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Demand for higher throughput

Opportunity in relational data model

Hardware trends and paradigms

Enabling technologies

Parallelism in DBMSs

Magnetic storage is cheaper than paper

All information goes online

We might record everything we
• read: 10 MB/day

• hear: 400 MB/day

• see: 40 GB/day

Data storage, organization, and analysis is a challenge

Information explosion

Relational data model was universally adopted

Relational queries are ideal for parallel execution
• uniform operators apply to uniform data streams

• consume 1-2 relations and produce a new relation

Dataflow approach requires
• messaging based systems

• high speed interconnect

Relational DBMSs

Pipelined parallelism

Partitioned parallelism
• split N ways / merge M ways

SortScan

Sequential
Sequential

SequentialSequential
Scan Sort

Relational DBMS parallelism



Mainframe increasingly expensive

Economy of scale
• off-the-shelf components

Trends in networks, storage, memory, and CPUs
• Bottlenecks shift, new issues arise

Enabling technologies
• Client-server / networking software

Trends and paradigms

Database machine: research in 1975 - 1985

Exotic technologies lead to failures..
• bubble memory

• head per track disks

• extra logic added on disk heads

• (note the comeback with Active Disks)

I/O traditionally assumed as bottleneck

An idea whose time has passed?

Academia
• Wisconsin: from DIRECT to GAMMA

• Berkeley: XPRS

Commercial
• Teradata started in 1984

• others: Tandem, Oracle, Informix, Navigator, DB2, Red-
brick

Parallel DBMSs found their way The market today
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CPUs share direct access to global RAM and disks
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Shared Memory Multiprocessor

Shared-Memory



CPUs still share disks but have private RAM
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Shared-Disk

CPUs own RAM and disk(s)
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Shared-Nothing

Shared systems don’t scale
• resource contention

• interconnect bandwidth must equal #nodes

• concurrency problems

Fixes?
• private cache

• affinity scheduling

Pros and cons

Shared nothing scales better
• minimal resource sharing / contention

• low traffic on interconnect

• commodity components

Which is easier to
• program?

• build?

• scaleup?

Pros and cons (cont’d)

Speedup
• add nodes to run faster a fixed problem

Scaleup
• add nodes to run at the same time a bigger problem

Transaction Scaleup
• more clients / servers, same response time

Performance metrics

Startup

Interference
• even 1% increased contention limits speedup to 37

Skew
• at fine granularity variance can exceed mean service

Barriers to linear throughput
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Barriers to linear throughput
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Relational properties
• uniform data stream

• relations are created, updated, queried via SQL

• i.e. scan = select + project

SQL benefits
• data independence

• non-procedural

• can be executed as dataflow graph

Dataflow approach to SQL

Data partitioning of relations

Pipelining relational operators

Partitioned execution of relational operators

Achieving parallelism

Pipelines are inherently short

Some operators are not pipelineable

Skew limits speedup

Limits to pipelining

I/O happens in parallel

Three basic strategies
• round robin

• hash

• range

Partitioning helps both seq. and assoc. scans

Further partitioning helps up to a point

Data partitioning



Good for sequential scans / spread load

A...E F...J K...N O...S T...ZA...E F...J K...N O...S T...Z

Round-robin partitioning

Good for equijoins

A...E F...J K...N O...S T...Z

Hash partitioning

Good for range queries

A...E F...J K...N O...S T...Z

Range partitioning

Reuse existing implementations

Shared-nothing helps

Only three mechanisms needed
• operator replication

• merge operator

• split operator

Result is linear speedup and scaleup

Parallelizing Relational Operators

Operator replication
• linear scaleup minus starting cost

• specialized operators (e.g. hash join - see GAMMA)

Merge operator
• combine many streams into one

Split operator
• map from attr. values to destination processes

Parallelizing Relational Operators Operators on partitioned data (1)



Operators on partitioned data (2)

Exotic technologies yield to inexpensive hardware

Shared-nothing serves better parallel DBMSs

Potential of parallel database systems

Many implementations (successful: Teradata)

Research issues (at the end of the presentation)

Summary
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DIRECT 1977 - 84
• early database machine project

• showed parallelism useful for db apps

Flaws curtailed scalability
• shared memory

• central control of execution

Gamma 1984 - 92

History

Shared-nothing

Hash-based parallel algorithms

Horizontal partitioning

Key ideas in Gamma

17 VAX 11/750 processors

2 MB RAM per node

80 Mb/s token ring

Separate VAX running Unix (host)

333 MB Fujitsu drives at 8 processors

Gamma hardware (v1.0)



2K DB pages due to token ring

Unibus congestion (network and I/O faster)
• corrected with a backplane card

VAX obsolete

2MB with no virtual memory was tight

Gamma hardware (v1.0) issues

iPSC/2 Intel hypercube

32 x386 processors

8MB of memory

330MB Maxtor drive / node (45KB cache)

Routing modules
• 2.8 Mb/s

• full duplex, serial, reliable

Gamma hardware (v2.0) 1988

OS: NOSE
• multiple, lightweight processes with shared memory

Entire DB in one NX/2 process

Details: renaming nodes

10% CPU used for copying

Excessive interrupts during I/O

Gamma software (v2.0)

Horizontal partitioning (user selectable)
• round-robin

• hashed

• range partitioned

Clustered index on different attributes

Partition relations should have based on ‘heat’

Storage organization

Catalog manager
• repository for db schema

Query manager
• one associated with each user

Scheduler processes
• coordinates multi-site queries

Operator processes
• executes single relational operator

Gamma process structure Gamma process structure (figure)



• ad-hoc and embedded query interfaces

• standard parsing, optimization, code gen.

• left deep trees only

• hash joins only

• at most two join operators active simultaneously

• split tables

Query processing

Directs operator output to appropriate node

Split table

Query processing: an example Query processing: an example

Start selection operator on each node

Exclusion of nodes for hash and range partitioning

Throughput considerations
• one page read-ahead

Selections

Partition into buckets, join buckets

Implemented:
• sort-merge, Grace, Simple, Hybrid

Parallel Hybrid

Joins



Compute partial results for each partition

Hash on “group-by”attribute

Aggregation

Standard techniques

Update to partitioning attribute

Updates

2PL

Granularity: file and page

Modes: S, X, IS, IX, SIX

Local lock manager and deadlock detector
• wait-for graph

Centralized multi-site lock detector

Concurrency control

Log sequence number
• LSN = f (node number, local sequence number)

Processor i directs log records at log manager
• (i mod M), where M = # log mgrs.

Standard WAL protocol
• local log manager reduces time waiting for log manager

ARIES

Logging and recovery

Availability in spite of processor or disk fail

Mirrored disk (Tandem)

Interleaved declustering (Teradata)

Chained declustering

Load redirection results in 1/n increase

Node failure Node failure - declustering



Node failure - load redirection

Selection
• relation size

• speedup

• scaleup

Join
• (similar)

Aggregate

Update (no recovery)

Performance experiments
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Parallel query optimization

Concurrency

Physical database design

Scheduling (load balancing, priority)

Application program parallelism

On-line data reorganization

Some research problems


