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Failure Blocks: Increasing Application 
Liveness

• In the Claytronics domain, failure will be 
commonplace.

• Certain Applications:
• Failure of one catom causes others to be useless.

• Our model:
• An extension to remote procedure calls.
• Helps developers preserve liveness.
• Developers

• Signify where liveness is a concern.
• Specify liveness preserving actions.

• When failure is automatically detected, those 
actions are taken.
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Outline

• In our domain, the rate of failure will be 
high

• ‘Hole Motion’ (An example failure 
scenario)

• Existing RPC systems do not help us to 
preserve liveness

• Our model has two key pieces
• The failure block
• The compensating action
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Rate of Failure in Catoms will be High

• Due to the large numbers involved:
• Per-unit cost must be low, which implies

• A lack of hardware error detection features.
• Rate of mechanical imperfections will be high.

• Probability of some catom failing becomes 
high.

• Interaction with the physical world:
• Dust particles?
• Other unintended interactions?
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The Hole Motion* Algorithm

• A Motion-Planning Technique

• The Idea:
• Randomly send holes through the mass of 

catoms.
• Holes ‘stick’ to areas that should shrink.
• They are more likely to be created from 

areas that should grow.

*De Rosa, Goldstein, Lee, Campbell, Pillai. Scalable Shape Sculpting Via Hole Motion: Motion 
Planning in Lattice-Constrained Modular Robots. IEEE ICRA 2006. May 2006.
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In Detail...

• At each ‘hole time-
step,’ catoms around 
the hole have a 
leader.

• They only accept 
commands from this 
leader.

• This protects the 
hole’s integrity.

L
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In Detail...

• In order to become 
the ‘leader,’ this 
catom calls 
‘setLeader’ on its 
neighbors.

• The same method is 
called recursively on 
other would-be 
group members.

L

nextCatom->setLeader(me);
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In Detail...

• Catom on the stack 
fails:
• Catoms i and j may 

have already set L 
as their leader!

• But the only 
communication 
path to L is gone.

L g

i

j

nextCatom->setLeader(me);
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In Detail...

• Instead, suppose 
operation returned 
normally...

L
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In Detail...

• Instead, suppose 
operation returned 
normally...
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In Detail...

• Now L fails:
• Catoms g-j (and all 

the rest) expect 
commands from L!

• For all practical 
purposes, 12 
catoms have failed.

L g h

i

j
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Outline

• In our domain, the rate of failure will be 
high

• ‘Hole Motion’ (An example failure 
scenario)

• Existing RPC systems do not help us to 
preserve liveness

• Our model has two key pieces
• The failure block
• The compensating action
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Existing RPC Systems, Not a Perfect Fit

• Weak Failure Detection
• Usually a timeout mechanism.
• Our model uses active failure detection.

• No Callee-Side Failure Handling
• Caller can catch timeout exception; not 

callee.
• But the callee could be left in an invalid 

state.
• Our model provides callee with 

compensating actions.
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Existing RPC Systems, Not a Perfect Fit

• Only detect failure on the stack of RPC 
calls.
• Our model designates catoms as being a 

part of the group for a lexical ‘amount of 
time.’

• They are still a part of this group when the 
thread moves to a different location.

• Failures on the stack and off are dealt with 
in the same manner.
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Outline

• In our domain, the rate of failure will be 
high

• ‘Hole Motion’ (An example failure 
scenario)

• Existing RPC systems do not help us to 
preserve liveness

• Our model has two key pieces
• The failure block
• The compensating action
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The Model: Two Key Pieces

• fail_block, which specifies
• The logical ‘time period’ during which live-

ness concerns exist
• The members of the group (implicitly)
• Where control should return in the event of 

a failure

• push_comp, which allows
• The specification of code to be executed in 

the event of catom failure
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The fail_block Primitive

• fail_block b

• Evaluates the code in block b.

• In the event of a detected failure
• The entire block throws an exception.
• Execution continues from the catom where 

the failure block is evaluated.
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The fail_block Primitive

• At runtime, the entire operation is given 
a unique ‘operation ID.’
• When a RPC is called from within block

• Callee becomes ‘part’ of the operation.
• Callee and caller add one another as 

collaborators.
• They ‘ping’ each other regularly to detect failure.
• Applies recursively.

• In the event a failure is detected, they share 
the information about the demise of that 
operation.
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The fail_block Primitive

• If b is successfully executed
• An ‘end’ message is sent out.
• Collaborators stop detecting failure for that 

OID.
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‘Demo’

fail_block {
// catom 1
lnode->setBoss(this);
rnode->setBoss(this);

}
...
setBoss(Catom h) 

myLeader = h;
}

Group Members: {}

Op ID:

Failure Detect

1

2

4

3



SDIR07: A Programming Model for 
Failure-Prone Collaborative Robots

25

‘Demo’

fail_block {
// catom 1
lnode->setBoss(this);
rnode->setBoss(this);

}
...
setBoss(catom h) {

myLeader = h;
}

Group Members: {1}

Op ID: 23423123

1

2

4

3

Failure Detect
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‘Demo’

fail_block {
// catom 1
lnode->setBoss(this);
rnode->setBoss(this);

}
...
setBoss(catom h) {

myLeader = h;
}

Group Members: {1,2}

Op ID: 23423123

1

2

4

3

Failure Detect
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‘Demo’

fail_block {
// catom 1
lnode->setBoss(this);
rnode->setBoss(this);

}
...
setBoss(catom h) {

myLeader = h;
}

Group Members: {1,2,4}

Op ID: 23423123

1

2

4

3

Failure Detect
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‘Demo’

fail_block {
// catom 1
lnode->setBoss(this);
rnode->setBoss(this);

}
...
setBoss(catom h) {

myLeader = h;
}

Group Members: {1,2,4}

Op ID: 23423123

1

2

4

3

end 
23423123

Failure Detect
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The push_comp Primitive

• push_comp b

• On whichever catom it is called:
• Suspend code in block b.
• This code will be evaluated (purely for its side-

effects) in the event that a failure is detected.
• Called ‘compensating actions*’ or ‘compensations.’

*Westley Weimer and George C. Necula. Finding and preventing runtime error handling mistakes. 
In OOPSLA ’04: Proceedings of the 19th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages 419–431, New York, 
NY, USA, 2004. ACM Press.
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The push_comp Primitive

• Each catom has several stacks of 
compensations, one for each OID, and 
compensating actions are executed from 
top to bottom.

OID: i OID: j OID: n

......
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The push_comp Primitive

OID: i OID: j OID: n

......

e_1

push_comp e_1

• Each catom has several stacks of 
compensations, one for each OID, and 
compensating actions are executed from 
top to bottom.
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The push_comp Primitive

OID: i OID: j OID: n

......

e_1

push_comp e_2

e_2

• Each catom has several stacks of 
compensations, one for each OID, and 
compensating actions are executed from 
top to bottom.
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The push_comp Primitive

OID: i OID: j OID: n

......

e_1

push_comp e_3

e_2
e_3

• Each catom has several stacks of 
compensations, one for each OID, and 
compensating actions are executed from 
top to bottom.
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The push_comp Primitive

OID: i OID: j OID: n

......

e_1

FAILURE OID i!!

e_2
e_3

• Each catom has several stacks of 
compensations, one for each OID, and 
compensating actions are executed from 
top to bottom.



SDIR07: A Programming Model for 
Failure-Prone Collaborative Robots

35

The push_comp Primitive

OID: i OID: j OID: n

......

e_1
e_2
e_3 .run()

• Each catom has several stacks of 
compensations, one for each OID, and 
compensating actions are executed from 
top to bottom.
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The push_comp Primitive

OID: i OID: j OID: n

......

e_1
e_2 .run()

• Each catom has several stacks of 
compensations, one for each OID, and 
compensating actions are executed from 
top to bottom.
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The push_comp Primitive

OID: i OID: j OID: n

......

e_1 .run()

• Each catom has several stacks of 
compensations, one for each OID, and 
compensating actions are executed from 
top to bottom.
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‘Demo,’ Continued

fail_block {
// catom 1
lnode->recurse(this,LEFT);
rnode->recurse(this,RIGH);

}
recurse(catom ldr,Dir d){

myLeader = ldr;
push_comp(

myLeader = -1);
...
nnode->recurse(lead);

}

1

2

4

3
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‘Demo,’ Continued

fail_block {
// catom 1
lnode->recurse(this,LEFT);
rnode->recurse(this,RIGH);

}
recurse(catom ldr,Dir d){

myLeader = ldr;
push_comp(

myLeader = -1);
...
nnode->recurse(lead);

}

1

2

4

3
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‘Demo,’ Continued

fail_block {
// catom 1
lnode->recurse(this,LEFT);
rnode->recurse(this,RIGH);

}
recurse(catom ldr,Dir d){

myLeader = ldr;
push_comp(

myLeader = -1);
...
nnode->recurse(lead);

}

1

2

4

3

FAIL

FAIL
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‘Demo,’ Continued

fail_block {
// catom 1
lnode->recurse(this,LEFT);
rnode->recurse(this,RIGH);

}
recurse(catom ldr,Dir d){

myLeader = ldr;
push_comp(

myLeader = -1);
...
nnode->recurse(lead);

}

1

2

4

3

FAIL

FAILFAILFAIL
FAIL

FAIL FAIL
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‘Demo,’ Continued

fail_block {
// catom 1
lnode->recurse(this,LEFT);
rnode->recurse(this,RIGH);

}
recurse(catom ldr,Dir d){

myLeader = ldr;
push_comp(

myLeader = -1);
...
nnode->recurse(lead);

}

1

2

4

3

FAIL

FAILFAILFAIL
FAIL

FAIL FAIL
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try {
fail_block {
// catom 1
lnode->recurse(this,LEFT);
rnode->recurse(this,RIGH);

} } catch(OpFailure) {...}
recurse(catom ldr,Dir d){

myLeader = ldr;
push_comp(

myLeader = -1);
...
nnode->recurse(lead);

}

‘Demo,’ Continued

1

2

4

3
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Conclusion

• Failure Blocks
• An extension to RPC for recovering from 

node failures.
• Within a failure block

• RPC calls add the callee to the current 
operation.

• Callee and caller detect failure in one another.
• Compensating actions can be stored, executed 

in the event of failure.
• Targeted at modular robotic systems where 

failure is high but availability is important.
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The end
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Scenario One

1 2 3
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Scenario One

1 2 3

host2->foo()
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Scenario One

1 2 3
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Scenario One

1 2 3

host3->bar()
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Scenario One

1 2 3
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‘Demo’

fail_block {
(* host 1 *)
host2->foo(); 
host4->bar();

}
...
foo() {
host3->doWork(h1);

}

1

4

2 3

Group Members: {}

Op ID:

Regular Ping
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‘Demo’

fail_block {
(* host 1 *)
host2->foo(); 
host4->bar();

}
...
foo() {
host3->doWork(h1);

}

1

4

2 3

Group Members: {1}

Op ID: 3435435

Regular Ping



SDIR07: A Programming Model for 
Failure-Prone Collaborative Robots

54

‘Demo’

fail_block {
(* host 1 *)
host2->foo(); 
host4->bar();

}
...
foo() {
host3->doWork(h1);

}

1

4

2 3

Group Members: {1,2}

Op ID: 3435435

Regular Ping



SDIR07: A Programming Model for 
Failure-Prone Collaborative Robots

55

‘Demo’

fail_block {
(* host 1 *)
host2->foo(); 
host4->bar();

}
...
foo() {
host3->doWork(h1);

}

1

4

2 3

Group Members: {1,2,3}

Op ID: 3435435

Regular Ping
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‘Demo’

fail_block {
(* host 1 *)
host2->foo(); 
host4->bar();

}
...
foo() {
host3->doWork(h1);

}

1

4

2 3

Group Members: {1,2,3,4}

Op ID: 3435435

Regular Ping
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‘Demo’

fail_block {
(* host 1 *)
host2->foo(); 
host4->bar();

}
...
foo() {
host3->doWork(h1);

}

Group Members: {}

Op ID:

Regular Ping

1

4

2 3

end 3435435!

end 3435435!
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At a Macroscopic Level... (Video)
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‘Demo,’ Continued

...
doWork(HostAddr a) {
myLeader = a;

push_comp {
if(myLeader == a)
myLeader = null;

}
}
...

1

4

2 3

Failure!
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‘Demo,’ Continued

...
doWork(HostAddr a) {
myLeader = a;

push_comp {
if(myLeader == a)
myLeader = null;

}
}
...

1

4

2 3

...
myLeader
= null;
...
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Outline

• The Rate of Failure Will be High

• Two Failure Scenarios We Would Like to 
Handle

• Existing RPC Systems Do Not Meet Our Needs

• Our Model Has Two Key Pieces
• fail_block
• push_comp

• Our Model Does Not Require Consistency
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Our System Does Not Require 
Consistency

• Our model has a nice feature:
• We do not require consistency in failure 

detection!
• This has been proven to be impossible in 

‘time-free’ systems.
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What is Consistency?

fail_block {
(* host 1 *)
host2->foo(); 
host4->bar();

}
...
foo() {
host3->doWork(h1);

}

1

4

2 3
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What is Consistency?

fail_block {
(* host 1 *)
host2->foo(); 
host4->bar();

}
...
foo() {
host3-
>doWork(h1);

}

OID: 9, 
failure!

OID: 9, 
end!

OID: 9, 
end! 1

4

2 3
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Our System Does Not Require 
Consistency

• Domain Assumption:
• The ultimate goal of any application is to 

perform actuator movements.

• Additionally,
• The thread of control must migrate to a 

catom in order to issue an actuator 
command.

• If a thread migrates to a catom that has 
detected or knows about a failure, that 
thread will not continue normally.
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Our System Does Not Require 
Consistency

• Therefore, if inconsistency occurs, we 
know:
• In between detection and fail_block

completion, no actuator movements were 
necessary on any hosts that knew about the 
failure.

• In the sense that actuator movements are 
the ultimate goal in the domain, their work 
was already done.
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Our System Does Not Require 
Consistency

• What if we won’t make an actuator 
movement on a host, but we need to 
know it performed its duty?
• E.g., structural catoms

• This is a question of live-ness versus 
other goals.
• fail_block should be used precisely 

when live-ness is a chief concern.
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Assumptions

• Movement:
• When a movement occurs, you are required 

to talk with these surrounding hosts and 
they will be able to figure out the new 
location to ping.

• Goals:
• Actuator movements are the ultimate goal 

of most applications in this domain.



SDIR07: A Programming Model for 
Failure-Prone Collaborative Robots

69

What about Transactions?

• Semantics of roll-back suggest a transactional 
model.

• Similarly, it seems that Two-Phase commit 
could give us consistency.

• But
• 2PC has one or two extra rounds of communication 

• Application doesn’t make progress!
• Our model has no extra blocking rounds.

• 2PC can block indefinitely if the coordinator fails
• In non-blocking protocols the number of failures is 

bounded.
• It is not clear how error detection and 2PC could be 

combined.
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In Detail...

• But, after this field 
has been set, failure 
of the leader leaves 
the catoms in a dead 
state.

L
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The push_comp Primitive

• We call this suspended code 
‘compensating actions.’
• Borrowed terminology from Weimar and 

Necula.
• Originally used to ensure proper clean-up 

for file handlers, etc. in exceptional 
circumstances.
• (However, our compensating actions are only 

executed when a failure is detected.)
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Why Server-Side Failure Handling?

• The client may think the server has 
failed, when it hasn’t.
• Allow server to return to a stable state.
• Failure detectors unreliable in ‘time-free’

systems.

• The client may have failed.

• An catom on the return route may have 
failed.


