Data Stream Management: 30,000 feet

- DBMS world:
 - Static data, dynamic queries
- Data Stream Management world:
 - Dynamic data, static queries

10,000 feet ...

- DBMS world:
 - Data is stored, pre-indexed, ~static
 - Queries are ad-hoc and arrive unexpectedly
- Data Stream Management world:
 - Data arrives in continuous, unbounded streams
 - Examples: sensor readings, stock tickers, ...
 - Queries are ~static (multiple concurrent “standing queries”)
 - Example: alert me when any stock jumps by 5%

"DSMS" = Data Stream Management System

5000 feet: DSMS Architecture

- Input streams
- DSMS
- Scratch Store
- Streamed Result
- Register Query
Research Issues (1/2)

- Languages & formal semantics for data streams and continuous queries
 (what is correct output?)
- Memory requirements & constraints
 (many queries require unbounded memory in worst case)
- Timestamp management & heartbeats
 (data sources tend to have differing latencies)
- Load shedding & approximation
 (keep up with data w/o having to overprovision system)

Research Issues (2/2)

- Work sharing
 (concurrent, standing queries → opportunity to share work)
- Adaptation
 (data characteristics fluctuate, queries persist for long time)
- Operator scheduling
 (data is pushed, not pulled)
- Distributed processing
 (stream sources distributed; improve scalability)

Players

- Berkeley ["Telegraph" project]
 – Franklin, Hellerstein
- MIT/Brown/Brandeis ["Aurora" project]
 – Stonebraker, Zdonik, Cherniack
- Stanford ["STREAM" project]
 – Motwani, Widom
- Wisconsin ["Niagara" project]
 – DeWitt, Naughton
Players <-> Topics

- Languages & formal semantics
- Memory requirements & constraints
- Timestamp management & heartbeats
- Load shedding & approximation
- Work sharing
- Adaptation
- Operator scheduling
- Distributed processing

The Stanford Data Stream Management System

Jennifer Widom
Stanford University

Formula for a Database Research Project

- Pick a simple but fundamental assumption underlying traditional database systems
 - Drop it
- Reconsider all aspects of data management and query processing
 - Many Ph.D. theses
 - Prototype from scratch
Following the Formula

• We followed this formula once before
 – The LORE project
 – Dropped assumption:
 Data has a fixed schema declared in advance
 – Semistructured data (→ XML)

• The STREAM Project
 – Dropped assumption:
 First load data, then index it, then run queries
 – Continuous data streams (→ continuous queries)

Data Streams

• Continuous, unbounded, rapid, time-varying streams of data elements

• Occur in a variety of modern applications
 – Network monitoring and traffic engineering
 – Sensor networks, RFID tags
 – Telecom call records
 – Financial applications
 – Web logs and click-streams
 – Manufacturing processes

• DSMS = Data Stream Management System

DBMS versus DSMS

• Persistent relations
• One-time queries
• Random access
• Access plan determined by query processor and physical DB design

• Transient streams (and persistent relations)
• Continuous queries
• Sequential access
• Unpredictable data characteristics and arrival patterns
The (Simplified) Big Picture

- Input streams
- Streamed Result
- Stored Result
- Archive
- Stored Relations
- Scratch Store

(Simplified) Network Monitoring

- Intrusion Warnings
- Online Performance Metrics
- Network measurements, Packet traces
- Scratch Store
- Archive
- Lookup Tables

Using Conventional DBMS

- Data streams as relation inserts, continuous queries as triggers or materialized views
- Problems with this approach
 - Inserts are typically batched, high overhead
 - Expressiveness: simple conditions (triggers), no built-in notion of sequence (views)
 - No notion of approximation, resource allocation
 - Current systems don't scale to large # of triggers
 - Views don't provide streamed results
The STREAM System

- Data streams and stored relations
- Declarative language for registering continuous queries
- Flexible query plans and execution strategies
- Textual, graphical, and application interfaces
- Relational, centralized (for now)

STREAM System Challenges

- Must cope with:
 - Stream rates that may be high, variable, bursty
 - Stream data that may be unpredictable, variable
 - Continuous query loads that may be high, variable

Overload
STREAM System Challenges

• Must cope with:
 – Stream rates that may be high, variable, bursty
 – Stream data that may be unpredictable, variable
 – Continuous query loads that may be high, variable

Overload
Changing conditions

STREAM System Features

• Aggressive sharing of state and computation
• Careful resource allocation and use
• Continuous self-monitoring and reoptimization
• Graceful approximation as necessary

Rest of This Talk

• Query language
• Query plans and execution issues
• Coping with overload
• Coping with changing conditions
• Live system demonstration
Continuous Query Language – CQL

- Start with SQL
 - Then add...
- Streams as new data type
- Continuous instead of one-time semantics
- Windows on streams (derived from SQL-99)
- Sampling on streams (basic)
- Three relation-to-stream operators
 - Istream, Dstream, Rstream

CQL (cont’d)

- Syntactic shortcuts and defaults
 - So easy queries are easy to write
- Equivalences
 - Basis for query-rewrite optimizations
 - Includes all relational equivalences, plus new stream-based ones
- Based on formally-defined abstract semantics

CQL Example Query 1

Two streams, contrived for ease of examples:
- Orders (orderID, customer, cost)
- Fulfillments (orderID, clerk)
CQL Example Query 1

Two streams, contrived for ease of examples:
Orders (orderID, customer, cost)
Fulfillments (orderID, clerk)

Total cost of orders fulfilled over the last day by clerk “Sue” for customer “Joe”
Select Sum(O.cost)
From Orders O, Fulfillments F [Range 1 Day]
Where O.orderID = F.orderID And F.clerk = “Sue”
And O.customer = “Joe”
CQL Example Query 1

Two streams, contrived for ease of examples:

Orders (orderID, customer, cost)
Fulfillments (orderID, clerk)

Total cost of orders fulfilled over the last day by clerk “Sue” for customer “Joe”

Select Sum(O.cost)
From Orders O, Fulfillments F [Range 1 Day]
Where O.orderID = F.orderID And F.clerk = “Sue”
And O.customer = “Joe”

CQL Example Query 2

Using a 10% sample of the Fulfillments stream, take the 5 most recent fulfillments for each clerk and return the maximum cost

Select F.clerk, Max(O.cost)
From Orders O,
Fulfillments F [Partition By clerk Rows 5] 10% Sample
Where O.orderID = F.orderID
Group By F.clerk
Using a 10% sample of the Fulfillments stream, take the 5 most recent fulfillments for each clerk and return the maximum cost.

```
Select F.clerk, Max(O.cost)
From Orders O,
    Fulfillments F [Partition By clerk Rows 5] 10% Sample
Where O.orderID = F.orderID
Group By F.clerk
```
CQL Example Query 2

Using a 10% sample of the Fulfillments stream, take the 5 most recent fulfillments for each clerk and return the maximum cost.

```sql
Select F.clerk, Max(O.cost)
From Orders O,
Fulfillments F [Partition By clerk Rows 5] 10% Sample
Where O.orderID = F.orderID
Group By F.clerk
```

CQL Example: Result Type

Simpler version of Example Query 2:

```sql
Select F.clerk, Max(O.cost)
From O, F [Rows 100]
Where O.orderID = F.orderID
Group By F.clerk
```

• Result is a relation, updated as stream elements arrive.

CQL Example: Result Type

Simpler version of Example Query 2:

```sql
Select Istream( F.clerk, Max(O.cost) )
From O, F [Rows 100]
Where O.orderID = F.orderID
Group By F.clerk
```

• Streamed result: Emits `<clerk,max>` stream element whenever max changes for a clerk (or new clerk).
CQL Example Query 4

Relation CurPrice(stock, price)
Select stock, Avg(price)
From Istream(CurPrice) [Range 1 Day]
Group By stock

- Average price over last day for each stock
- Istream provides history of CurPrice
- Window on history (back to relation), group and aggregate

Query Execution

- When a continuous query is registered, generate a query plan
 - New plan merged with existing plans
 - Users can also create & manipulate plans directly
- Plans composed of three main components:
 - Operators
 - Queues (input and inter-operator)
 - State (windows, operators requiring history)
- Global scheduler for plan execution

Simple Query Plan
Memory Overhead in Query Processing

- Queues + State
- Continuous queries keep state indefinitely
- Online requirements suggest using memory rather than disk
 - But we realize this assumption is shaky
- Goal: minimize memory use while providing timely, accurate answers

Reducing Memory Overhead

1) Exploit constraints on streams to reduce state
2) Enable state sharing within and across queries
3) Specialized operator scheduling to reduce queue sizes

Exploiting Stream Constraints

- For many queries, large or unbounded state is required for arbitrary streams
Exploiting Stream Constraints

- For many queries, large or unbounded state is required for *arbitrary* streams
- But streams may exhibit *constraints* that reduce, bound, or even eliminate state
 - Clustered
 - Ordered
 - Stream-based referential integrity
- Relaxed version: *k*-constraints

Stream Constraints: Simple Example

Orders (orderId, customer, cost)
Fulfillments (orderId, portion, clerk)

If Fulfillments is *k*-clustered on orderId, can infer when to discard Orders

Exploiting Constraints

- Continuously monitor streams to identify *k*-constraints relevant to queries
- Query execution plans reduce or eliminate state based on *k*-constraints
- If constraints violated, get approximate result
State Sharing

- Baseline: Input streams shared by all queries
 - Maintain maximum window
- Subplans and synopses also can be shared
 - Currently must hook up manually
- Sophisticated techniques for sharing and memory minimization in sliding-window aggregates

Reminder: Query Plans

Operator Scheduling

- Global scheduler invokes `run` method of query plan operators with "timeslice" parameter
- Many possible scheduling objectives: minimize latency, memory use, computation, inaccuracy, starvation, …
 1) Round-robin
 2) Minimize queue sizes
 3) Minimize combination of queue sizes and latency
 4) Parallel versions of above
Coping with Overload

- "Load-shedding" = discarding tuples
- Goal: deliver best possible approximate answer while not falling behind
- What is definition of "best"?
 - Maximum subset
 - Maximum random sample
- We have techniques with provable guarantees for specific query types
 - Extremely hard problem for general plans

Coping with Changing Conditions

- Continuous queries are long-running; conditions may change
 - Data characteristics, arrival characteristics, query load, available resources, system conditions, ...
- Solution: self-monitoring and adaptivity
 - We already saw one example (what was it?)
 - Other results:
 - Adaptive operator reordering
 - Adaptive caching

A Note on Time

- All stream elements have timestamps
 - Necessary for time-based windows
 - Necessary for consistent well-defined semantics over multiple streams and updatable relations
- Basic correctness requirement: query processor must see stream elements in timestamp order
- Easy when time is centralized system clock
 - Stream elements timestamped on entry to system
Application-Defined Time

- Streams may contain application timestamps
 - Sensor readings, financial transactions, etc.
- Elements may arrive out of order at DSMS
 - Distributed streams with time skew among them
 - Latency reaching DSMS
 - Reordering on transmission channel
- Our solution: heartbeats
 - Provided by application or deduced from measured parameters (skew, latency, etc.)

The Stream Systems Landscape

- (At least) three general-purpose DSMS prototypes underway
 - STREAM (Stanford)
 - Aurora - Borealis (Brown, Brandeis, MIT)
 - TelegraphCQ - HiFi (Berkeley)
- Stream system benchmark
 - Main goal: demonstrate that conventional systems are far inferior for data stream applications

http://www-db.stanford.edu/stream/

Google: “stanford stream”

Contributors: Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz, Mayur Datar, Keith Ito, Rajeev Motwani, Itaru Nishizawa, Utkarsh Srivastava, Justin Rosenstein, Zubin Wang