
1

A Programming model for
failure-prone,
Collaborative robots

Nels Eric Beckman
Jonathan Aldrich

School of Computer Science
Carnegie Mellon University

SDIR 2007
April 14th, 2007

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

2

Failure Blocks: Increasing Application
Liveness

• In the Claytronics domain, failure will be
commonplace.

• Certain Applications:
• Failure of one catom causes others to be useless.

• Our model:
• An extension to remote procedure calls.
• Helps developers preserve liveness.
• Developers

• Signify where liveness is a concern.
• Specify liveness preserving actions.

• When failure is automatically detected, those
actions are taken.

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

3

Outline

• In our domain, the rate of failure will be
high

• ‘Hole Motion’ (An example failure
scenario)

• Existing RPC systems do not help us to
preserve liveness

• Our model has two key pieces
• The failure block
• The compensating action

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

4

Rate of Failure in Catoms will be High

• Due to the large numbers involved:
• Per-unit cost must be low, which implies

• A lack of hardware error detection features.
• Rate of mechanical imperfections will be high.

• Probability of some catom failing becomes
high.

• Interaction with the physical world:
• Dust particles?
• Other unintended interactions?

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

5

Outline

• In our domain, the rate of failure will be
high

• ‘Hole Motion’ (An example failure
scenario)

• Existing RPC systems do not help us to
preserve liveness

• Our model has two key pieces
• The failure block
• The compensating action

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

6

The Hole Motion* Algorithm

• A Motion-Planning Technique

• The Idea:
• Randomly send holes through the mass of

catoms.
• Holes ‘stick’ to areas that should shrink.
• They are more likely to be created from

areas that should grow.

*De Rosa, Goldstein, Lee, Campbell, Pillai. Scalable Shape Sculpting Via Hole Motion: Motion
Planning in Lattice-Constrained Modular Robots. IEEE ICRA 2006. May 2006.

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

7

In Detail...

• At each ‘hole time-
step,’ catoms around
the hole have a
leader.

• They only accept
commands from this
leader.

• This protects the
hole’s integrity.

L

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

8

In Detail...

• In order to become
the ‘leader,’ this
catom calls
‘setLeader’ on its
neighbors.

• The same method is
called recursively on
other would-be
group members.

L

nextCatom->setLeader(me);

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

9

In Detail...

• Catom on the stack
fails:
• Catoms i and j may

have already set L
as their leader!

• But the only
communication
path to L is gone.

L g

i

j

nextCatom->setLeader(me);

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

10

In Detail...

• Instead, suppose
operation returned
normally...

L

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

11

In Detail...

• Instead, suppose
operation returned
normally...

L

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

12

In Detail...

• Instead, suppose
operation returned
normally...

L

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

13

In Detail...

• Instead, suppose
operation returned
normally...

L

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

14

In Detail...

• Instead, suppose
operation returned
normally...

L

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

15

In Detail...

• Now L fails:
• Catoms g-j (and all

the rest) expect
commands from L!

• For all practical
purposes, 12
catoms have failed.

L g h

i

j

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

16

Outline

• In our domain, the rate of failure will be
high

• ‘Hole Motion’ (An example failure
scenario)

• Existing RPC systems do not help us to
preserve liveness

• Our model has two key pieces
• The failure block
• The compensating action

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

17

Existing RPC Systems, Not a Perfect Fit

• Weak Failure Detection
• Usually a timeout mechanism.
• Our model uses active failure detection.

• No Callee-Side Failure Handling
• Caller can catch timeout exception; not

callee.
• But the callee could be left in an invalid

state.
• Our model provides callee with

compensating actions.

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

18

Existing RPC Systems, Not a Perfect Fit

• Only detect failure on the stack of RPC
calls.
• Our model designates catoms as being a

part of the group for a lexical ‘amount of
time.’

• They are still a part of this group when the
thread moves to a different location.

• Failures on the stack and off are dealt with
in the same manner.

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

19

Outline

• In our domain, the rate of failure will be
high

• ‘Hole Motion’ (An example failure
scenario)

• Existing RPC systems do not help us to
preserve liveness

• Our model has two key pieces
• The failure block
• The compensating action

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

20

The Model: Two Key Pieces

• fail_block, which specifies
• The logical ‘time period’ during which live-

ness concerns exist
• The members of the group (implicitly)
• Where control should return in the event of

a failure

• push_comp, which allows
• The specification of code to be executed in

the event of catom failure

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

21

The fail_block Primitive

• fail_block b

• Evaluates the code in block b.

• In the event of a detected failure
• The entire block throws an exception.
• Execution continues from the catom where

the failure block is evaluated.

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

22

The fail_block Primitive

• At runtime, the entire operation is given
a unique ‘operation ID.’
• When a RPC is called from within block

• Callee becomes ‘part’ of the operation.
• Callee and caller add one another as

collaborators.
• They ‘ping’ each other regularly to detect failure.
• Applies recursively.

• In the event a failure is detected, they share
the information about the demise of that
operation.

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

23

The fail_block Primitive

• If b is successfully executed
• An ‘end’ message is sent out.
• Collaborators stop detecting failure for that

OID.

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

24

‘Demo’

fail_block {
// catom 1
lnode->setBoss(this);
rnode->setBoss(this);

}
...
setBoss(Catom h)

myLeader = h;
}

Group Members: {}

Op ID:

Failure Detect

1

2

4

3

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

25

‘Demo’

fail_block {
// catom 1
lnode->setBoss(this);
rnode->setBoss(this);

}
...
setBoss(catom h) {

myLeader = h;
}

Group Members: {1}

Op ID: 23423123

1

2

4

3

Failure Detect

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

26

‘Demo’

fail_block {
// catom 1
lnode->setBoss(this);
rnode->setBoss(this);

}
...
setBoss(catom h) {

myLeader = h;
}

Group Members: {1,2}

Op ID: 23423123

1

2

4

3

Failure Detect

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

27

‘Demo’

fail_block {
// catom 1
lnode->setBoss(this);
rnode->setBoss(this);

}
...
setBoss(catom h) {

myLeader = h;
}

Group Members: {1,2,4}

Op ID: 23423123

1

2

4

3

Failure Detect

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

28

‘Demo’

fail_block {
// catom 1
lnode->setBoss(this);
rnode->setBoss(this);

}
...
setBoss(catom h) {

myLeader = h;
}

Group Members: {1,2,4}

Op ID: 23423123

1

2

4

3

end
23423123

Failure Detect

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

29

The push_comp Primitive

• push_comp b

• On whichever catom it is called:
• Suspend code in block b.
• This code will be evaluated (purely for its side-

effects) in the event that a failure is detected.
• Called ‘compensating actions*’ or ‘compensations.’

*Westley Weimer and George C. Necula. Finding and preventing runtime error handling mistakes.
In OOPSLA ’04: Proceedings of the 19th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages 419–431, New York,
NY, USA, 2004. ACM Press.

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

30

The push_comp Primitive

• Each catom has several stacks of
compensations, one for each OID, and
compensating actions are executed from
top to bottom.

OID: i OID: j OID: n

......

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

31

The push_comp Primitive

OID: i OID: j OID: n

......

e_1

push_comp e_1

• Each catom has several stacks of
compensations, one for each OID, and
compensating actions are executed from
top to bottom.

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

32

The push_comp Primitive

OID: i OID: j OID: n

......

e_1

push_comp e_2

e_2

• Each catom has several stacks of
compensations, one for each OID, and
compensating actions are executed from
top to bottom.

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

33

The push_comp Primitive

OID: i OID: j OID: n

......

e_1

push_comp e_3

e_2
e_3

• Each catom has several stacks of
compensations, one for each OID, and
compensating actions are executed from
top to bottom.

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

34

The push_comp Primitive

OID: i OID: j OID: n

......

e_1

FAILURE OID i!!

e_2
e_3

• Each catom has several stacks of
compensations, one for each OID, and
compensating actions are executed from
top to bottom.

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

35

The push_comp Primitive

OID: i OID: j OID: n

......

e_1
e_2
e_3 .run()

• Each catom has several stacks of
compensations, one for each OID, and
compensating actions are executed from
top to bottom.

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

36

The push_comp Primitive

OID: i OID: j OID: n

......

e_1
e_2 .run()

• Each catom has several stacks of
compensations, one for each OID, and
compensating actions are executed from
top to bottom.

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

37

The push_comp Primitive

OID: i OID: j OID: n

......

e_1 .run()

• Each catom has several stacks of
compensations, one for each OID, and
compensating actions are executed from
top to bottom.

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

38

‘Demo,’ Continued

fail_block {
// catom 1
lnode->recurse(this,LEFT);
rnode->recurse(this,RIGH);

}
recurse(catom ldr,Dir d){

myLeader = ldr;
push_comp(

myLeader = -1);
...
nnode->recurse(lead);

}

1

2

4

3

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

39

‘Demo,’ Continued

fail_block {
// catom 1
lnode->recurse(this,LEFT);
rnode->recurse(this,RIGH);

}
recurse(catom ldr,Dir d){

myLeader = ldr;
push_comp(

myLeader = -1);
...
nnode->recurse(lead);

}

1

2

4

3

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

40

‘Demo,’ Continued

fail_block {
// catom 1
lnode->recurse(this,LEFT);
rnode->recurse(this,RIGH);

}
recurse(catom ldr,Dir d){

myLeader = ldr;
push_comp(

myLeader = -1);
...
nnode->recurse(lead);

}

1

2

4

3

FAIL

FAIL

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

41

‘Demo,’ Continued

fail_block {
// catom 1
lnode->recurse(this,LEFT);
rnode->recurse(this,RIGH);

}
recurse(catom ldr,Dir d){

myLeader = ldr;
push_comp(

myLeader = -1);
...
nnode->recurse(lead);

}

1

2

4

3

FAIL

FAILFAILFAIL
FAIL

FAIL FAIL

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

42

‘Demo,’ Continued

fail_block {
// catom 1
lnode->recurse(this,LEFT);
rnode->recurse(this,RIGH);

}
recurse(catom ldr,Dir d){

myLeader = ldr;
push_comp(

myLeader = -1);
...
nnode->recurse(lead);

}

1

2

4

3

FAIL

FAILFAILFAIL
FAIL

FAIL FAIL

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

43

try {
fail_block {
// catom 1
lnode->recurse(this,LEFT);
rnode->recurse(this,RIGH);

} } catch(OpFailure) {...}
recurse(catom ldr,Dir d){

myLeader = ldr;
push_comp(

myLeader = -1);
...
nnode->recurse(lead);

}

‘Demo,’ Continued

1

2

4

3

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

44

Conclusion

• Failure Blocks
• An extension to RPC for recovering from

node failures.
• Within a failure block

• RPC calls add the callee to the current
operation.

• Callee and caller detect failure in one another.
• Compensating actions can be stored, executed

in the event of failure.
• Targeted at modular robotic systems where

failure is high but availability is important.

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

45

References
N. Beckman and J. Aldrich. A Programming Model for Failure-Prone,

Collaborative Robots. To appear in the 2nd International Workshop on
Software Development and Integration in Robotics (SDIR). Rome,
Italy. April 14, 2007.

De Rosa, Goldstein, Lee, Campbell, Pillai. Scalable Shape Sculpting Via Hole
Motion: Motion Planning in Lattice-Constrained Modular Robots. IEEE
ICRA 2006. May 2006.

Achour Mostefaoui, Eric Mourgaya, and Michel Raynal. Asynchronous
implementation of failure detectors. In 2003 International Conference
on Dependable Systems and Networks (DSN’03), page 351, 2003.

Westley Weimer and George C. Necula. Finding and preventing runtime
error handling mistakes. In OOPSLA ’04: Proceedings of the 19th annual
ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 419–431, New York, NY, USA, 2004.
ACM Press.

Michel Reynal. A short introduction to failure detectors for asynchronous
distributed systems. SIGACT News, 36(1):53–70, 2005.

46

The end

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

47

Scenario One

1 2 3

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

48

Scenario One

1 2 3

host2->foo()

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

49

Scenario One

1 2 3

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

50

Scenario One

1 2 3

host3->bar()

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

51

Scenario One

1 2 3

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

52

‘Demo’

fail_block {
(* host 1 *)
host2->foo();
host4->bar();

}
...
foo() {
host3->doWork(h1);

}

1

4

2 3

Group Members: {}

Op ID:

Regular Ping

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

53

‘Demo’

fail_block {
(* host 1 *)
host2->foo();
host4->bar();

}
...
foo() {
host3->doWork(h1);

}

1

4

2 3

Group Members: {1}

Op ID: 3435435

Regular Ping

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

54

‘Demo’

fail_block {
(* host 1 *)
host2->foo();
host4->bar();

}
...
foo() {
host3->doWork(h1);

}

1

4

2 3

Group Members: {1,2}

Op ID: 3435435

Regular Ping

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

55

‘Demo’

fail_block {
(* host 1 *)
host2->foo();
host4->bar();

}
...
foo() {
host3->doWork(h1);

}

1

4

2 3

Group Members: {1,2,3}

Op ID: 3435435

Regular Ping

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

56

‘Demo’

fail_block {
(* host 1 *)
host2->foo();
host4->bar();

}
...
foo() {
host3->doWork(h1);

}

1

4

2 3

Group Members: {1,2,3,4}

Op ID: 3435435

Regular Ping

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

57

‘Demo’

fail_block {
(* host 1 *)
host2->foo();
host4->bar();

}
...
foo() {
host3->doWork(h1);

}

Group Members: {}

Op ID:

Regular Ping

1

4

2 3

end 3435435!

end 3435435!

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

58

At a Macroscopic Level... (Video)

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

59

‘Demo,’ Continued

...
doWork(HostAddr a) {
myLeader = a;

push_comp {
if(myLeader == a)
myLeader = null;

}
}
...

1

4

2 3

Failure!

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

60

‘Demo,’ Continued

...
doWork(HostAddr a) {
myLeader = a;

push_comp {
if(myLeader == a)
myLeader = null;

}
}
...

1

4

2 3

...
myLeader
= null;
...

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

61

Outline

• The Rate of Failure Will be High

• Two Failure Scenarios We Would Like to
Handle

• Existing RPC Systems Do Not Meet Our Needs

• Our Model Has Two Key Pieces
• fail_block
• push_comp

• Our Model Does Not Require Consistency

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

62

Our System Does Not Require
Consistency

• Our model has a nice feature:
• We do not require consistency in failure

detection!
• This has been proven to be impossible in

‘time-free’ systems.

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

63

What is Consistency?

fail_block {
(* host 1 *)
host2->foo();
host4->bar();

}
...
foo() {
host3->doWork(h1);

}

1

4

2 3

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

64

What is Consistency?

fail_block {
(* host 1 *)
host2->foo();
host4->bar();

}
...
foo() {
host3-
>doWork(h1);

}

OID: 9,
failure!

OID: 9,
end!

OID: 9,
end! 1

4

2 3

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

65

Our System Does Not Require
Consistency

• Domain Assumption:
• The ultimate goal of any application is to

perform actuator movements.

• Additionally,
• The thread of control must migrate to a

catom in order to issue an actuator
command.

• If a thread migrates to a catom that has
detected or knows about a failure, that
thread will not continue normally.

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

66

Our System Does Not Require
Consistency

• Therefore, if inconsistency occurs, we
know:
• In between detection and fail_block

completion, no actuator movements were
necessary on any hosts that knew about the
failure.

• In the sense that actuator movements are
the ultimate goal in the domain, their work
was already done.

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

67

Our System Does Not Require
Consistency

• What if we won’t make an actuator
movement on a host, but we need to
know it performed its duty?
• E.g., structural catoms

• This is a question of live-ness versus
other goals.
• fail_block should be used precisely

when live-ness is a chief concern.

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

68

Assumptions

• Movement:
• When a movement occurs, you are required

to talk with these surrounding hosts and
they will be able to figure out the new
location to ping.

• Goals:
• Actuator movements are the ultimate goal

of most applications in this domain.

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

69

What about Transactions?

• Semantics of roll-back suggest a transactional
model.

• Similarly, it seems that Two-Phase commit
could give us consistency.

• But
• 2PC has one or two extra rounds of communication

• Application doesn’t make progress!
• Our model has no extra blocking rounds.

• 2PC can block indefinitely if the coordinator fails
• In non-blocking protocols the number of failures is

bounded.
• It is not clear how error detection and 2PC could be

combined.

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

70

In Detail...

• But, after this field
has been set, failure
of the leader leaves
the catoms in a dead
state.

L

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

71

The push_comp Primitive

• We call this suspended code
‘compensating actions.’
• Borrowed terminology from Weimar and

Necula.
• Originally used to ensure proper clean-up

for file handlers, etc. in exceptional
circumstances.
• (However, our compensating actions are only

executed when a failure is detected.)

SDIR07: A Programming Model for
Failure-Prone Collaborative Robots

72

Why Server-Side Failure Handling?

• The client may think the server has
failed, when it hasn’t.
• Allow server to return to a stable state.
• Failure detectors unreliable in ‘time-free’

systems.

• The client may have failed.

• An catom on the return route may have
failed.

