
1

Operating System Support for
Database Management

15-823
Advanced Topics in Database Systems Performance

2© 2001 Ailamaki and Naughton

OS Issues for DB Systems

� Buffer pool management
� File System
� Scheduling, processes, IPC
� Concurrency/Recovery
� Virtual Memory

3© 2001 Ailamaki and Naughton

Buffer Management

� Typical Unix provisions:
� All file I/O goes through buffer pool
� LRU (or approximation) stack for replacement
� Prefetch on sequential access
� Transparent to clients (except for “force all”)

� Overhead: Can be terrible for each page read
� System call
� Core-to-core data move



2

4© 2001 Ailamaki and Naughton

Replacement policy

� Typical access patterns:
� Sequential scan
� Cyclic (looping) sequential scan
� Random accesses (once)
� Random accesses (many times)

� Which is the best replacement for each?

5© 2001 Ailamaki and Naughton

Replacement policy (cont.)

� Sequential scan
� MRU (one page)

� Cyclic (looping) sequential scan:
� MRU (one page) or
� “fix n+1” pages

� Random accesses (once)
� MRU

� Random accesses (many times)
� LRU

� Need provision for DB hints (or manage own BP)

6© 2001 Ailamaki and Naughton

Prefetch

� DBMS knows what it wants next
� It is not always sequential

� More hints needed for good performance

� Further issue: Prefetched pages might replace
needed ones



3

7© 2001 Ailamaki and Naughton

Crash Recovery

� Deferred Updates
� Force intentions list to disk
� Force commit flags
� Do updates from intentions list

� WAL
� Force undo/redo

� Need facilities for
� Selected force out
� Ordering of physical writes

8© 2001 Ailamaki and Naughton

File System Issues

In current dominant file systems
� File = byte stream
� Logical order little relation to physical order
� Indirect blocks (trees)

Consequences:

+ Small files cheap
+ Large files possible
+ Byte model for programmers

– Large files costly
– Many physical reads/logical
– Loss of sequentiality
– Byte model for DBMS
– Too many trees!

9© 2001 Ailamaki and Naughton

Preferred DBMS approach

� Physical contiguity
� OS-level B+ trees, hashing
� Let DBMS know about blocks of file
� Provide higher-level services on top of this



4

10© 2001 Ailamaki and Naughton

Scheduling, Processing, IPC

� DBMS needs
� Shared buffer pool
� Shared lock table
� Critical sections

11© 2001 Ailamaki and Naughton

Structure Alternatives

DBMS
Process

DBMS
Process

DBMS
Process

user 1 user k user 1 user k

DISK DISK

… …

Process-per-user Server DBMS

12© 2001 Ailamaki and Naughton

Evaluation

� Process-per-user structure
� Expensive context-switching
� Preemption at “bad places” (DBMS’s critical sections)

� DBMS server
� Duplication of OS services (must do own multi-tasking)
� Cost of messages is several thousand instructions

� DBMS would like
� Reduced message/task overheads
� No-preemption scheduling
� “fast-path” for context-switching among DBMS procs



5

13© 2001 Ailamaki and Naughton

Possible solutions

� FCFS server processes requests one at a time
� Multiple disks: at most one will be active

� Pool of server processes
� Setup similar to process-per-user

� Pool of server processes along with disk procs
� (disk procs handle both I/O and locking)
� Still suffers from queued-up requests to locked items
� One message per I/O

14© 2001 Ailamaki and Naughton

Recovery/CC issues

� OS provides:
� File-level locks – too coarse
� Page-level 2PL – no special index CC possible

� Transactions: commit point (duplicate functions)
� Ordering Dependencies

� Update outcome should not depend on execution order

� Major problem: Interaction between OS buffer
manager and recovery writes
� Need to be able to say “write this page before that one

15© 2001 Ailamaki and Naughton

Virtual Memory

� Why not map DBMS into virtual memory?
� VM approach requires:

� 4 bytes overhead/VM page
� 100 MB file means 100 KB page table
� If page table not resident, “two-touch” page access

� Extent-based files system approach
� 1000 consecutive blocks represented in <addr, len>

(versus 100KB above)
� 4 bytes overhead/file ctl blocks can stay in memory



6

16© 2001 Ailamaki and Naughton

Virtual Memory (cont.)

Bind chunks of file:
� DBMS must keep track of binding
� Bind/unbind very expensive

� Overhead comparable to file open

Plus, all the problems from buffering!

17© 2001 Ailamaki and Naughton

Conclusions

OSs have problems with DBMS purposes:
� Buffer management (policies, ordering, overhead)
� File systems (abstraction, sequentiality, overhead)
� Process issues (structure, task/msg overhead,

scheduling)
� CC/Recovery (buffer pool problems)
� Virtual memory (space, efficiency, etc.)

18© 2001 Ailamaki and Naughton

What about modern DBMS/OSs?

� “no-cache” file system option in DB2
� NT:

� “VirtualLock” API (override some buffer policies)
� “FlushViewOfFile” API (flush portions of file)

� Physical contiguity
� Unix FFS tries to place a file’s data blocks in the

same cylinder group


