Statistical Machine Translation
Parallel Processing for Large Data Situations

Qin Gao, Alok Parlikar, Nguyen Bach, Stephan Vogel (Language Technologies Institute & InterACT)

Word Alignment

- **Parallel GIZA++**
 - Distribute E-Step of EM Algorithm
 - Run time: 179 hours → 39 hours (11 jobs)
 - IO bottleneck while reading/writing models on network FS
 - Distributed word alignment
 - Cut runtime from 1 week to 10 hours

Phrase Table Generation

- Extract phrases
- Sort on source
- Sort on target
- Score phrases
- Learn reordering

Parsing Training Data

- Parse Trees
- Syntactic Phrases
- Reordering Patterns

- 5M Pairs of sentences ↓ 420 CPU-days for parsing

- Sentences parsed independently
- Split the corpus into chunks, parse several chunks in parallel on cluster

Decoding and MERT

- Translates one sentence at a time
- Split up decoding into sub-processes, Collect the output for MERT

- Test
- Split
- Decoder...
- MERT
- Merge

- Filter the phrase table and language models on a per-sentence basis, beforehand.
 - Each decoder instance loads faster
 - Memory usage is kept in check

- Tuning time: 12.5 hrs → 70 mins using 50 nodes.
- Speedup not linear: Loading models, MERT have significant overhead

Back Translation

- Israel, the implacable enemy of the Arab cause, now seems to be slotted into this defensive structure.
- Israel, el enemigo implacable de una vez a causa de los Árabes, ahora parece colocarse en esta estructura defensiva.

Discriminative N-Best List Reranking with Back Translation

- Large amount of back translation sentences (total of 12 million words)
 - Translation: 400 CPU hours
 - Feature computation: 222 CPU hours

Using the Intel Big Data cluster:

- Translation: 20 hours (20 nodes)
- Feature computation: 5 hours (50 nodes)

Summary

- Challenge for large data situations:
 - Long training times: hundreds of CPU days)
 - Large models: growing beyond 32GB

- Solution:
 - Parallelizing training and decoding
 - Parallel word alignment
 - Parallel parsing
 - Parallel phrase pair extraction and scoring
 - Filtering of models per sentence

- Remaining problems:
 - IO bottleneck while reading/writing models on network FS
 - Models in word alignment training are often too large to fit into memory.

SMT with Parallel Processing:
We can now train more efficiently on much larger training sets