Cohesive Constraints in a Beam Search Phrase-based Decoder

Nguyen Bach, Stephan Vogel
Carnegie Mellon University

Colin Cherry
Microsoft Research
Overview

• Apply **cohesive constraints** during decoding process to consider the **source dependency structures**

• Introduce extensions of the cohesive constraints.

• Analyze the impact of cohesive constraints across language pairs with different reordering models

• Applied to English-Spanish, English-Iraqi and Chinese-English translation tasks
 – Significant improvements on English-Spanish
 – Stable improvements on other pairs
Outline

• Cohesive Decoding Approach
• Experiments
• Conclusions & Future Work
What is a cohesive decoding?

English to French

1. **the presidential election**
2. **begins tomorrow**
3. **of the United States**

Source:
- the presidential election
- of the United States
- begins tomorrow

Translation:
- la élection présidentielle
- commence demain
- des États Unis
What is a cohesive decoding?

Source:

the presidential election
of the united states
begins tomorrow

la élection présidentielle
des États Unis
commence demain
The presidential election of the United States begins tomorrow.
The presidential election begins tomorrow.
Two Questions

• How to determine the largest subtree that needs to be completed before the translation process can move elsewhere in the tree?

 – Interruption Check: use left and right most tokens of the previous translated source phrase and climb up the tree

• If a violation happens, how to constrain the decoder to penalize cohesion violated translation hypothesis?
 – Interruption Check: Binary event
Exhaustive Interruption Check

• Interruption Check only penalizes the cohesion violation 1 time

• Should penalties persist as long as violations remain unresolved?

• Exhaustive Interruption Check keeps punishing a cohesion violation until it is fixed.
Exhaustive Interruption Check

Exhaustive Interruption Check: YES

the presidential election begins tomorrow of the states of the United States

Exhaustive Interruption Check: NO

tomorrow
Cohesion Violation Penalties

• Interruption Check and Exhaustive Interruption Check: binary event

• **Are some violations worse than others?**

• Penalize a cohesion violation by *the number of untranslated words* under the largest subtree
 – Interruption Check -> *Interruption Count*
 – Exhaustive Interruption Check -> *Exhaustive Interruption Count*
Rich Interruption Constraints

- Penalize a cohesion violation by 4 constraints
 - Binary event: violation/not violate
 - Interruption Count: untranslated word count
 - Verb Count: untranslated verb count
 - Noun Count: untranslated noun count
Comparison

How to penalize a cohesion violation?

<table>
<thead>
<tr>
<th>How to detect the largest subtree $T(n)$?</th>
<th>How to</th>
<th>Number of untranslated words</th>
<th>Linguistics features</th>
</tr>
</thead>
<tbody>
<tr>
<td>The previous phrase</td>
<td>Binary</td>
<td></td>
<td>Rich Interruption Constraints</td>
</tr>
<tr>
<td>All previous phrases</td>
<td></td>
<td>Exhaustive Interruption Check</td>
<td>Exhaustive Interruption Count</td>
</tr>
</tbody>
</table>
Outline

• Cohesion Decoding Approach
• Experiments
• Conclusions & Future Work
Cohesive constraints obtained **improvements** over the standard phrase-based decoder.
How does the performance of the dependency parser affect cohesive constraints?
The Role of Dependency Parser on English-Spanish

- Train 2 MALT dependency parser models: M1 with 10% of treebank and M2 with all treebank.

- Performance on CoNLL-07 dependency test set
 - M1: 19.41%
 - M2: 86.21%

- Apply to MT
 - M2 is better than M1
• Are the improvements subsumed by a strong reordering model and system scale?

• What if we translate from X->English?
Cohesive constraints obtained improvements even with large scale system and strong reordering models
Outline

• Cohesion Decoding Approach
• Experiments
• Conclusions & Future Work
Conclusions & Future Work

• Conclusions
 – Cohesive constraints are helpful
 – The effectiveness was shown when using with a strong reordering model
 – Obtained improvements with 3 language pairs and also covered a wide range of training corpus sizes, ranging from 500K up to 11M sentence pairs

• Future work
 – A source side dependency reordering model: Learning reordering events of the phrases based on source subtree movements
Questions