomic: {

closed =true;
}

}

Figure 8: Verification of theclose method fails because the atomic block ends before the receiver can be
packed, and it is associated withfull permission.

field to be non-null, this code will not verify; there are not enough facts in the context to pack the receiver
to any state, and it is associated with afull permission, which requires it to be packed outside of an atomic
block. Therefore an error is signaled. The important point is that a potentially thread-shared object was
about to become visible to other threads in a concrete state that did not correspond to any abstract state. If
the programmer instead had extended the atomic block acrossboth assignments, this method would verify.

3.3 State Dimensions and State Hierarchies

Sometimes it is necessary for objects to define more complex protocols than those I have shown here, and
for those we may need to make use of state dimensions and statehierarchies. A full description of either
is outside of the scope of this document, as neither is a contribution of this thesis. They are described in
full detail elsewhere [6]. However, adding both state dimensions and state hierarchies to this work greatly
enriches the system, and therefore it is important to describe in some detail.
State Dimensionsallows one object to define several orthogonal protocols. For example, an object that
models a wristwatch may have two protocols: one for an alarm,which can be on or off, and another for a
light, which independently can be on or off. On the implementation side, state dimensions are conceptually
similar to data groups [30]. Each orthogonal protocol defines its state invariants over a subset of the object’s
fields, where each set is disjoint from one another. From the client’s perspective, it is possible to have
permission to just one dimension of an object if it defines multiple protocols. Similarly, a client could hold
references of different permission types to different dimensions of an object.

In fact, and as hinted in Section 3.1, we need state dimensions to verify the original implementation of
theBlocking_queue class. While only one thread (the producer) will modify the fields of the queue as-
sociated with the protocol, both producer and consumer threads modify the underlying linked list, producers
to insert items and consumers to remove them. Therefore, to verify the full blocking queue example, we map
theelements field, which points to the underlying linked list, into a separate dimension, “STRUCTURE”
which defines no interesting protocol.3 Both producer threads and consumer threads have ashare permis-
sion to this dimension. As a result, each method signature changes slightly. The full queue specification is
shown in the appendix. Here, for example, is the proper specification4 of thedequeue method:

3Note that this makes the CLOSED state invariant we defined in Section 3.2.1 very hard to verify, since theelements field
andclosed field are mapped to two different dimensions. Fortunately, this invariant does not exist in the actual implementation,
and was created just for presentation purposes.

4The fr notation indicates that this is a permission to the object frame, giving us permission to read fields of the object, as

13

Object dequeue() :share(this!fr, STRUCTURE) ⊗ pure(this!fr, PROTOCOL) in OPEN ⊸

share(this!fr, STRUCTURE) ⊗ pure(this!fr, PROTOCOL)

State hierarchiesallow abstract states to be refined into multiple sub-states. This allows subclasses to
define more specific abstract states while still preserving behavioral subtyping on overridden methods. In
the example in Figure 1, the “OPEN” and “CLOSING” states refine the “STILLOPEN” state. In fact, in the
implementation of our concurrent typestate analysis, every object has one super-state, “alive” that it always
occupies, and which all other states implicitly refine. Whenwe discard knowledge about the state of an
object, for instance, because of the possibility of concurrent modification, we really are just dropping the
state to the “alive” state. Finally, a stateSg can be staticallyguaranteed, which tells a weak permission such
aspure that, while the modifying permission can transition the object at will to any sub-state, it can never
leave theSg state.

Programmers familiar with UML [8] will recognize both statedimensions and state hierarchies, both of
which are features of the state diagram notion.

3.4 Permission-Based Optimization

Access permissions can also be used to optimize the performance of software transactional memory imple-
mentations, since they statically describe the aliasing behaviors of a program. Many software transactional
memory systems are implemented in an optimistic fashion, where transactions execute and roll back only
if it is later determined they observed an inconsistent memory state. In order to implement this behavior,
STM systems keep read and write sets which track which piecesof memory were read from and written to
by which transactions, and what the original value of an object was at the beginning of a transaction.

The fastest current approaches [1] “open” an object for writing (or reading) before fields of that object
are written to (or read from). A thread opens an object for writing by setting its transaction as the owner of
the object (using an atomic test and set), and copying the initial value of the object to a write log. Before the
transaction commits, a “version” number associated with the written object will be incremented. A thread
opens an object for reading by checking to see if that object is owned (using an atomic test) and if not,
adding the current version number for the read object to the transaction read set. In either case, if the object
is already owned by another thread, the opening thread must defer to contention management to solve the
dispute.

Since access permissions tell us statically which objects will be modified and which will be shared, we
can remove synchronization and logging operations that will never be needed. The general principles of our
optimization are as follows:

• Objects ofimmutable permission will never be opened for reading, since no threadwill change their
value.

• When writing to the fields of aunique object, it is not necessary to “open” that object for writing
(a process that requires synchronization) since no other thread can concurrently access the object.
However, it is necessary to log the initial value of the object as the transaction still may be rolled
back.

• Neither objects ofunique nor full permission ever need to be opened for reading.

• We would like the above three rules to always be sound. However, becauseunique andfull permis-
sions can be reached through fields of other thread-shared objects, we require that anyshare, full, or
pure object be opened for writing before any method is called on aunique or full field of that object.

opposed to a virtual permission, which gives us the right to call virtual methods on an object.

14

Because of the last restriction, it is possible that our optimization will decrease performance in some cir-
cumstances, since it must open objects for writing that might not otherwise be opened. We expect that our
optimization will improve performance by reducing overhead in applications where objects ofunique and
immutable permission are frequently modified inside of transactions,but where threads most commonly
access disjoint regions of memory.

We can use state dimensions to decrease the granularity of locking below that of the object level. At
the moment, most STM systems perform conflict detection on either the object or the word level. Conflict
detection on the word level can often impose too much overhead, while the object level has the potential
to create increased contention. State dimensions divide anobject into groups of fields that will be accessed
as part of the same logical operations, and therefore make a good candidate for a granularity of conflict
detection that is finer than the object level, yet coarser than the word level.

4 Related Work

In this section, we discuss related work. While there are a large number of competing approaches, we feel
that our work is significantly different, and provides a substantial contribution. The most important contribu-
tion over existing work is that of the full/pure permission,which allows one object to depend on knowledge
about another, thread-shared but unencapsulated object. As an example, consider theThread_pool class,
shown in Figure 9, that also comes from the Axyl-Lucene project. This thread pool also defines an open-
closed protocol. Interestingly, the invariants of the openand closed abstract state depend on the abstract
state of the underlying blocking queue (e.g., when the pool is in the open state, the queue must be in the
open state). Our approach allows this type of invariant, even though the thread pool is shared with several
instances of thePooled_thread class. As we will show, this sort of invariant cannot be expressed in
other approaches.

public classThread_pool {
statesalive = { open, closed }

private final Blocking_queue queue;
private booleanhas_closed;

invariant open: has_closed= false⊗
share(queue,STRUCTURE) ⊗ full(queue,PROTOCOL) in open;

invariant closed: has_closed= true ⊗
share(queue,STRUCTURE) ⊗ full(queue,PROTOCOL) in closed;

private classPooled_thread {
. . .

}

. . .
}

Figure 9: The Thread_pool class, also from the Axyl-Lucene project, defines a state invariant that depends
on the abstract state of a thread-shared blocking queue.

15

4.1 Automated Verification of Concurrent Programs

The work that most closely resembles our own was developed aspart of the Spec# Project. Jacobs et al.
[26] have also created a system that will preserve object invariants even in the face of concurrency. More-
over, our system uses a very similar unpacking methodology which comes from a shared research her-
itage [2]. Nonetheless, we believe our work to be different in several important ways. First, they use
ownership as their underlying means of alias-control, which imposes some hierarchical restrictions on
the architecture of an application. Our approach allows forownership transfer between threads (e.g., the
enqueue_final_object method in the blocking queue. See Appendix A.). On the other hand, their
system allows more expressive specifications, as behaviorscan be specified in first-order predicate logic,
rather than typestate. This system does have a proof of soundness but provides neither formal typing rules
nor a formal semantics.

As mentioned, their approach cannot mention thread-sharedobjects in invariants. Once an object be-
comes thread-shared, a process which must be signified by the“share” annotation, it can no longer be
mentioned in another object’s invariant. Therefore, examples like the one shown in Figure 9 cannot be
verified.

Finally, our system uses atomic blocks while the Jacobs approach is based on locks. While this may seem
like a minor detail, it actually provides our system with nice benefits. In their approach, in order to determine
whether it is the responsibility of the client or provider toensure proper synchronization, there is a notion
of client-side lockingversusprovider-side locking. Methods using client-side locking can provide more
information-laden post-conditions, while provider-sidelocking methods cannot. Because atomic blocks are
a composable primitive, it is sufficient in our system to create one method with a full post-condition. This
method can then be type-checked correctly in atomic and non-atomic contexts.

Some related work has also been done within the context of theJML project [35]. This work is mainly
focused on introducing new specifications useful for those who would like to verify lock-based, concurrent
object-oriented programs. Some of the specifications can beautomatically verified, however due to the fact
that this verification is done with a model-checker, verification failed to terminate on about half of their
examples.

Joshi and Sen [28] attempt to solve the same problem, using the same motivation. Their solution is a
dynamic analysis which has significantly lower burden on theprogrammer, but can miss some races and can
infer inaccurate typestate properties.

In recent work, Vaziri et al. [41] have proposed a system to help programmers preserve the consistency
of objects with a feature calledatomic sets. In this approach, programmers specify that certain fields of
an object are related, and must be modified atomically. An interprocedural static analysis then infers code
locations where synchronization is required. While a promising approach, it does not allow verification of
functional properties of code, such as the correct usage of object protocols.

Finally, Harris and Jones [21] introduce a mechanism for STMHaskell that ensures a data invariants will
not be violated during a given execution of a program. However, this is a dynamic technique that cannot
guarantee conformance for all executions.

4.2 Logics for Concurrency

There are a number of popular logics for concurrency, which can be used to prove important properties
of concurrent programs. These logics include the logic of Owicki and Gries [33], Concurrent Separation
Logic [32], and Rely-Guarantee Logic [27]. All three allow programmers to specify invariants over thread-
shared, mutable data in simple imperative languages. Owicki-Gries and Concurrent Separation Logic are
similar, differing in the expressive power of the logics they each use. In these systems, one associates both
a lock and an invariant with a piece of thread-shared data. Upon entering a critical section, the invariants

16

over thread-shared data are revealed. These invariants canbe used to prove other propositions, but must be
reestablished before the end of the critical section.

Concurrent separation logic has become extremely popular recently. Concurrent separation logic es-
sentially has ourunique and immutable permissions, as well as a “critical-protected” permissionthat we
do not. This permission cannot be aliased and can only be accessed inside of a critical region. (In fact,
it can only be referenced by multiple threads because a thread spawn is a nested syntactic construct in the
imperative language they use.) As has our work, separation logic has even been extended [9] with frac-
tional permissions [11], which allow weak permissions to betracked and recombined to form stronger ones.
However, separation logic is usually used to reason about low level properties of programs, rather than
abstractions of state, and additionally does not have the flexibility of the full/pure permission pair.

In the Rely-Guarantee approach, a thread must specify invariants which describe how it will not inter-
fere with particular conditions required by other threads.Simultaneously a thread must specify the non-
interference conditions that it requires of other threads.When a program is correct, the rely and guarantee
specifications of each thread weave together to form a globalproof of correctness. Rely-Guarantee is great
for reasoning about lock-free concurrent algorithms. However, the approach suffers because system speci-
fications must be written in a global manner. A thread states not only its pre and post conditions, but also
which invariants of other threads it promises to not invalidate. These invariants could have nothing to do
with the memory that it modifies. Work on combining the two approaches [15, 40] still contains many of
their original limitations. All three logics are pen and paper-based techniques and are not, as described in
these works, automated analyses.

Calvin-R [17] is an automation of the Rely-Guarantee concept, where the rely and guarantee predicate
for every thread is a conjunction ofaccess predicates, describing which locks must be held when accessing
shared variables. Calvin-R uses this information, along with the Lipton [31] theory of reduction, to prove
method behavioral specifications. Calvin-R must assume that every method could be called concurrently,
and therefore variables must always be accessed in accordance with their access predicate. Whereas in our
system, aunique permission to the receiver of a method call says that the object cannot be thread-shared
for the duration of that call, and therefore fields do not require protected access. Also, this work does not
mention the effect that aliasing might have on the validity of access predicates, but presumably something
must be done to ensure soundness.

4.3 Race and Atomicity Checkers

There has been much work in the automated prevention of data races.
Dynamic race detectors [37, 42] check for unordered reads and writes to the same location in memory

at execution time by instrumenting program code. Model-checking approaches have also been explored [23,
39]. These work by abstractly exploring possible thread interleavings in order to find ones in which there
is no ordering on a read and write to the same memory location.There have also been a number of static
analyses and type systems for data race prevention [10, 19, 20, 34, 14] as well, each making trade-offs in
the number of false-positives and the complexity of annotations required.

The fundamental difference between each of these race detection approaches and our approach is the
presence or absence of behavioral specifications. None of the other approaches require behavioral specifica-
tions, and therefore can check only an implicit specification; that the program should contain no data races.
In our system, typestate specifications, which describe theintended program behavior, allows us to prevent
more semantically meaningful race conditions.

Atomicity checkers [16, 36, 24] help programmers achieve atomicity using locks, but can only ensure
the atomicity that the programmer deems necessary. Given a specification of a piece of code that must
execute as if atomic and specifications relating locks to thememory that they protect, an atomicity checker
will tell the programmer whether or not locks are used correctly, according to the theory of reduction [31].

17

Once again, because atomicity checkers do not require behavioral specifications, they do not tell the program
which sections of code must execute atomically in order to ensure program correctness.

4.4 Optimization of STM

Since it has been noted that overhead is a major barrier to adoption for transactional memory systems,
many researchers have worked to eliminate unnecessary overhead in transactional systems. Our approach is
primarily different in the number of annotations we require; almost every other approach is either dynamic,
or a completely automated approach requiring no programmerannotations. We make the argument that,
because we giving programmers both a partial guarantee of functional correctness and static optimization,
our annotations are somewhat more palatable. Moreover, because our approach uses programmer provided
annotations, we can do with an intra-procedural analysis optimizations that in past have been done with a
whole program analysis.

Several basic optimizations work by identifying immutableobjects [1]. For example, final fields of
objects cannot be modified, and certain well-known types, such as strings, can never be modified. For these
objects, no logging is ever necessary. Other approaches work by dynamically (or statically) identifying
objects that are allocated inside of a transaction [1] ([22]) or are never shared with other threads [38].

The work of Shpeisman and others [38] also proposes a, “Not Accessed Inside Transaction” analysis,
that removes reading and/or writing barriers for references that can never be accessed inside of a transaction.
This is done using a whole-program analysis which depends ona whole-program alias analysis. (Our analy-
sis essentially requires programmers to annotate this alias information.) Interestingly, the authors complain
about the fact that the thread object itself must be treated as a thread-shared object, since it can additionally
be accessed by the thread that spawned it. They claim that they see lower performance because what are in
fact thread-local objects are often stored as fields of the thread object, and their analysis must assume them
to be thread-shared. In our optimization, programmers can annotate the threadstart method as consum-
ing the permission to the thread object itself, allowing us to optimize accesses to the newly spawned thread
object.

Finally, the workhorse of static optimization of concurrency is the escape analysis [7, 12], which iden-
tifies objects which cannot outlive their allocation context. This in turn implies that the objects cannot be
shared with other threads. While an escape analysis can cheaply eliminate unnecessary synchronization, it
often fails to identify objects that are not thread-shared,but still manage to escape their allocation context.

5 Research Plan

5.1 Time-line

Below is an estimated time-line for the completion of my thesis work. This time-line begins in Fall 2008.
The total estimated time is 17 months.

Some work towards this thesis has already been completed. I formalized this analysis as a type system
for a core, Java-like language with threads and atomic blocks. This language was proven sound with respect
to an operational semantics that models multi-threading and shared memory. This work is described in detail
elsewhere [4, 3]. I implemented this analysis as NIMBY5, a intra-procedural, dataflow analysis for the Java
language. We have also implemented AtomicPower, which is the realization of optimizations described
in Section 3.4. This work was performed in cooperation with master’s student Yoon Phil Kim [29]. We
took AtomJava [25], a source-to-source STM implementationand modified it to use an optimistic read/pes-
simistic write approach, which in practice performs quite well [1]. This modified version was then further

5For, “Not in My Back Yard!”

18

Estimated Time Required Description

3 months Specification and verification of six to eight small, but real/realistic
concurrent Java programs, for the purpose of identifying patterns
and deficiencies in my analysis. These programs will also be used
as benchmarks for the evaluation of the optimization.

5 months Feedback phase, during which I will improve the theory and im-
plementation based on the programs the case studies from thepro-
ceeding phase. The goal of this phase is to use the knowledge
gained from these case studies in order to make the final phaseof
case studies a successful one.

5 months Specification and verification of two to four larger, real concurrent
Java programs. During this phase, the expressiveness, coverage
and rate of false positives for my approach will be evaluated.

4 months Writing and defense.

extended with our optimizations. Finally, I have already begun specifying, verifying, and benchmarking the
six to eight small applications using the NIMBY checker.

The feedback phase described in the time-line is meant to help improve my analysis based on my experi-
ence verifying actual programs. There is no doubt that my analysis will produce false positives. We’d like to
reduce them. In order to do so, I will see what program patterns frequently occur that my analysis is not able
to handle, and find a way to add those features. For example, some early experience verifying concurrent
programs shows that many programs use a, “one reference per thread” pattern. In this pattern, each thread
will have no more than one reference to a thread-shared object. It can then treat this reference asunique
when inside of an atomic block, which due to our effect systemallows for higher precision across method
calls. The result of this feedback phase will be the theory and the implementation necessary to verify two to
four larger, real concurrent Java programs.

5.2 Risks

In this section I list the major risks to the successful completion of my thesis work and the steps I intend to
take to mitigate each of those risks.

5.2.1 Risk: Lack of Protocol-Based, Concurrent Programs

One risk is that there will not be any, or at least not many concurrent, Object-Oriented programs that use
protocols. This is a risk because it would indicate that the problem I am trying to solve is not a particularly
important one. It would also make it difficult to choose enough real programs for the intended series of case
studies.

Mitigation I plan to mitigate this risk by immediately beginning to identify potential examples. This
process involves searching open-source code bases for concurrent programs that also use some kind of
object protocol, and then investigating whether or not theywould likely be susceptible to my approach.
Initially this seemed like a larger risk, but as of this writing I have already identified and investigated 12
concurrent, open-source Java programs that I believe can beverified by my approach. These programs vary
in size from 171 to 30,000 lines of source, with most being less than 2000 lines. I am also aware of a large
number of other potential candidates that I have not yet beenable to investigate.

19

5.2.2 Risk: Programs Cannot be Proven

Another risk is that the programs that I do find simply cannot be verified by my approach. In other words,
the automated analysis would produce too many false-positives to be useful.

Mitigation I am mitigating this risk by explicitly including a feedbackphase into my research plan. Af-
ter the initial collection, specification, and verificationof six to eight concurrent programs, I will use the
knowledge that I have gained to expand the theory of the analysis and improve the implementation. Then,
the results of this feedback phase would be used for another series of case studies, this time on two to four
larger programs.

5.2.3 Risk: Poor Optimization Performance

As with any optimization, there is a risk that a good theoretical idea simply fails to improve performance
in practice, for any number of practical reasons. While our optimizations seem like they will improve
performance, our early results have been good but not outstanding.

Mitigation While the optimizations represent a relatively small contribution of this thesis, I would still
like the optimizations to be successful. To this end, I will attempt to identify the behaviors of programs that
will be improved by our optimizations, and start early in collecting examples of this sort.

6 Conclusion

In conclusion, I propose for a thesis a verification system that requires programmers to annotate program
references with an alias control mechanism known as access permissions. Given these annotations, we can
automatically verify the correct use of object protocols inconcurrent, object-oriented programs. This is
possible because access permissions tell us which program references will be used to modify references,
and whether or not they are aliased. This in turn helps us determine whether or not an object might be
thread-shared. All this is done with the help of the atomic block, a mutual exclusion primitive provided
by transactional memory systems whose semantics is easy to formalize. Finally, as an added benefit for the
programmer’s annotation effort, we will use access permission annotations in order to reduce the overhead of
an implementation of software transactional memory by removing unnecessary synchronization and logging.

References

[1] Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon, Brian R. Murphy, Bratin Saha, and Tatiana
Shpeisman. Compiler and runtime support for efficient software transactional memory. InThe 2006
ACM SIGPLAN conference on Programming language design and implementation, pages 26–37. ACM
Press, 2006.

[2] Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino, and Wolfram Schulte. Verifica-
tion of object-oriented programs with invariants.Journal of Object Technology Special Issue: ECOOP
2003 workshop on Formal Techniques for Java-like Programs, 3(6):27–56, June 2004.

[3] Nels E. Beckman and Jonathan Aldrich. Verifying correctusage of atomic blocks and types-
tate: Technical companion. Technical Report CMU-ISR-08-126, Carnegie Mellon University, 2008.
http://reports-archive.adm.cs.cmu.edu/anon/isr2008/CMU-ISR-08-126.pdf.

20

http://reports-archive.adm.cs.cmu.edu/anon/isr2008/CMU-ISR-08-126.pdf

[4] Nels E. Beckman, Kevin Bierhoff, and Jonathan Aldrich. Verifying correct usage of atomic blocks
and typestate. InThe 2008 Conference on Object-Oriented Programming Systems, Languages and
Applications. ACM Press, 2008.

[5] Kevin Bierhoff and Jonathan Aldrich. Modular typestatechecking of aliased objects. InThe 22nd
annual ACM SIGPLAN conference on Object oriented programming systems and applications, pages
301–320. ACM Press, 2007.

[6] Kevin Bierhoff and Jonathan Aldrich. Lightweight object specification with typestates. InESEC/FSE-
13: Proceedings of the 10th European software engineering conference held jointly with 13th ACM
SIGSOFT international symposium on Foundations of software engineering, pages 217–226. ACM
Press, 2005.

[7] Bruno Blanchet. Escape analysis for object-oriented languages: application to java. InThe 14th ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and applications, pages
20–34. ACM Press, 1999.

[8] Grady Booch, James Rumbaugh, and Ivar Jacobson.Unified Modeling Language User Guide, The
(2nd Edition) (Addison-Wesley Object Technology Series). Addison-Wesley Professional, 2005.

[9] Richard Bornat, Cristiano Calcagno, Peter O’Hearn, andMatthew Parkinson. Permission accounting
in separation logic. InPOPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, 2005.

[10] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership types for safe programming:
preventing data races and deadlocks. InOOPSLA ’02: Proceedings of the 17th ACM SIGPLAN con-
ference on Object-oriented programming, systems, languages, and applications, pages 211–230. ACM
Press, 2002.

[11] John Boyland. Checking interference with fractional permissions. In R. Cousot, editor,Static Analysis:
10th International Symposium, volume 2694 ofLecture Notes in Computer Science, pages 55–72,
Berlin, Heidelberg, New York, 2003. Springer.

[12] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar, and Sam Midkiff. Escape
analysis for java. InThe 14th ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 1–19. ACM Press, 1999.

[13] Robert DeLine and Manuel Fähndrich. Typestates for objects. InECOOP ’04: European Conference
on Object-Oriented Programming, pages 465–490. Springer, 2004.

[14] Dawson Engler and Ken Ashcraft. RacerX: effective, static detection of race conditions and deadlocks.
In SOSP ’03: Proceedings of the nineteenth ACM symposium on Operating systems principles, pages
237–252. ACM Press, 2003.

[15] Xinyu Feng. Local rely-guarantee reasoning. InACM Conference on Principles of Programming
Languages. ACM Press, 2009.

[16] Cormac Flanagan and Shaz Qadeer. A type and effect system for atomicity. InPLDI ’03: Proceedings
of the ACM SIGPLAN 2003 conference on Programming language design and implementation, pages
338–349. ACM Press, 2003.

[17] Stephen Freund and Shaz Qadeer. Checking concise specifications for multithreaded software. In
Workshop on Formal Techniques for Java-like Programs, 2003.

21

[18] Jean-Yves Girard. Linear logic.Theor. Comput. Sci., 50(1):1–102, 1987.

[19] Aaron Greenhouse and William L. Scherlis. Assuring andevolving concurrent programs: annotations
and policy. InICSE ’02: Proceedings of the 24th International Conferenceon Software Engineering,
pages 453–463. ACM Press, 2002.

[20] Dan Grossman. Type-safe multithreading in cyclone. InTLDI ’03: Proceedings of the 2003 ACM
SIGPLAN international workshop on Types in languages design and implementation, pages 13–25.
ACM Press, 2003.

[21] Tim Harris and Simon Peyton Jones. Transactional memory with data invariants. InTRANSACT ’06:
First ACM SIGPLAN Workshop on Languages, Compilers, and Hardware Support for Transactional
Computing, 2006.

[22] Tim Harris, Mark Plesko, Avraham Shinnar, and David Tarditi. Optimizing memory transactions.
SIGPLAN Not., 41(6):14–25, 2006.

[23] Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar.Race checking by context inference. In
PLDI ’04: Proceedings of the ACM SIGPLAN 2004 conference on Programming language design and
implementation, pages 1–13. ACM Press, 2004.

[24] Michael Hicks, Jeffrey S. Foster, and Polyvios Pratikakis. Lock inference for atomic sections. In
TRANSACT ’06: First ACM SIGPLAN Workshop on Languages, Compilers, and Hardware Support
for Transactional Computing, 2006.

[25] Benjamin Hindman and Dan Grossman. Atomicity via source-to-source translation. InThe 2006
workshop on Memory system performance and correctness, pages 82–91. ACM Press, 2006.

[26] Bart Jacobs, Frank Piessens, K. Rustan M. Leino, and Wolfram Schulte. Safe concurrency for aggre-
gate objects with invariants. InSEFM ’05: Proceedings of the Third IEEE International Conference
on Software Engineering and Formal Methods, pages 137–147, Washington, DC, USA, 2005. IEEE
Computer Society.

[27] Cliff B. Jones. Specification and design of (parallel) programs. InProceedings of IFIP’83, pages
321–332. North-Holland, 1983.

[28] Pallavi Joshi and Koushik Sen. Predictive typestate checking of multithreaded java programs.Auto-
mated Software Engineering, 2008. ASE 2008. 23rd IEEE/ACM International Conference on, pages
288–296, Sept. 2008.

[29] Yoon Phil Kim. Permission-based optimization for effecient software transactional memory. Master’s
thesis, Carnegie Mellon University, 2008.

[30] K. Rustan M. Leino. Data groups: specifying the modification of extended state. InThe 13th ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and applications, pages
144–153. ACM Press, 1998.

[31] Richard J. Lipton. Reduction: a method of proving properties of parallel programs.Commun. ACM,
18(12):717–721, 1975.

[32] Peter W. O’Hearn. Resources, concurrency, and local reasoning.Theor. Comput. Sci., 375(1-3):271–
307, 2007.

22

[33] Susan Owicki and David Gries. Verifying properties of parallel programs: an axiomatic approach.
Commun. ACM, 19(5):279–285, 1976.

[34] Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. Locksmith: context-sensitive correlation
analysis for race detection. InPLDI ’06: Proceedings of the 2006 ACM SIGPLAN conference on
Programming language design and implementation, pages 320–331. ACM Press, 2006.

[35] Edwin Rodriguez, Matthew B. Dwyer, Cormac Flanagan, John Hatcliff, Gary T. Leavens, and Robby.
Extending JML for modular specification and verification of multi-threaded programs. InECOOP ‘05:
Object-Oriented Programming 19th European Conference, pages 551–576, 2005.

[36] Amit Sasturkar, Rahul Agarwal, Liqiang Wang, and ScottD. Stoller. Automated type-based analysis
of data races and atomicity. InPPoPP ’05: Proceedings of the tenth ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages 83–94. ACM Press, 2005.

[37] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Anderson. Eraser: a
dynamic data race detector for multithreaded programs.ACM Trans. Comput. Syst., 15(4):391–411,
1997.

[38] Tatiana Shpeisman, Vijay Menon, Ali-Reza Adl-Tabatabai, Steven Balensiefer, Dan Grossman,
Richard L. Hudson, Katherine F. Moore, and Bratin Saha. Enforcing isolation and ordering in stm.
SIGPLAN Notices, 42(6):78–88, 2007.

[39] Scott D. Stoller. Model-checking multi-threaded distributed Java programs. InProceedings of the
7th International SPIN Workshop on SPIN Model Checking and Software Verification, pages 224–244,
London, UK, 2000. Springer-Verlag.

[40] Viktor Vafeiadis and Matthew Parkinson. A marriage of rely/guarantee and separation logic. InIn 18th
CONCUR. Springer, 2007.

[41] Mandana Vaziri, Frank Tip, and Julian Dolby. Associating synchronization constraints with data in
an object-oriented language. InPOPL ’06: Conference record of the 33rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 334–345. ACM, 2006.

[42] Yuan Yu, Tom Rodeheffer, and Wei Chen. Racetrack: efficient detection of data race conditions via
adaptive tracking. InSOSP ’05: Proceedings of the twentieth ACM symposium on Operating systems
principles, pages 221–234. ACM Press, 2005.

Appendices

A Full Specification of the Blocking_queue

In this appendix we provide the full specification of theBlocking_queue class. Note that theSTIL-
LOPEN state does not appear, as its presence was unnecessary for correct verification of the queue.

final classBlocking_queue {
statesSTRUCTURE = { structurestate }
statesPROTOCOL = { open, closed }

23

private LinkedList elements;in STRUCTURE;
private booleanclosed;in PROTOCOL;
private booleanreject_enqueue_requests;in PROTOCOL;
private int waiting_threads;in STRUCTURE;

invariant STRUCTURE: share(elements)⊗ reject_enqueue_requests⊸ full(this,PROTOCOL)
invariant closed: closed= true;
invariant open: closed= false;

public Blocking_queue() :1 ⊸ unique(this!fr) in open, structurestate

public void enqueue(Object o) :
share(o) ⊗ full(this, PROTOCOL) in open ⊗ share(this, STRUCTURE) ⊸

full(this, PROTOCOL) in open ⊗ share(this, STRUCTURE)

public void enqueue_final_item(Object o) :
share(o) ⊗ full(this, PROTOCOL) in open ⊗ share(this, STRUCTURE) ⊸ 1

public Object dequeue() :
pure(this!fr, PROTOCOL) in open ⊗ share(this!fr, STRUCTURE) ⊸

pure(this!fr, PROTOCOL) ⊗ share(this!fr, STRUCTURE) ⊗ share(result)

public boolean is_empty() :pure(this, STRUCTURE) ⊸ pure(this, STRUCTURE)

booleanis_closed() :pure(this) ⊸

(result = true ⊸ pure(this!fr, PROTOCOL) in closed) &
(result = false⊸ pure(this!fr, PROTOCOL) in open)

public void close() :full(this, PROTOCOL) in open ⊸ full(this, PROTOCOL) in closed
}

24

	Introduction
	Example: A Concurrent Queue
	Using the Concurrent Queue (Incorrectly)
	Tracking Abstract States Without Alias Control
	Current Approaches
	Proposed Approach

	This Thesis
	Thesis Statement
	Hypotheses
	Hypothesis: Formalization
	Hypothesis: Specification Coverage
	Hypothesis: Specification Burden
	Hypothesis: Analysis Precision
	Hypothesis: Mutual Exclusion Requirements
	Hypothesis: Optimization

	Proposed Approach
	Specification Using Access Permissions
	Verification Using Access Permissions
	Provider-Side Verification

	State Dimensions and State Hierarchies
	Permission-Based Optimization

	Related Work
	Automated Verification of Concurrent Programs
	Logics for Concurrency
	Race and Atomicity Checkers
	Optimization of STM

	Research Plan
	Time-line
	Risks
	Risk: Lack of Protocol-Based, Concurrent Programs
	Risk: Programs Cannot be Proven
	Risk: Poor Optimization Performance

	Conclusion
	Full Specification of the Blocking_queue

