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OS Issues for DB Systems

� Buffer pool management
� File System
� Scheduling, processes, IPC
� Concurrency/Recovery
� Virtual Memory
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Buffer Management

� Typical Unix provisions:
� All file I/O goes through buffer pool
� LRU (or approximation) stack for replacement
� Prefetch on sequential access
� Transparent to clients (except for “force all”)

� Overhead: Can be terrible for each page read
� System call
� Core-to-core data move
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Replacement policy

� Typical access patterns:
� Sequential scan
� Cyclic (looping) sequential scan
� Random accesses (once)
� Random accesses (many times)

� Which is the best replacement for each?
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Replacement policy (cont.)

� Sequential scan
� MRU (one page)

� Cyclic (looping) sequential scan:
� MRU (one page) or
� “fix n+1” pages

� Random accesses (once)
� MRU

� Random accesses (many times)
� LRU

� Need provision for DB hints (or manage own BP)
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Prefetch

� DBMS knows what it wants next
� It is not always sequential

� More hints needed for good performance

� Further issue: Prefetched pages might replace
needed ones
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Crash Recovery

� Deferred Updates
� Force intentions list to disk
� Force commit flags
� Do updates from intentions list

� WAL
� Force undo/redo

� Need facilities for
� Selected force out
� Ordering of physical writes
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File System Issues

In current dominant file systems
� File = byte stream
� Logical order little relation to physical order
� Indirect blocks (trees)

Consequences:

+ Small files cheap
+ Large files possible
+ Byte model for programmers

– Large files costly
– Many physical reads/logical
– Loss of sequentiality
– Byte model for DBMS
– Too many trees!
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Preferred DBMS approach

� Physical contiguity
� OS-level B+ trees, hashing
� Let DBMS know about blocks of file
� Provide higher-level services on top of this
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Scheduling, Processing, IPC

� DBMS needs
� Shared buffer pool
� Shared lock table
� Critical sections
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Structure Alternatives
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Process-per-user Server DBMS
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Evaluation

� Process-per-user structure
� Expensive context-switching
� Preemption at “bad places” (DBMS’s critical sections)

� DBMS server
� Duplication of OS services (must do own multi-tasking)
� Cost of messages is several thousand instructions

� DBMS would like
� Reduced message/task overheads
� No-preemption scheduling
� “fast-path” for context-switching among DBMS procs
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Possible solutions

� FCFS server processes requests one at a time
� Multiple disks: at most one will be active

� Pool of server processes
� Setup similar to process-per-user

� Pool of server processes along with disk procs
� (disk procs handle both I/O and locking)
� Still suffers from queued-up requests to locked items
� One message per I/O
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Recovery/CC issues

� OS provides:
� File-level locks – too coarse
� Page-level 2PL – no special index CC possible

� Transactions: commit point (duplicate functions)
� Ordering Dependencies

� Update outcome should not depend on execution order

� Major problem: Interaction between OS buffer
manager and recovery writes
� Need to be able to say “write this page before that one
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Virtual Memory

� Why not map DBMS into virtual memory?
� VM approach requires:

� 4 bytes overhead/VM page
� 100 MB file means 100 KB page table
� If page table not resident, “two-touch” page access

� Extent-based files system approach
� 1000 consecutive blocks represented in <addr, len>

(versus 100KB above)
� 4 bytes overhead/file ctl blocks can stay in memory
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Virtual Memory (cont.)

Bind chunks of file:
� DBMS must keep track of binding
� Bind/unbind very expensive

� Overhead comparable to file open

Plus, all the problems from buffering!
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Conclusions

OSs have problems with DBMS purposes:
� Buffer management (policies, ordering, overhead)
� File systems (abstraction, sequentiality, overhead)
� Process issues (structure, task/msg overhead,

scheduling)
� CC/Recovery (buffer pool problems)
� Virtual memory (space, efficiency, etc.)
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What about modern DBMS/OSs?

� “no-cache” file system option in DB2
� NT:

� “VirtualLock” API (override some buffer policies)
� “FlushViewOfFile” API (flush portions of file)

� Physical contiguity
� Unix FFS tries to place a file’s data blocks in the

same cylinder group


